Prossima revisione | Revisione precedente |
mds:sds:2022 [17/02/2023 alle 14:24 (2 anni fa)] – creata Salvatore Ruggieri | mds:sds:2022 [08/08/2024 alle 12:34 (7 mesi fa)] (versione attuale) – Salvatore Ruggieri |
---|
<html> | ====== Statistics for Data Science (628PP) A.Y. 2022/23 ====== |
<!-- Google Analytics --> | |
<script type="text/javascript" charset="utf-8"> | |
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ | |
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), | |
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) | |
})(window,document,'script','//www.google-analytics.com/analytics.js','ga'); | |
| |
ga('create', 'UA-34685760-1', 'auto', 'personalTracker', {'allowLinker': true}); | |
ga('personalTracker.require', 'linker'); | |
ga('personalTracker.linker:autoLink', ['pages.di.unipi.it', 'enforce.di.unipi.it', 'didawiki.di.unipi.it', 'luciacpassaro.github.io'] ); | |
ga('personalTracker.require', 'displayfeatures'); | |
ga('personalTracker.send', 'pageview', 'courses/sds/'); | |
setTimeout("ga('send','event','adjusted bounce rate','30 seconds')",30000); | |
</script> | |
<!-- End Google Analytics --> | |
<!-- Global site tag (gtag.js) - Google Analytics --> | |
<script async src="https://www.googletagmanager.com/gtag/js?id=G-LPWY0VLB5W"></script> | |
<script> | |
window.dataLayer = window.dataLayer || []; | |
function gtag(){dataLayer.push(arguments);} | |
gtag('js', new Date()); | |
| |
gtag('config', 'G-LPWY0VLB5W'); | |
</script> | |
<!-- Capture clicks --> | |
<script> | |
jQuery(document).ready(function(){ | |
jQuery('a[href$=".pdf"]').click(function() { | |
var fname = this.href.split('/').pop(); | |
ga('personalTracker.send', 'event', 'SDS', 'PDFs', fname); | |
}); | |
jQuery('a[href$=".r"]').click(function() { | |
var fname = this.href.split('/').pop(); | |
ga('personalTracker.send', 'event', 'SDS', 'Rs', fname); | |
}); | |
jQuery('a[href$=".zip"]').click(function() { | |
var fname = this.href.split('/').pop(); | |
ga('personalTracker.send', 'event', 'SDS', 'ZIPs', fname); | |
}); | |
}); | |
</script> | |
</html> | |
====== Statistics for Data Science (628PP) A.Y. 2021/22 ====== | |
| |
=====Instructor===== | =====Instructor===== |
| |
=====Classes===== | =====Classes===== |
| |
Lessons will be also live-streamed on the [[https://teams.microsoft.com/l/team/19%3aFzsw67-dwhEyiFCsFZbr-qef9-U87Jr3P9CP5IdgLdg1%40thread.tacv2/conversations?groupId=c494fff8-5c15-42c3-88a0-75f4a6e92cc9&tenantId=c7456b31-a220-47f5-be52-473828670aa1|Teams space]].\\ | |
| |
| |
^ Day of Week ^ Hour ^ Room ^ | ^ Day of Week ^ Hour ^ Room ^ |
| Tuesday | 16:00 - 18:00 | Fib A1 | | | Wednesday | 9:00 - 11:00 | Fib-C | |
| Thursday | 16:00 - 18:00 | Fib C1 | | | Thursday | 11:00 - 13:00 | Fib-C | |
| Friday | 14:00 - 16:00 | Fib A1 | | | Friday | 14:00 - 16:00 | Fib-C | |
| |
=====Pre-requisites===== | =====Pre-requisites===== |
| |
Extra-lessons refreshing such notions may be planned in the first part of the course. | Extra-lessons refreshing such notions may be planned in the first part of the course. |
| |
| |
| |
| |
=====Preliminary program and calendar===== | =====Preliminary program and calendar===== |
| |
* [[https://esami.unipi.it/programma.php?c=52433&aa=2021|Preliminary program]]. | * [[https://esami.unipi.it/programma.php?c=57053&aa=2022|Preliminary program]]. |
* [[https://didattica.di.unipi.it/en/master-programme-in-data-science-and-business-informatics/academic-calendar-2021-2022/|Calendar of lessons]]. | * [[https://didattica.di.unipi.it/laurea-magistrale-in-data-science-and-business-informatics/orario-magistrale-data-science-business-informatics/|Calendar of lessons]]. |
| |
=====Student project===== | =====Exams===== |
| |
* The project can be done in groups of at most 3 students. | |
* The project must be delivered (report + code) by end of July. | |
* The oral discussion must be done by the September session, and it will cover both the project and all topics of the course. | |
* The project replaces the written exam but **students have to [[https://esami.unipi.it/esami2/|register for the written dates]] in order to fill the student's questionnaire**. | |
* Groups ready to discuss send the project to the teacher plus availability time slots for oral discussion. | |
* {{ :mds:sds:sds.project.2022.pdf | Project presentation slides}} and [[http://patterns.di.unipi.it/sds/video/sds24_20220414.mp4| project introduction rec (.mp4)]]. | |
| |
=====Written exam===== | |
| |
__//There are no mid-terms//.__ The exam consists of a written part and an oral part. The written part consists of exercises on the topics of the course. Each question is assigned a grade, summing up to 30 points. Students are admitted to the oral part if they receive a grade of at least 18 points. Written exam consists of open questions and exercises. Example written texts will be added here. Oral consists of critical discussion of the written part and of open questions and problem solving on the topics of the course. | __//There are no mid-terms//.__ The exam consists of a written part and an oral part. The written part consists of exercises on the topics of the course. Each question is assigned a grade, summing up to 30 points. Students are admitted to the oral part if they receive a grade of at least 18 points. The written part consists of open questions and exercises. Example written texts: **{{ :mds:sds:sds_sample1.pdf | sample1}}**, **{{ :mds:sds:sds_sample2.pdf | sample2}}**. The oral part consists of critical discussion of the written part and of open questions and problem solving on the topics (both theory and R programming) of the course. |
| |
Registration to exams is mandatory (**beware of the registration deadline!**): [[https://esami.unipi.it/esami2/|register here]]\\ | Registration to exams is mandatory (**beware of the registration deadline!**): [[https://esami.unipi.it/esami2/|register here]]\\ |
| |
^ Date ^ Hour ^ Room ^ Notes ^ | ^ Date ^ Hour ^ Room ^ Notes ^ |
| 16/3/2023 | 14:00 - 16:00 | M1 | [[https://didattica.di.unipi.it/en/appelli-straordinari/|Extra-ordinary exam]] | | | 6/3/2024 | 11:00 - 13:00 | Dip. Inf. - Seminari Est | [[https://didattica.di.unipi.it/en/appelli-straordinari/|Extra-ordinary exam]] | |
| |
| <html> |
| <!-- [[https://didattica.di.unipi.it/en/appelli-straordinari/|Extra-ordinary exam]] --> |
| </html> |
| |
| |
| =====Student project===== |
| |
| * The project replaces the written part of the examination |
| * {{:mds:sds:sds.project.2023.pdf |Project description and rules and Q&A}}. |
| |
| =====Teams channel ===== |
| |
| A [[https://teams.microsoft.com/l/team/19%3aUXLp8LsaQdVRG5tOpd1wu8iBkhzgz8uUt-eEfWGgoNk1%40thread.tacv2/conversations?groupId=ee415f6c-9177-47d7-9be4-639da1fe5ea0&tenantId=c7456b31-a220-47f5-be52-473828670aa1|Teams channel]] will be used to post news, Q&A, and other material related to the course. |
=====Class calendar===== | =====Class calendar===== |
| |
Lessons will be live-streamed on the [[https://teams.microsoft.com/l/team/19%3aFzsw67-dwhEyiFCsFZbr-qef9-U87Jr3P9CP5IdgLdg1%40thread.tacv2/conversations?groupId=c494fff8-5c15-42c3-88a0-75f4a6e92cc9&tenantId=c7456b31-a220-47f5-be52-473828670aa1|Teams space]] and recorded.\\ | Lessons will be **NOT** be live-streamed, but recordings of past years are available here for non-attending students.\\ |
| |
To watch the recordings online, you must be connected to the [[https://start.unipi.it/en/help-ict/vpn/|unipi.it VPN]]. Alternatively, right click on the link and download the whole file, then watch it locally on your computer. | To watch the recordings online, you must be connected to the [[https://start.unipi.it/en/help-ict/vpn/|unipi.it VPN]]. Alternatively, right click on the link and download the whole file, then watch it locally on your device using e.g. [[http://www.videolan.org/vlc/|VLC media player]]. |
| |
Slides and R scripts might be updated after the classes to align with actual content of lessons and to correct typos. Be sure to download the updated versions. | Slides and R scripts might be updated after the classes to align with actual content of lessons and to correct typos. Be sure to download the updated versions. |
| |
^ # ^ Date ^ Room ^ Topic ^ Teaching material ^ | ^ # ^ Date ^ Room ^ Topic ^ Teaching material ^ |
|01| 15/02 16-18 | A1+Teams | Introduction. Probability and independence. [[http://patterns.di.unipi.it/sds/video/sds01_20220215.mp4|rec01 (.mp4)]] | **[T]** Chpts. 1-3 {{:mds:sds:sds01.pdf|slides01 (.pdf)}}| | |01| 22/02 9-11| Fib-C | Introduction. Probability and independence. [[http://131.114.72.230/sds/video/sds01_20220215.mp4|rec01 (.mp4)]] | **[T]** Chpts. 1-3 {{:mds:sds:sds01.pdf|slides01 (.pdf)}}| |
|02| 17/02 16-18 | C1+Teams | R basics. [[http://patterns.di.unipi.it/sds/video/sds02_20220217.mp4|rec02 (.mp4)]] | **[R]** Chpts. 1,2.1-2.3 {{:mds:sds:sds02.pdf|slides02 (.pdf)}}, {{:mds:sds:sds02.r|script02 (.R)}}| | |02| 23/02 11-13| Fib-C | R basics. [[http://131.114.72.230/sds/video/sds02_20220217.mp4|rec02 (.mp4)]] | **[R]** Chpts. 1,2.1-2.3 {{:mds:sds:sds02.pdf|slides02 (.pdf)}}, {{:mds:sds:sds02.r|script02 (.R)}}| |
|03| 18/02 14-16 | A1+Teams | Bayes' rule and applications. [[http://patterns.di.unipi.it/sds/video/sds03_20220218.mp4|rec03 (.mp4)]] | **[T]** Chpt. 3 {{:mds:sds:sds03.pdf|slides03 (.pdf)}}, {{:mds:sds:sds03.r|script03 (.R)}}| | |03| 24/02 14-16| Fib-E | Bayes' rule and applications. [[http://131.114.72.230/sds/video/sds03_20220218.mp4|rec03 (.mp4)]] | **[T]** Chpt. 3 {{:mds:sds:sds03.pdf|slides03 (.pdf)}}, {{:mds:sds:sds03.r|script03 (.R)}}| |
|04| 22/02 16-18 | A1+Teams | Discrete random variables. [[http://patterns.di.unipi.it/sds/video/sds04_20220222.mp4|rec04 (.mp4)]] | **[T]** Chpts. 4, 9.1, 9.2, 9.4 **[R]** Chpt. 3 {{:mds:sds:sds04.pdf|slides04 (.pdf)}}, {{:mds:sds:sds04.r|script04 (.R)}}| | |04| 01/03 9-11 | Fib-C | Discrete random variables. [[http://131.114.72.230/sds/video/sds04_20220222.mp4|rec04 (.mp4)]] | **[T]** Chpts. 4, 9.1, 9.2, 9.4 **[R]** Chpt. 3 {{:mds:sds:sds04.pdf|slides04 (.pdf)}}, {{:mds:sds:sds04.r|script04 (.R)}}| |
|05| 24/02 16-18 | C1+Teams | Discrete random variables (continued) [[http://patterns.di.unipi.it/sds/video/sds05_20220224.mp4|rec05 (.mp4)]] | | | |05| 02/03 11-13 | Fib-C | Discrete random variables (continued). [[http://131.114.72.230/sds/video/sds05_20220224.mp4|rec05 (.mp4)]] | | |
|06| 25/02 14-16 | A1+Teams | Recalls: derivatives and integrals. [[http://patterns.di.unipi.it/sds/video/sds06_20220225.mp4|rec06 (.mp4)]] | **[P]** Chpt. 1-8 {{:mds:sds:sds06.pdf|slides06 (.pdf)}}, {{:mds:sds:sds06.r|script06 (.R)}}| | |06| 03/03 14-16 | Fib-C | Recalls: derivatives and integrals. [[http://131.114.72.230/sds/video/sds06_20220225.mp4|rec06 (.mp4)]] | **[P]** Chpt. 1-8 {{:mds:sds:sds06.pdf|slides06 (.pdf)}}, {{:mds:sds:sds06.r|script06 (.R)}}| |
|07| 01/03 16-18 | A1+Teams | R data access and programming. [[http://patterns.di.unipi.it/sds/video/sds07_20220301.mp4|rec07 (.mp4)]] | **[R]** Chpt. 2.3,2.4 {{:mds:sds:sds07.zip|script07 (.zip)}} | | |07| 08/03 9-11 | Fib-C | R data access and programming. [[http://131.114.72.230/sds/video/sds07_20220301.mp4|rec07 (.mp4)]] | **[R]** Chpt. 2.3,2.4 {{:mds:sds:sds07.zip|script07 (.zip)}} | |
|08| 03/03 16-18 | C1+Teams | Continuous random variables.[[http://patterns.di.unipi.it/sds/video/sds08_20220303.mp4|rec08 (.mp4)]] | **[T]** Chpts. 5, 9.2-9.4 **[R]** Chpt. 3 {{:mds:sds:sds08.pdf|slides08 (.pdf)}}, {{:mds:sds:sds08.r|script08 (.R)}}| | |08| 09/03 11-13 | Fib-C | Continuous random variables.[[http://131.114.72.230/sds/video/sds08_20220303.mp4|rec08 (.mp4)]] | **[T]** Chpts. 5, 9.2-9.4 **[R]** Chpt. 3 {{:mds:sds:sds08.pdf|slides08 (.pdf)}}, {{:mds:sds:sds08.r|script08 (.R)}}| |
|09| 04/03 14-16 | A1+Teams | Expectation and variance. Computations with random variables.[[http://patterns.di.unipi.it/sds/video/sds09_20220304.mp4|rec09 (.mp4)]] | **[T]** Chpts. 7,8 {{:mds:sds:sds09.pdf|slides09 (.pdf)}}, {{:mds:sds:sds09.r|script09 (.R)}}| | |09| 10/03 14-16 | Fib-C | Expectation and variance. Computations with random variables.[[http://131.114.72.230/sds/video/sds09_20220304.mp4|rec09 (.mp4)]] | **[T]** Chpts. 7,8 {{:mds:sds:sds09.pdf|slides09 (.pdf)}}, {{:mds:sds:sds09.r|script09 (.R)}}| |
|10| 08/03 16-18 | A1+Teams | Expectation and variance. Computations with random variables (continued).[[http://patterns.di.unipi.it/sds/video/sds10_20220308.mp4|rec10 (.mp4)]] | | | |10| 15/03 9-11| Fib-C | Expectation and variance. Computations with random variables (continued).[[http://131.114.72.230/sds/video/sds10_20220308.mp4|rec10 (.mp4)]] | | |
|11| 10/03 16-18 | C1+Teams | Moments. Functions of random variables.[[http://patterns.di.unipi.it/sds/video/sds11_20220310.mp4|rec11 (.mp4)]] | **[T]** Chpts. 9-11 {{:mds:sds:sds11.pdf|slides11 (.pdf)}}, {{:mds:sds:sds11.zip|script11 (.zip)}} | | |11| 16/03 11-13| Fib-C | Moments. Functions of random variables.[[http://131.114.72.230/sds/video/sds11_20220310.mp4|rec11 (.mp4)]] | **[T]** Chpts. 9-11 {{:mds:sds:sds11.pdf|slides11 (.pdf)}}, {{:mds:sds:sds11.zip|script11 (.zip)}} | |
|12| 11/03 14-16 | A1+Teams | Simulation. [[http://patterns.di.unipi.it/sds/video/sds12_20220311.mp4|rec12 (.mp4)]] | **[T]** Chpts. 6.1-6.2 {{:mds:sds:sds12.pdf|slides12 (.pdf)}}, {{:mds:sds:sds12.r|script12 (.R)}} {{:mds:sds:sds12_sol07.r|script12_sol07 (.R)}}| | |12| 17/03 14-16 | Fib-C | Simulation. [[http://131.114.72.230/sds/video/sds12_20220311.mp4|rec12 (.mp4)]] | **[T]** Chpts. 6.1-6.2 {{:mds:sds:sds12.pdf|slides12 (.pdf)}}, {{:mds:sds:sds12.r|script12 (.R)}} {{:mds:sds:sds12_sol07.r|script12_sol07 (.R)}}| |
|13| 15/03 16-18 | A1+Teams | Power laws and Zipf's law. [[http://patterns.di.unipi.it/sds/video/sds13_20220315.mp4|rec13 (.mp4)]] | [[https://arxiv.org/pdf/cond-mat/0412004.pdf | Newman's paper]] Sect I, II, III(A,B,E,F) {{:mds:sds:sds13.pdf|slides13 (.pdf)}}, {{:mds:sds:sds13.r|script13 (.R)}}| | |13| 22/03 9-11 | Fib-C | Power laws and Zipf's law. [[http://131.114.72.230/sds/video/sds13_20220315.mp4|rec13 (.mp4)]] | [[https://arxiv.org/pdf/cond-mat/0412004.pdf | Newman's paper]] Sect I, II, III(A,B,E,F) {{:mds:sds:sds13.pdf|slides13 (.pdf)}}, {{:mds:sds:sds13.r|script13 (.R)}}| |
|14| 17/03 16-18 | C1+Teams | Law of large numbers. The central limit theorem. [[http://patterns.di.unipi.it/sds/video/sds14_20220317.mp4|rec14 (.mp4)]] | **[T]** Chpts. 13-14 {{:mds:sds:sds14.pdf|slides14 (.pdf)}}, {{:mds:sds:sds14.R|script14 (.R)}} | | |14| 23/03 11-13| Fib-C | Law of large numbers. The central limit theorem. [[http://131.114.72.230/sds/video/sds14_20220317.mp4|rec14 (.mp4)]] | **[T]** Chpts. 13-14 {{:mds:sds:sds14.pdf|slides14 (.pdf)}}, {{:mds:sds:sds14.R|script14 (.R)}} | |
|--| 18/03 14-15 | A1+Teams | Office hours (open Q&A) | | | |15| 24/03 14-16 | Fib-C | Graphical summaries. Kernel Density Estimation. [[http://131.114.72.230/sds/video/sds15_20220322.mp4|rec15 (.mp4)]] | **[T]** Chpt. 15, **[R]** Chpt. 4 {{:mds:sds:sds15.pdf|slides15 (.pdf)}}, {{:mds:sds:sds15.r|script15 (.R)}}| |
|15| 22/03 16-18 | A1+Teams | Graphical summaries. [[http://patterns.di.unipi.it/sds/video/sds15_20220322.mp4|rec15 (.mp4)]] | **[T]** Chpt. 15, **[R]** Chpt. 4 {{:mds:sds:sds15.pdf|slides15 (.pdf)}}, {{:mds:sds:sds15.r|script15 (.R)}}| | |16| 29/03 9-11| Fib-C | Numerical summaries.[[http://131.114.72.230/sds/video/sds16_20220324.mp4|rec16 (.mp4)]] | **[T]** Chpt. 16, **[R]** Chpt. 4 {{:mds:sds:sds16.pdf|slides16 (.pdf)}}, {{:mds:sds:sds16.r|script16 (.R)}} | |
|16| 24/03 16-18 | C1+Teams | Numerical summaries.[[http://patterns.di.unipi.it/sds/video/sds16_20220324.mp4|rec16 (.mp4)]] | **[T]** Chpt. 16, **[R]** Chpt. 4 {{:mds:sds:sds16.pdf|slides16 (.pdf)}}, {{:mds:sds:sds16.r|script16 (.R)}} | | |17| 30/03 11-13 | Fib-C |Data preprocessing in R. Estimators.[[http://131.114.72.230/sds/video/sds17_20220325.mp4|rec17 (.mp4)]] | **[R]** Chpt. 10, **[T]** Chpts. 17.1-17.3{{:mds:sds:sds17.r|script17 (.R)}}, {{ :mds:sds:dataprep.r | dataprep.R}} | |
|17| 25/03 14-16 | A1+Teams |Data preprocessing in R. Estimators.[[http://patterns.di.unipi.it/sds/video/sds17_20220325.mp4|rec17 (.mp4)]] | **[R]** Chpt. 10, **[T]** Chpts. 17.1-17.3{{:mds:sds:sds17.r|script17 (.R)}}, {{ :mds:sds:dataprep.r | dataprep.R}} | | |18| 31/03 14-16 | Fib-C | Unbiased estimators. Efficiency and MSE.[[http://131.114.72.230/sds/video/sds18_20220329.mp4|rec18 (.mp4)]] | **[T]** Chpts. 19, 20 {{:mds:sds:sds18.pdf|slides18 (.pdf)}}, {{:mds:sds:sds18.r|script18 (.R)}} | |
|18| 29/03 16-18 | A1+Teams | Unbiased estimators. Efficiency and MSE.[[http://patterns.di.unipi.it/sds/video/sds18_20220329.mp4|rec18 (.mp4)]] | **[T]** Chpts. 19, 20 {{:mds:sds:sds18.pdf|slides18 (.pdf)}}, {{:mds:sds:sds18.r|script18 (.R)}} | | |19| 05/04 9-11 | Fib-C | Maximum likelihood estimation.[[http://131.114.72.230/sds/video/sds19_20220331.mp4|rec19 (.mp4)]] | **[T]** Chpt. 21 {{ :mds:sds:sdsln.pdf |}} Chpt. 1 {{:mds:sds:sds19.pdf|slides19 (.pdf)}}, {{:mds:sds:sds19.r|script19 (.R)}} | |
|19| 31/03 16-18 | Teams | Maximum likelihood estimation.[[http://patterns.di.unipi.it/sds/video/sds19_20220331.mp4|rec19 (.mp4)]] | **[T]** Chpt. 21 {{ :mds:sds:sdsln.pdf |}} Chpt. 1 {{:mds:sds:sds19.pdf|slides19 (.pdf)}}, {{:mds:sds:sds19.r|script19 (.R)}} | | |20| 06/04 11-13 | Fib-C | Linear regression. Least squares estimation.[[http://131.114.72.230/sds/video/sds20_20220405.mp4|rec20 (.mp4)]] | **[T]** Chpts. 17.4,22 **[R]** Chpt. 6 {{ :mds:sds:sdsln.pdf |}} Chpt. 2 {{:mds:sds:sds20.pdf|slides20 (.pdf)}}, {{:mds:sds:sds20.r|script20 (.R)}} | |
|20| 05/04 16-18 | Teams | Linear regression. Least squares estimation.[[http://patterns.di.unipi.it/sds/video/sds20_20220405.mp4|rec20 (.mp4)]] | **[T]** Chpts. 17.4,22 **[R]** Chpt. 6 {{ :mds:sds:sdsln.pdf |}} Chpt. 2 {{:mds:sds:sds20.pdf|slides20 (.pdf)}}, {{:mds:sds:sds20.r|script20 (.R)}} | | |21| 12/04 9-11 | Fib-C | Non-linear, and multiple linear regression.[[http://131.114.72.230/sds/video/sds21_20220407.mp4|rec21 (.mp4)]] | **[R]** Chpt. 12.1,13,16.1-16.2 {{ :mds:sds:sdsln.pdf |}} Chpt. 2 {{:mds:sds:sds21.pdf|slides21 (.pdf)}}, {{:mds:sds:sds21.R|script21 (.R)}} | |
|21| 07/04 16-18 | C1+Teams | Multiple, non-linear, and logistic regression.[[http://patterns.di.unipi.it/sds/video/sds21_20220407.mp4|rec21 (.mp4)]] | **[R]** Chpt. 12.1,13,16.1-16.2 {{ :mds:sds:sdsln.pdf |}} Chpt. 2 {{:mds:sds:sds21.pdf|slides21 (.pdf)}}, {{:mds:sds:sds21.R|script21 (.R)}} | | |22| 13/04 11-13 | Fib-C | Issues with linear regression. Logistic regression.[[http://131.114.72.230/sds/video/sds22_20220408.mp4|rec22 (.mp4)]] | **[R]** Chpt. 12.1,13,16.1-16.2 {{:mds:sds:sds22.pdf|slides22 (.pdf)}}, {{:mds:sds:sds21.zip|script22 (.zip)}} | |
|22| 08/04 14-16 | Teams | Multiple, non-linear, and logistic regression (continued).[[http://patterns.di.unipi.it/sds/video/sds22_20220408.mp4|rec22 (.mp4)]] | **[R]** Chpt. 12.1,13,16.1-16.2 {{:mds:sds:sds22.pdf|slides22 (.pdf)}}, {{:mds:sds:sds21.zip|script22 (.zip)}} | | |23| 14/04 14-16 | Fib-C | Statistical decision theory.[[http://131.114.72.230/sds/video/sds23_20220412.mp4|rec23 (.mp4)]] | {{ :mds:sds:sdsln.pdf |}} Chpt. 4 {{:mds:sds:sds23.pdf|slides23 (.pdf)}}, {{:mds:sds:sds23.r|script23 (.R)}} | |
|23| 12/04 16-18 | Teams | Statistical decision theory.[[http://patterns.di.unipi.it/sds/video/sds23_20220412.mp4|rec23 (.mp4)]] | {{ :mds:sds:sdsln.pdf |}} Chpt. 4 {{:mds:sds:sds23.pdf|slides23 (.pdf)}}, {{:mds:sds:sds23.r|script23 (.R)}} | | |24| 19/04 9-11 | Fib-C | Statistical decision theory (continued).[[http://131.114.72.230/sds/video/sds24_20220421.mp4|rec24 (.mp4)]] | | |
|24| 14/04 16-18 | Teams | Project presentation + Office hours.[[http://patterns.di.unipi.it/sds/video/sds24_20220414.mp4|rec24 (.mp4)]] | [[http://didawiki.di.unipi.it/doku.php/mds/sds/start#student_project|See student project]] | | |25| 20/04 11-13 | Fib-C | Statistical decision theory (continued). Project presentation. | [[http://didawiki.di.unipi.it/doku.php/mds/sds/start#student_project|See student project]] | |
|25| 21/04 16-18 | Teams | Statistical decision theory (continued).[[http://patterns.di.unipi.it/sds/video/sds25_20220421.mp4|rec25 (.mp4)]] | | | |26| 21/04 14-16 | Fib-C | Confidence intervals: mean, proportion, linear regression.[[http://131.114.72.230/sds/video/sds26_20220422.mp4|rec26 (.mp4)]] | **[T]** Chpts. 23.1,23.2,23.4,24.3,24.4 {{ :mds:sds:sdsln.pdf |}} Chpt. 3 {{:mds:sds:sds26.pdf|slides26 (.pdf)}}, {{:mds:sds:sds26.r|script26 (.R)}} | |
|26| 22/04 14-16 | Teams | Confidence intervals: mean, proportion, linear regression.[[http://patterns.di.unipi.it/sds/video/sds26_20220422.mp4|rec26 (.mp4)]] | **[T]** Chpts. 23.1,23.2,23.4,24.3,24.4 {{ :mds:sds:sdsln.pdf |}} Chpt. 3 {{:mds:sds:sds26.pdf|slides26 (.pdf)}}, {{:mds:sds:sds26.r|script26 (.R)}} | | |27| 26/04 9-11| Fib-C| Bootstrap and resampling methods.[[http://131.114.72.230/sds/video/sds27_20220426.mp4|rec27 (.mp4)]] | **[T]** Chpts. 18.1-18.3,23.3 {{:mds:sds:sds27.pdf|slides27 (.pdf)}}, {{:mds:sds:sds27.r|script27 (.R)}} | |
|27| 26/04 16-18| Teams | Bootstrap and resampling methods.[[http://patterns.di.unipi.it/sds/video/sds27_20220426.mp4|rec27 (.mp4)]] | **[T]** Chpts. 18.1-18.3,23.3 {{:mds:sds:sds27.pdf|slides27 (.pdf)}}, {{:mds:sds:sds27.r|script27 (.R)}} | | |28| 27/04 11-13| Fib-C | Bootstrap and resampling methods (continued).[[http://131.114.72.230/sds/video/sds28_20220428.mp4|rec28 (.mp4)]] | | |
|28| 28/04 16-18| C1+Teams | Bootstrap and resampling methods (continued).[[http://patterns.di.unipi.it/sds/video/sds28_20220428.mp4|rec28 (.mp4)]] | | | |29| 28/04 14-16| Fib-C | Hypotheses testing. One-sample tests of the mean and application to linear regression.[[http://131.114.72.230/sds/video/sds29_20220429.mp4|rec29 (.mp4)]] | **[T]** Chpts. 25,26,27, **[R]** Chpts. 5.1,5.2 {{ :mds:sds:sdsln.pdf |}} Chpt.3.3 {{:mds:sds:sds29.pdf|slides29 (.pdf)}}, {{:mds:sds:sds29.r|script29 (.R)}} | |
|29| 29/04 14-16| A1+Teams | Hypotheses testing. One-sample tests of the mean and application to linear regression.[[http://patterns.di.unipi.it/sds/video/sds29_20220429.mp4|rec29 (.mp4)]] | **[T]** Chpts. 25,26,27, **[R]** Chpts. 5.1,5.2 {{ :mds:sds:sdsln.pdf |}} Chpt.3.3 {{:mds:sds:sds29.pdf|slides29 (.pdf)}}, {{:mds:sds:sds29.r|script29 (.R)}} | | |30| 3/05 9-11| Fib-C | One-sample tests of the mean and application to linear regression (continued).[[http://131.114.72.230/sds/video/sds30_2022comp.mp4|rec30 (.mp4)]] | | |
|30| 04/05 9-11| Gerace+Teams | Bias in statistics and causal reasoning. Speaker: prof. Fabrizia Mealli [[http://patterns.di.unipi.it/sds/video/sds30_20220504.mp4|rec30 (.mp4)]] | {{:mds:sds:sds30.pdf|slides30 (.pdf)}} [[https://statistics.fas.harvard.edu/files/statistics-2/files/statistical_paradises_and_paradoxes.pdf|Optional reading]] | | |31| 4/05 11-13| Fib-C | Two-sample tests of the mean and applications to classifier comparison.[[http://131.114.72.230/sds/video/sds31_2022comp.mp4|rec31 (.mp4)]] | **[T]** Chpts. 28, **[R]** Chpts. 5.3-5.7 {{:mds:sds:sds31.pdf|slides31 (.pdf)}}, {{:mds:sds:sds31.r|script31 (.R)}} | |
|31| 04/05 11-13| Gerace+Teams | Bias in statistics and causal reasoning (continued). Speaker: prof. Fabrizia Mealli [[http://patterns.di.unipi.it/sds/video/sds31_20220504.mp4|rec31 (.mp4)]] | | | |32| 5/05 14-16| Fib-C | Two-sample tests of the mean and applications to classifier comparison (continued).[[http://131.114.72.230/sds/video/sds32_2022comp.mp4|rec32 (.mp4)]] | | |
|32| 10/05 16-18| A1+Teams | One-sample tests of the mean and application to linear regression (continued). Project tutoring. [[http://patterns.di.unipi.it/sds/video/sds32_20220510.mp4|rec32 (.mp4)]] | | | |33| 10/05 9-11| Fib-C | Multiple-sample tests of the mean and applications to classifier comparison.[[http://131.114.72.230/sds/video/sds33_2022comp.mp4|rec33 (.mp4)]] | **[R]** Chpt. 7 {{:mds:sds:sds33.pdf|slides33 (.pdf)}}, {{:mds:sds:sds33.r|script33 (.R)}} | |
|33| 12/05 16-18| C1+Teams | Multiple comparisons. Fitting distributions. [[http://patterns.di.unipi.it/sds/video/sds33_20220512.mp4|rec33 (.mp4)]] | {{ :mds:smd:ks.pdf | K-S}}, {{:mds:sds:sds33.pdf|slides33 (.pdf)}}, {{:mds:sds:sds33.r|script33 (.R)}} | | |34| 11/05 11-13| Fib-C | Fitting distributions. Testing independence/association.[[http://131.114.72.230/sds/video/sds34_2022comp.mp4|rec34 (.mp4)]] | **[R]** Chpt. 8 {{ :mds:smd:ks.pdf | K-S}}, {{:mds:sds:sds34.pdf|slides34 (.pdf)}}, {{:mds:sds:sds34.r|script34 (.R)}} | |
|34| 13/05 14-16| A1+Teams | Two-sample tests of the mean, and F-test. [[http://patterns.di.unipi.it/sds/video/sds34_20220513.mp4|rec34 (.mp4)]] | **[T]** Chpts. 28, **[R]** Chpts. 5.3-5.7 {{:mds:sds:sds34.pdf|slides34 (.pdf)}}, {{:mds:sds:sds34.r|script34 (.R)}} | | |35| 12/05 14-16| Fib-C | Fitting distributions. Testing independence/association (continued). Project Q&A. | | |
|35| 17/05 16-18| A1+Teams | Testing correlation/independence. Multiple-sample tests of the mean. [[http://patterns.di.unipi.it/sds/video/sds35_20220517.mp4|rec35 (.mp4)]] | **[R]** Chpts. 7, 8 {{:mds:sds:sds35.pdf|slides35 (.pdf)}}, {{:mds:sds:sds35.r|script35 (.R)}} | | |36| 17/05 9-11| Fib-C | Project Q&A. | | |
|36| 19/05 16-18| C1+Teams | Multiple-sample tests of the mean (continued). Project tutoring. [[http://patterns.di.unipi.it/sds/video/sds36_20220519.mp4|rec36 (.mp4)]] | | | |
| |
| |
=====Past years===== | =====Seminars of past years===== |
| |
This course of 9 ECTS replaces an older 6 ECTS version. | In some years, speakers were invited to give a seminar on advanced topics. Here it is a list of seminars held in past years. |
| |
* [[mds:smd: |Statistical Methods for Data Science A.Y. 2020/21 (500PP)]] | ^ # ^ Date ^ Room ^ Topic ^ Teaching material ^ |
| |s01| 04/05/2022 9-11| Gerace+Teams | Bias in statistics and causal reasoning. Speaker: prof. Fabrizia Mealli [[http://131.114.72.230/sds/video/sds_s01_20220504.mp4|rec_s01 (.mp4)]] | {{:mds:sds:s4ds_s01.pdf|slides_s01 (.pdf)}} [[https://statistics.fas.harvard.edu/files/statistics-2/files/statistical_paradises_and_paradoxes.pdf|Optional reading]] | |
| |s02| 04/05/2022 11-13| Gerace+Teams | Bias in statistics and causal reasoning (continued). Speaker: prof. Fabrizia Mealli [[http://131.114.72.230/sds/video/sds_s02_20220504.mp4|rec_s02 (.mp4)]] | | |
| |
The 6 ECTS version is discontinued. Students having the 6 ECTS version in their study plan can still take the 6 ECTS version exam for the A.Y. 2021/22, 2022/23 and 2023/24. However, there will no specific project for the 6 ECTS version. | =====Past years===== |
| |
| This course of 9 ECTS replaces an older 6 ECTS version: [[mds:smd: |Statistical Methods for Data Science A.Y. 2020/21 (500PP)]]. The 6 ECTS version is discontinued. Students having the 6 ECTS version in their study plan can still take the 6 ECTS version exam for the A.Y. 2021/22, 2022/23 and 2023/24. However, there will no specific project for the 6 ECTS version. |
| |
| |