Strumenti Utente

Strumenti Sito


bigdataanalytics:bda:start

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisioneRevisione precedente
Prossima revisione
Revisione precedente
bigdataanalytics:bda:start [07/06/2022 alle 08:02 (3 anni fa)] – [Big Data Analytics A.A. 2021/22] Luca Pappalardobigdataanalytics:bda:start [04/11/2022 alle 12:21 (2 anni fa)] (versione attuale) Salvatore Ruggieri
Linea 1: Linea 1:
-<html> 
-<!-- Google Analytics --> 
-<script type="text/javascript" charset="utf-8"> 
-(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ 
-(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), 
-m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) 
-})(window,document,'script','//www.google-analytics.com/analytics.js','ga'); 
- 
-ga('create', 'UA-34685760-1', 'auto', 'personalTracker', {'allowLinker': true}); 
-ga('personalTracker.require', 'linker'); 
-ga('personalTracker.linker:autoLink', ['pages.di.unipi.it', 'enforce.di.unipi.it', 'didawiki.di.unipi.it'] ); 
-   
-ga('personalTracker.require', 'displayfeatures'); 
-ga('personalTracker.send', 'pageview', 'ruggieri/teaching/bda/'); 
-setTimeout("ga('send','event','adjusted bounce rate','30 seconds')",30000);  
- 
-</script> 
-<!-- End Google Analytics --> 
-<!-- Global site tag (gtag.js) - Google Analytics --> 
-<script async src="https://www.googletagmanager.com/gtag/js?id=G-LPWY0VLB5W"></script> 
-<script> 
-  window.dataLayer = window.dataLayer || []; 
-  function gtag(){dataLayer.push(arguments);} 
-  gtag('js', new Date()); 
- 
-  gtag('config', 'G-LPWY0VLB5W'); 
-</script> 
-<!-- Capture clicks --> 
-<script> 
-jQuery(document).ready(function(){ 
-  jQuery('a[href$=".pdf"]').click(function() { 
-    var fname = this.href.split('/').pop(); 
-    ga('personalTracker.send', 'event',  'BDA', 'PDFs', fname); 
-  }); 
-  jQuery('a[href$=".r"]').click(function() { 
-    var fname = this.href.split('/').pop(); 
-    ga('personalTracker.send', 'event',  'BDA', 'Rs', fname); 
-  }); 
-  jQuery('a[href$=".zip"]').click(function() { 
-    var fname = this.href.split('/').pop(); 
-    ga('personalTracker.send', 'event',  'BDA', 'ZIPs', fname); 
-  }); 
-  jQuery('a[href$=".mp4"]').click(function() { 
-    var fname = this.href.split('/').pop(); 
-    ga('personalTracker.send', 'event',  'BDA', 'Videos', fname); 
-  }); 
-  jQuery('a[href$=".flv"]').click(function() { 
-    var fname = this.href.split('/').pop(); 
-    ga('personalTracker.send', 'event',  'BDA', 'Videos', fname); 
-  }); 
-}); 
-</script> 
-</html> 
 ====== Big Data Analytics A.A. 2022/23 ====== ====== Big Data Analytics A.A. 2022/23 ======
  
-This year, the course 599AA Big Data Analytics (BDA) is replaced by 783AA Geospatial Analytics (GSA). For any questions, please contact Luca Pappalardo (luca [dot] pappalardo [at] isti [dot] cnr [dot] it). +This year, the course 599AA Big Data Analytics (BDA) is replaced by [[http://didawiki.di.unipi.it/doku.php/geospatialanalytics/gsa/start|Geospatial Analytics]]. For any questions, please contact Luca Pappalardo (luca [dot] pappalardo [at] isti [dot] cnr [dot] it).
-====== Learning goals ====== +
- +
-In our digital society, every human activity is mediated by information technologies, hence leaving digital traces behind. These massive traces are stored in some, public or private, repository: phone call records, movement trajectories, soccer-logs, and social media records are all examples of “Big Data”, a novel and powerful “social microscope” to understand the complexity of our societies. The analysis of big data sources is a complex task, involving the knowledge of several technological and methodological tools. +
-This course has three objectives:  +
- +
-  * introducing to the emergent field of big data analytics and social mining;  +
-  * introducing to the technological scenario of big data, like programming tools to analyze big data, query NoSQL databases, and perform predictive modeling; +
-  * guide students to the development of an open-source and reproducible big data analytics project, based on the analysis of real-world datasets.  +
- +
-====== Module 1: Big Data Analytics and Social Mining ====== +
-In this module, analytical methods and processes are presented through exemplary cases studies in challenging domains, organized according to the following topics:  +
- +
-  * The Big Data Scenario and the new questions to be answered +
-  * Sports Analytics:    +
-    - Soccer data landscape and injury prediction +
-    - Analysis and evolution of sports performance +
-  * Mobility Analytics +
-    - Mobility data landscape and mobility data mining methods +
-    - Understanding Human Mobility with vehicular sensors (GPS) +
-    - Mobility Analytics: Novel Demography with mobile-phone data  +
-  * Social Media Mining +
-    - The social media data landscape: Facebook, Linked-in, Twitter, Last_FM +
-    - Sentiment analysis. example from human migration studies +
-    - Discussion on ethical issues of Big Data Analytics +
-  * Well-being&Now-casting +
-    - Nowcasting influenza with retail market data +
-    - Predicting well-being from human mobility patterns +
-  * Paper presentations by students +
- +
- +
-====== Module 2: Big Data Analytics Technologies ====== +
-This module will provide to the students the technologies to collect, manipulate and process big data. In particular, the following tools will be presented:  +
- +
-  * Python for Data Science +
-  * The Jupyter Notebook: developing open-source and reproducible data science  +
-  * MongoDB: fast querying and aggregation in NoSQL databases +
-  * GeoPandas: analyze geo-spatial data with Python +
-  * Scikit-learn: machine learning in Python +
-  * Keras: deep learning in Python +
- +
- +
-====== Module 3: Laboratory for Interactive Project Development  ====== +
-During the course, teams of students will be guided in the development of a big data analytics project. The projects will be based on real-world datasets covering several thematic areas. Discussions and presentation in class, at different stages of the project execution, will be performed.  +
- +
-  * 1st Mid Term: Data Understanding and Project Formulation +
-  * 2nd Mid Term: Model(s) construction and evaluation +
-  * 3rd Mid Term: Model interpretation/explanation +
-  * Exam: Final Project results +
- +
-====== Calendar ====== +
- +
-15/09 (Mod. 1) Introduction to the course, The Big Data scenario {{ :bigdataanalytics:bda:lesson1_introduction_to_the_course_2021.pdf |}} +
- +
-17/09 (Mod. 2) Python for Data Science and the Jupyter Notebook: developing open-source and reproducible data science +
-  * How to install Jupyter notebook: https://jupyter.readthedocs.io/en/latest/install.html +
-  * Python notebooks: https://jovian.ai/jonpappalord/collections/bda-2021-2022 +
-  * datasets: {{ :bigdataanalytics:bda:data_python_for_data_science.zip |}} +
- +
-22/09 (Mod. 2) Data Exploration and Understanding practice in Python +
-  * Python notebooks: https://jovian.ai/jonpappalord/collections/bda-2021-2022 +
-  * datasets: {{ :bigdataanalytics:bda:data_python_for_data_science.zip |}} +
- +
-24/09 (Mod. 3) Presentation of datasets for the project {{ :bigdataanalytics:bda:bda21_22_datasets_1_.pdf |}} +
- +
-29/09 (Mod. 2) Scikit-learn: programming tools for data mining (part 1) https://jovian.ai/jonpappalord/classification +
- +
-01/10 (Mod. 2) Scikit-learn: programming tools for data mining (part 2) https://jovian.ai/jonpappalord/clustering +
- +
-6/10 (Mod. 2) Geopandas and scikit-mobility: managing geographic data in Python (part 1) +
-  * datasets: https://bit.ly/301XRwF +
-  * code: https://jovian.ai/jonpappalord/bda-geopandas +
- +
-8/10 (Mod. 2) Geopandas and scikit-mobility: managing geographic data in Python (part 2) +
-  * https://jovian.ai/jonpappalord/collections/scikit-mobility-tutorial +
- +
-13/10 (Mod. 1) Case study 1: Injury prediction and how to deal with unbalanced datasets and perform feature selection: {{ :bigdataanalytics:bda:bda_2122_injury_forecasting.pdf |}} +
-  * Prevedere è meglio che curare: AI al servizio dello sport https://www.youtube.com/watch?v=ZrTSLCB7ZLg +
- +
- +
-15/10 (Mod. 2) Feature selection in Python  +
-  * notebook: https://jovian.ai/jonpappalord/feature-selection +
-  * dataset1: https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009/version/+
-  * dataset2: https://www.kaggle.com/andrewmvd/heart-failure-clinical-data +
- +
-20/10 (Mod. 3) MidTerm1 +
-  * BigData-Islanders +
-  * WeMine +
-  * cpu_in_flames +
- +
-22/10 (Mod. 3) MidTerm1 +
-  * How I Met Your Big Data +
-  * SLM +
-  * The Missing Values +
- +
-27/10 (Mod. 3) Comments and discussion on first Mid Term 1 {{ :bigdataanalytics:bda:tips_mid_1_bda2122.pdf |}} +
- +
-29/10 (Mod. 1) Case Study 2: How to use Data Science to nowcast well-being {{ :bigdataanalytics:bda:bda_wellbeing.pdf |}} +
- +
-03/11 (Mod. 1) Case Study 3: Performance evaluation in sports  +
-  * {{ :bigdataanalytics:bda:bda_2122_evaluting_soccer_performance.pdf |}} +
-  * {{ :bigdataanalytics:bda:bda_2122_performance_evaluation.pdf |}} +
- +
-05/11 NO LESSON +
- +
-10/11 (Mod. 2) Interpretations and Explanations 1: https://jovian.ai/jonpappalord/explanations +
- +
-12/11 (Mod. 2) Interpretations and Explanations 2: https://jovian.ai/jonpappalord/explanations2 +
- +
-17/11 (Mod. 3) Mid Term2 +
-  * How I Met Your Big Data +
-  * WeMine +
-  * The Missing Values +
- +
-19/11 (Mod.3) Mid Term2 +
-  * BigData-Islanders +
-  * SLM +
-  * cpu_in_flames +
- +
-24/11 NO LESSON +
- +
-26/11 NO LESSON +
- +
-01/12 (Mod. 3) Paper presentations +
-  * BigData-Islanders  +
-  * SLM +
- +
-03/12 (Mod. 3) Paper presentations +
-  * cpu_in_flames +
-  * The Missing Values +
- +
-10/12 (Mod. 3) Paper presentations +
-  * How I met your Big Data +
-  * WeMine +
- +
-15/12 (Mod. 3) Mid Term 3 +
-  * How I Met Your Big Data +
-  * BigData-Islanders +
-  * cpu_in_flames +
- +
-17/12 (Mod. 3) Mid Term 3 +
-  * WeMine +
-  * SLM +
-  * The Missing Values +
-===== Exam (Appelli) ===== +
-  - Jan 26th, 2022 +
-  - Feb 11th, 2022+
  
 ====== Previous Big Data Analytics websites ====== ====== Previous Big Data Analytics websites ======
bigdataanalytics/bda/start.1654588935.txt.gz · Ultima modifica: 07/06/2022 alle 08:02 (3 anni fa) da Luca Pappalardo

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki