bigdataanalytics:bda:start
Differenze
Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.
Entrambe le parti precedenti la revisioneRevisione precedenteProssima revisione | Revisione precedente | ||
bigdataanalytics:bda:start [07/06/2022 alle 08:02 (3 anni fa)] – [Big Data Analytics A.A. 2021/22] Luca Pappalardo | bigdataanalytics:bda:start [04/11/2022 alle 12:21 (2 anni fa)] (versione attuale) – Salvatore Ruggieri | ||
---|---|---|---|
Linea 1: | Linea 1: | ||
- | < | ||
- | <!-- Google Analytics --> | ||
- | <script type=" | ||
- | (function(i, | ||
- | (i[r].q=i[r].q||[]).push(arguments)}, | ||
- | m=s.getElementsByTagName(o)[0]; | ||
- | })(window, | ||
- | |||
- | ga(' | ||
- | ga(' | ||
- | ga(' | ||
- | | ||
- | ga(' | ||
- | ga(' | ||
- | setTimeout(" | ||
- | |||
- | </ | ||
- | <!-- End Google Analytics --> | ||
- | <!-- Global site tag (gtag.js) - Google Analytics --> | ||
- | <script async src=" | ||
- | < | ||
- | window.dataLayer = window.dataLayer || []; | ||
- | function gtag(){dataLayer.push(arguments); | ||
- | gtag(' | ||
- | |||
- | gtag(' | ||
- | </ | ||
- | <!-- Capture clicks --> | ||
- | < | ||
- | jQuery(document).ready(function(){ | ||
- | jQuery(' | ||
- | var fname = this.href.split('/' | ||
- | ga(' | ||
- | }); | ||
- | jQuery(' | ||
- | var fname = this.href.split('/' | ||
- | ga(' | ||
- | }); | ||
- | jQuery(' | ||
- | var fname = this.href.split('/' | ||
- | ga(' | ||
- | }); | ||
- | jQuery(' | ||
- | var fname = this.href.split('/' | ||
- | ga(' | ||
- | }); | ||
- | jQuery(' | ||
- | var fname = this.href.split('/' | ||
- | ga(' | ||
- | }); | ||
- | }); | ||
- | </ | ||
- | </ | ||
====== Big Data Analytics A.A. 2022/23 ====== | ====== Big Data Analytics A.A. 2022/23 ====== | ||
- | This year, the course 599AA Big Data Analytics (BDA) is replaced by 783AA Geospatial Analytics | + | This year, the course 599AA Big Data Analytics (BDA) is replaced by [[http:// |
- | ====== Learning goals ====== | + | |
- | + | ||
- | In our digital society, every human activity is mediated by information technologies, | + | |
- | This course has three objectives: | + | |
- | + | ||
- | * introducing to the emergent field of big data analytics and social mining; | + | |
- | * introducing to the technological scenario of big data, like programming tools to analyze big data, query NoSQL databases, and perform predictive modeling; | + | |
- | * guide students to the development of an open-source and reproducible big data analytics project, based on the analysis of real-world datasets. | + | |
- | + | ||
- | ====== Module 1: Big Data Analytics and Social Mining ====== | + | |
- | In this module, analytical methods and processes are presented through exemplary cases studies in challenging domains, organized according to the following topics: | + | |
- | + | ||
- | * The Big Data Scenario and the new questions to be answered | + | |
- | * Sports Analytics: | + | |
- | - Soccer data landscape and injury prediction | + | |
- | - Analysis and evolution of sports performance | + | |
- | * Mobility Analytics | + | |
- | - Mobility data landscape and mobility data mining methods | + | |
- | - Understanding Human Mobility with vehicular sensors (GPS) | + | |
- | - Mobility Analytics: Novel Demography with mobile-phone data | + | |
- | * Social Media Mining | + | |
- | - The social media data landscape: Facebook, Linked-in, Twitter, Last_FM | + | |
- | - Sentiment analysis. example from human migration studies | + | |
- | - Discussion on ethical issues of Big Data Analytics | + | |
- | * Well-being& | + | |
- | - Nowcasting influenza with retail market data | + | |
- | - Predicting well-being from human mobility patterns | + | |
- | * Paper presentations by students | + | |
- | + | ||
- | + | ||
- | ====== Module 2: Big Data Analytics Technologies ====== | + | |
- | This module will provide to the students the technologies to collect, manipulate and process big data. In particular, the following tools will be presented: | + | |
- | + | ||
- | * Python for Data Science | + | |
- | * The Jupyter Notebook: developing open-source and reproducible data science | + | |
- | * MongoDB: fast querying and aggregation in NoSQL databases | + | |
- | * GeoPandas: analyze geo-spatial data with Python | + | |
- | * Scikit-learn: | + | |
- | * Keras: deep learning in Python | + | |
- | + | ||
- | + | ||
- | ====== Module 3: Laboratory for Interactive Project Development | + | |
- | During the course, teams of students will be guided in the development of a big data analytics project. The projects will be based on real-world datasets covering several thematic areas. Discussions and presentation in class, at different stages of the project execution, will be performed. | + | |
- | + | ||
- | * 1st Mid Term: Data Understanding and Project Formulation | + | |
- | * 2nd Mid Term: Model(s) construction and evaluation | + | |
- | * 3rd Mid Term: Model interpretation/ | + | |
- | * Exam: Final Project results | + | |
- | + | ||
- | ====== Calendar ====== | + | |
- | + | ||
- | 15/09 (Mod. 1) Introduction to the course, The Big Data scenario {{ : | + | |
- | + | ||
- | 17/09 (Mod. 2) Python for Data Science and the Jupyter Notebook: developing open-source and reproducible data science | + | |
- | * How to install Jupyter notebook: https:// | + | |
- | * Python notebooks: https:// | + | |
- | * datasets: {{ : | + | |
- | + | ||
- | 22/09 (Mod. 2) Data Exploration and Understanding practice in Python | + | |
- | * Python notebooks: https:// | + | |
- | * datasets: {{ : | + | |
- | + | ||
- | 24/09 (Mod. 3) Presentation of datasets for the project {{ : | + | |
- | + | ||
- | 29/09 (Mod. 2) Scikit-learn: | + | |
- | + | ||
- | 01/10 (Mod. 2) Scikit-learn: | + | |
- | + | ||
- | 6/10 (Mod. 2) Geopandas and scikit-mobility: | + | |
- | * datasets: https:// | + | |
- | * code: https:// | + | |
- | + | ||
- | 8/10 (Mod. 2) Geopandas and scikit-mobility: | + | |
- | * https:// | + | |
- | + | ||
- | 13/10 (Mod. 1) Case study 1: Injury prediction and how to deal with unbalanced datasets and perform feature selection: {{ : | + | |
- | * Prevedere è meglio che curare: AI al servizio dello sport https:// | + | |
- | + | ||
- | + | ||
- | 15/10 (Mod. 2) Feature selection in Python | + | |
- | * notebook: https:// | + | |
- | * dataset1: https:// | + | |
- | * dataset2: https:// | + | |
- | + | ||
- | 20/10 (Mod. 3) MidTerm1 | + | |
- | * BigData-Islanders | + | |
- | * WeMine | + | |
- | * cpu_in_flames | + | |
- | + | ||
- | 22/10 (Mod. 3) MidTerm1 | + | |
- | * How I Met Your Big Data | + | |
- | * SLM | + | |
- | * The Missing Values | + | |
- | + | ||
- | 27/10 (Mod. 3) Comments and discussion on first Mid Term 1 {{ : | + | |
- | + | ||
- | 29/10 (Mod. 1) Case Study 2: How to use Data Science to nowcast well-being {{ : | + | |
- | + | ||
- | 03/11 (Mod. 1) Case Study 3: Performance evaluation in sports | + | |
- | * {{ : | + | |
- | * {{ : | + | |
- | + | ||
- | 05/11 NO LESSON | + | |
- | + | ||
- | 10/11 (Mod. 2) Interpretations and Explanations 1: https:// | + | |
- | + | ||
- | 12/11 (Mod. 2) Interpretations and Explanations 2: https:// | + | |
- | + | ||
- | 17/11 (Mod. 3) Mid Term2 | + | |
- | * How I Met Your Big Data | + | |
- | * WeMine | + | |
- | * The Missing Values | + | |
- | + | ||
- | 19/11 (Mod.3) Mid Term2 | + | |
- | * BigData-Islanders | + | |
- | * SLM | + | |
- | * cpu_in_flames | + | |
- | + | ||
- | 24/11 NO LESSON | + | |
- | + | ||
- | 26/11 NO LESSON | + | |
- | + | ||
- | 01/12 (Mod. 3) Paper presentations | + | |
- | * BigData-Islanders | + | |
- | * SLM | + | |
- | + | ||
- | 03/12 (Mod. 3) Paper presentations | + | |
- | * cpu_in_flames | + | |
- | * The Missing Values | + | |
- | + | ||
- | 10/12 (Mod. 3) Paper presentations | + | |
- | * How I met your Big Data | + | |
- | * WeMine | + | |
- | + | ||
- | 15/12 (Mod. 3) Mid Term 3 | + | |
- | * How I Met Your Big Data | + | |
- | * BigData-Islanders | + | |
- | * cpu_in_flames | + | |
- | + | ||
- | 17/12 (Mod. 3) Mid Term 3 | + | |
- | * WeMine | + | |
- | * SLM | + | |
- | * The Missing Values | + | |
- | ===== Exam (Appelli) ===== | + | |
- | - Jan 26th, 2022 | + | |
- | - Feb 11th, 2022 | + | |
====== Previous Big Data Analytics websites ====== | ====== Previous Big Data Analytics websites ====== |
bigdataanalytics/bda/start.1654588935.txt.gz · Ultima modifica: 07/06/2022 alle 08:02 (3 anni fa) da Luca Pappalardo