

Basi di Dati

La Progettazione Logica

Progettazione Logica >> Sommario

Sommario

- **♦** Introduzione
 - II Processo di Progetto della BD
- ◆ Algoritmo di Progettazione Logica
 - Traduzione delle Classi
 - Traduzione delle Gerarchie
 - Traduzione delle Associazioni molti a molti
 - Traduzione delle Associazioni 1-1 e 1-molti

Progettazione Logica >> Introduzione

Introduzione

Siamo nella fase di progettazione

si è conclusa (un'iterazione del)la fase di analisi

Attività da svolgere

- definire l'architettura dell'applicazione
- definire la struttura e i metodi delle classi
- definire la struttura della base di dati
- ◆ Fase successiva: sviluppo

3

Progettazione Logica >> Introduzione

Il Processo di Progetto della BD

Punto di partenza

• il modello concettuale dei dati

◆ Progettazione Logica

 dallo schema concettuale viene derivato uno schema logico standard e i necessari schemi esterni

Progettazione Fisica

 lo schema logico viene sottoposto a verifica e viene ottimizzato

Progettazione Logica >> Introduzione

Il Processo di Progetto della BD

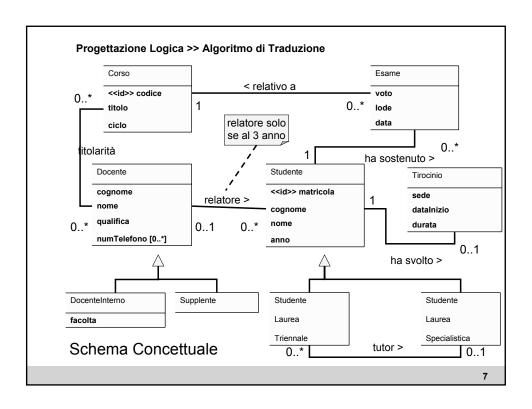
Progettazione logica

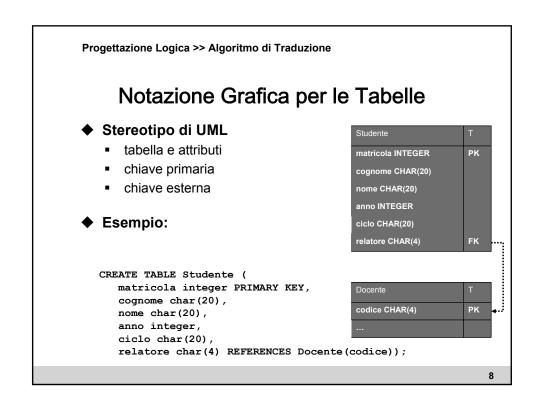
 viene condotta sulla base di un semplice algoritmo sistematico

Progettazione fisica

- attività mista: progettazione e "tuning"
- difficilmente sistematizzabile

In questa lezione


• ci concentriamo sulla progettazione logica


5

Progettazione Logica >> Algoritmo di Traduzione

Algoritmo di Progettazione Logica

- ♦ I passo: trad. iniziale delle classi non coinvolte in gerarchie
- Il passo: trad. iniziale delle gerarchie
- ♦ III passo: trad. degli attributi multivalore
- ◆ IV passo: trad. delle assoc. molti a molti
- ◆ V passo: trad. delle assoc. uno a molti
- ◆ VI passo: trad. delle assoc. uno a uno
- VII passo: introduzione di eventuali ulteriori vincoli
- VIII passo: progettazione degli schemi esterni

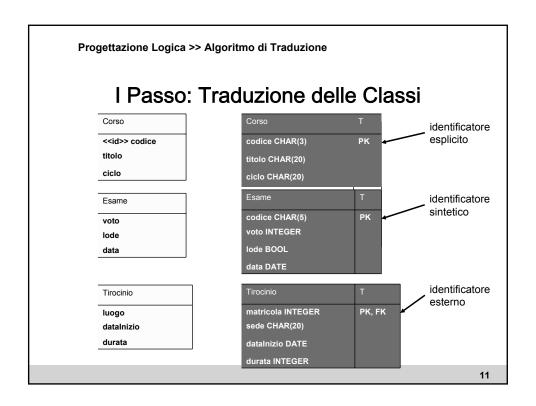
I Passo: Traduzione delle Classi

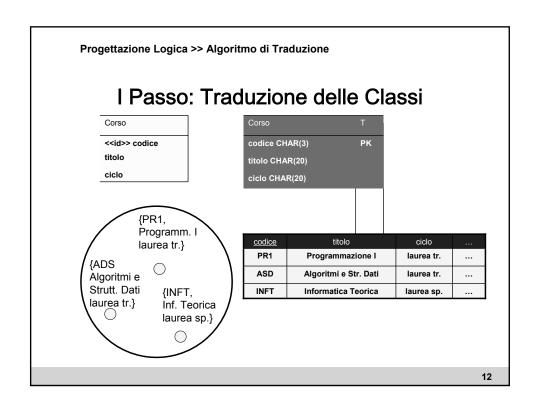
◆ Idea

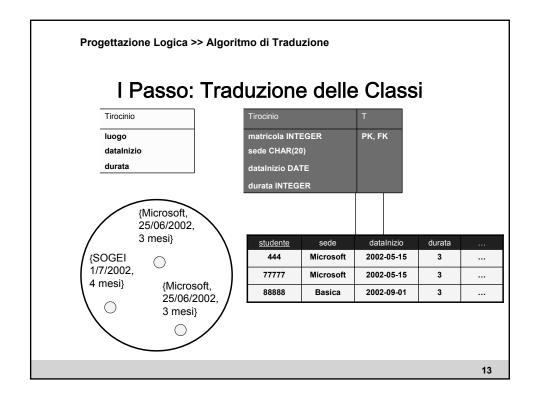
- ogni classe diventa una tabella
- inizialmente gli stessi attributi monovalore
- successivamente possono essere aggiunti altri attributi

◆ E' necessario

- individuare il tipo degli attributi
- individuare la chiave primaria
- individuare eventuali chiavi esterne

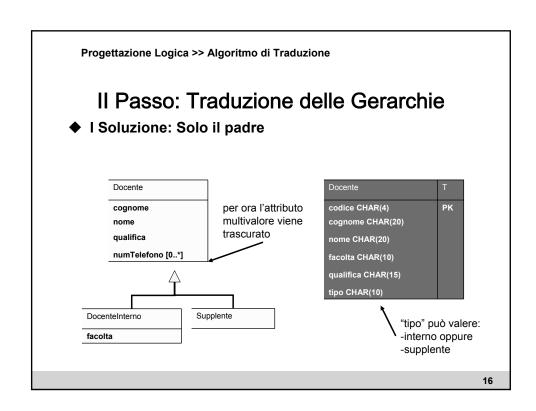

9


Progettazione Logica >> Algoritmo di Traduzione


I Passo: Traduzione delle Classi

◆ Chiave primaria

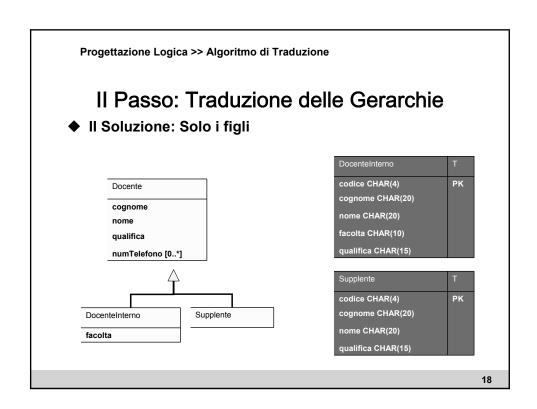
- deve essere semplice da usare e compatta
- identificatore interno esplicito (es: matricola per Studente, codice per Corso)
- un identificatore esterno può diventare una chiave primaria esterna (es: matricola dello studente per Tirocinio) purchè sia compatto
- altrimenti si aggiunge un identificatore sintetico


Il Passo: Traduzione delle Gerarchie

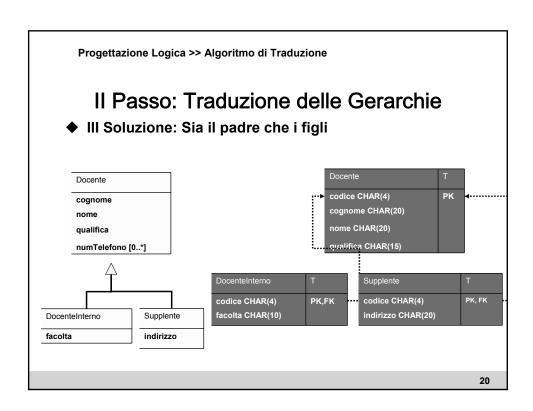
- ◆ E' l'unico passo di una certa complessità
 - non esiste la generalizzazione nel modello relazionale
- ◆ Tre possibili strade
 - tradurre solo il padre della gerarchia
 - tradurre solo i figli della gerarchia
 - tradurre il padre e i figli collegandoli con chiavi esterne

Il Passo: Traduzione delle Gerarchie

◆ I Soluzione: Solo il padre


- un'unica tabella con il nome del padre
- la tabella deve avere tutti gli attributi di padre e figli
- serve un ulteriore attributo (es: tipo) per distinguere le istanze dei figli
- conveniente se le operazioni sui figli non sono particolarmente rilevanti nell'appl.
- genera valori nulli

Il Passo: Traduzione delle Gerarchie


♦ II Soluzione: Solo i figli

- una tabella per ciascun figlio
- ciascun figlio eredita le associazioni e gli attributi del padre
- possibile solo se la gerarchia è completa
- conveniente se l'applicazione richiede spesso di accedere singolarmente ai figli
- costringe ad effettuare molte unioni

Il Passo: Traduzione delle Gerarchie

- III Soluzione: Sia il padre che i figli
 - una tabella per il padre e una per ciascun figlio (per ogni istanza del figlio: parte degli attributi nella tabella specifica, parte nella tabella generale)
 - riferimento da ciascun figlio al padre
 - conveniente se bisogna spesso accedere tanto al padre che singolarmente ai figli
 - costringe ad effettuare molti join

Il Passo: Traduzione delle Gerarchie

♦ III Soluzione: Sia il padre che i figli

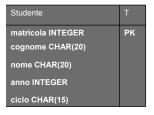
Docente

<u>codice</u>	cognome	nome	qualifica
FT	Totti	Francesco	ordinario
cv	Vieri	Christian	associato
ADP	Del Piero	Alessandro	null

DocenteInterno

<u>codice</u>	facolta
FT	Ingegneria
cv	Scienze

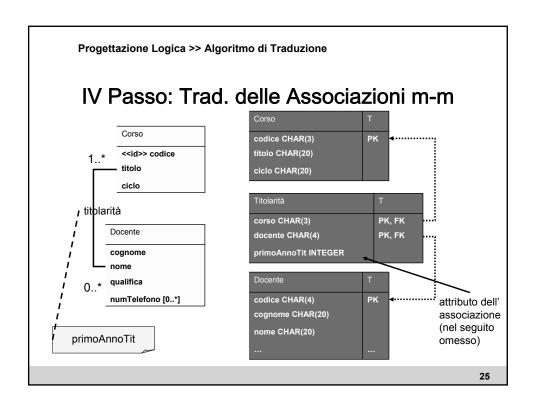
Supplente

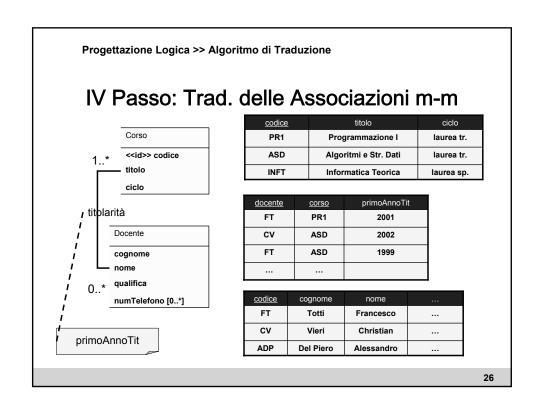

<u>codice</u>	Indirizzo
ADP	Stadio delle Alpi, Torino

21

Progettazione Logica >> Algoritmo di Traduzione

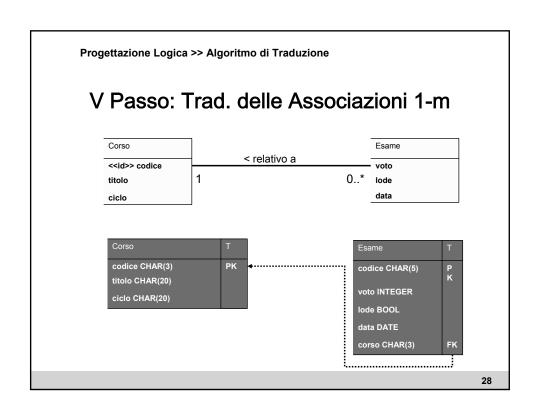
Il Passo: Traduzione delle Gerarchie

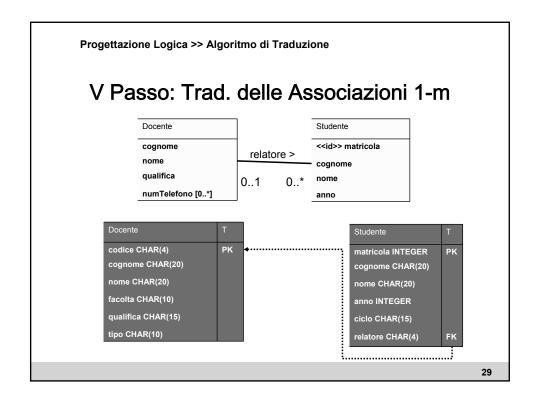

- ◆ Nel nostro esempio
 - soluzione n.1 per i docenti
 - un'unica tabella "Docente"
 - soluzione n.1 per gli studenti
 - un'unica tabella "Studente"

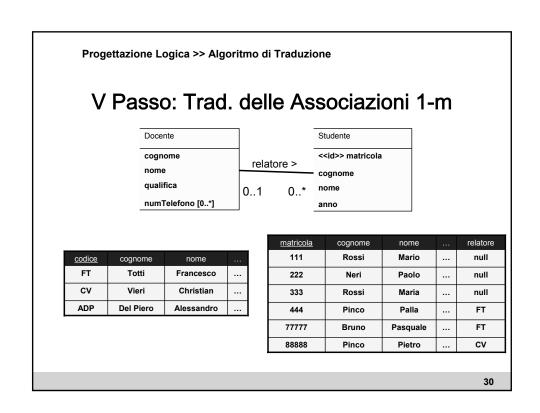


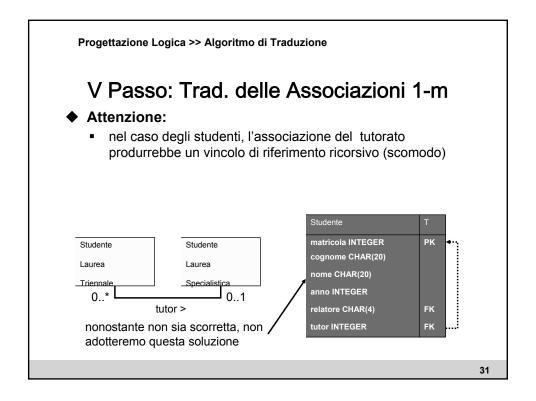
IV Passo: Trad. delle Associazioni m-m

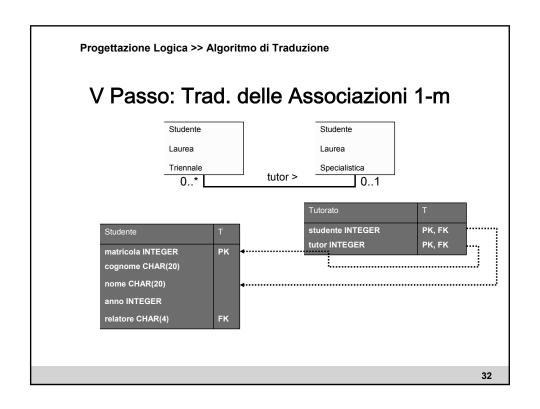
- Ogni associazione molti a molti genera una tabella
 - riferimenti (chiavi esterne) alle tabelle che traducono le classi coinvolte
 - eventuali attributi dell'associazione
 - la chiave della tabella deve includere le chiavi esterne

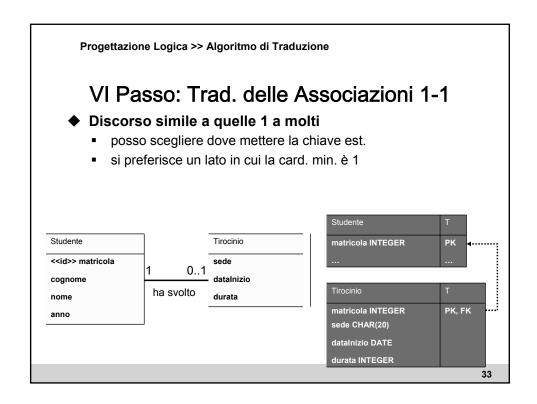


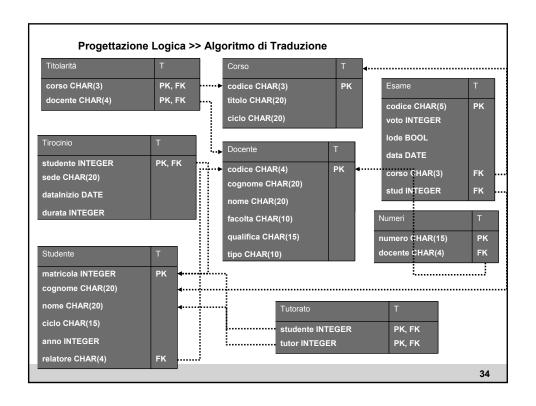

V Passo: Trad. delle Associazioni 1-m


- Potrebbero essere tradotte con nuove tabelle
 - sarebbe inefficiente
 - costringerebbe a più join del normale


◆ Generano chiavi esterne


- ciascuna istanza dell'associazione è identificata dall'oggetto dal lato 1
- chiave esterna della tabella dal lato 1 nella tabella corrispondente alla classe dal lato m





VII Passo: Aggiunta di Vincoli Ulteriori

- ◆ A questo punto sono definite
 - le tabelle
 - gli attributi
 - le chiavi primarie
 - i vincoli di riferimento

♦ Per ottenere lo schema conclusivo

 è possibile aggiungere altri vincoli (NOT NULL, DEFAULT, CASCADE, CHECK ecc.)

35

Progettazione Logica >> Algoritmo di Traduzione

VII Passo: Aggiunta di Vincoli Ulteriori

♦ In particolare

- le cardinalità minime danno origine a vincoli NOT NULL
- Esempio:

```
CREATE TABLE Esame (
   codice char(5) PRIMARY KEY,
   corso char(3) NOT NULL REFERENCES Corso(codice),
   ...
);
```

Progettazione Logica >> Lo Schema Finale

Lo Schema Finale

```
CREATE TABLE Docente (
    codice char(4) PRIMARY KEY,
    cognome varchar(20) NOT NULL,
    nome varchar(20) NOT NULL,
    qualifica char(15),
    facolta char(10),
    tipo char(10) NOT NULL
);

CREATE TABLE Studente (
    matricola integer PRIMARY KEY,
    cognome varchar(20) NOT NULL,
    nome varchar(20) NOT NULL,
    ciclo char(20),
    anno integer,
    relatore char(4) REFERENCES Docente(codice),
    CHECK(relatore is NULL or anno=3 or ciclo='Laurea sp.')
);
```

37

Progettazione Logica >> Lo Schema Finale

```
CREATE TABLE Corso (
   codice char(3) PRIMARY KEY,
   titolo varchar(20) NOT NULL,
   ciclo char(20)
CREATE TABLE Esame (
    codice char (5) PRIMARY KEY,
    studente integer NOT NULL REFERENCES Studente(matricola)
     ON DELETE cascade ON UPDATE cascade,
    corso char(3) NOT NULL REFERENCES Corsi(codice),
    voto integer,
    lode bool,
    data date,
    CHECK (voto>=18 and voto<=30),
    CHECK (not lode or voto=30),
    UNIQUE (studente, corso)
);
CREATE TABLE Tutorato (
   studente integer REFERENCES Studente (matricola),
   tutor integer REFERENCES Studente (matricola),
   PRIMARY KEY (studente, tutor)
);
```

Progettazione Logica >> Lo Schema Finale

```
CREATE TABLE Numeri (
   numero char(9) PRIMARY KEY,
   docente char(4) REFERENCES Docente(codice)
);

CREATE TABLE Tirocinio (
   studente integer PRIMARY KEY REFERENCES Studente(matricola),
   sede char(20) NOT NULL,
   dataInizio date,
   durata integer
);

CREATE TABLE Titolarita (
   docente char(4) REFERENCES Docente(codice),
   corso char(3) REFERENCES Corso(codice),
   PRIMARY KEY (docente, corso)
);
```

39

Progettazione Logica >> Lo Schema Finale

Una Possibile Istanza

Docente

<u>codice</u>	cognome	nome	qualifica	facolta	tipo
FT	Totti	Francesco	ordinario	Ingegneria	interno
cv	Vieri	Christian	associato	Scienze	interno
ADP	Del Piero	Alessandro	null	null	supplente

Studente

<u>matricola</u>	cognome	nome	ciclo	anno	relatore
111	Rossi	Mario	laurea tr.	1	null
222	Neri	Paolo	laurea tr.	2	null
333	Rossi	Maria	laurea tr.	1	null
444	Pinco	Palla	laurea tr.	3	FT
77777	Bruno	Pasquale	laurea sp.	1	FT
88888	Pinco	Pietro	laurea sp.	1	cv

Progettazione Logica >> Lo Schema Finale

Corso

<u>codice</u>	titolo	ciclo
PR1	Programmazione I	laurea tr.
ASD	Algoritmi e Str. Dati	laurea tr.
INFT	Informatica Teorica	laurea sp.

Tutorato

<u>studente</u>	<u>tutor</u>
111	77777
222	77777
333	88888
444	88888

Esame

codice	studente	corso	voto	lode	data
pr101	111	PR1	27	false	2002-06-12
asd01	222	ASD	30	true	2001-12-03
inft1	111	INFT	24	false	2001-09-30
pr102	77777	PR1	21	false	2002-06-12
asd02	77777	ASD	20	false	2001-12-03
asd03	88888	ASD	28	false	2002-06-13
pr103	88888	PR1	30	false	2002-07-01
inft2	88888	INFT	30	true	2001-09-30

41

Progettazione Logica >> Lo Schema Finale

Tirocinio

<u>studente</u>	sede	datalnizio	durata
444	Microsoft	2002-05-15	3
77777	Microsoft	2002-05-15	3
88888	SOGEI	2002-09-01	3

Numeri

<u>numero</u>	docente
0971205145	FT
347123456	FT
0971205227	vc
0971205363	ADP
338123456	ADP

Titolarita

<u>docente</u>	<u>corso</u>
FT	PR1
cv	ASD
ADP	INFT
ADP	PR1
FT	ASD

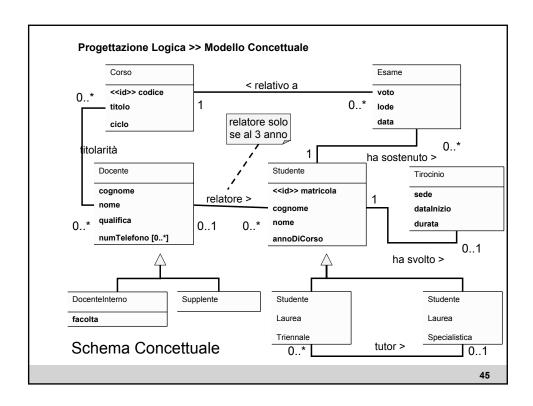
VIII Passo: Schemi Esterni

- Dallo schema logico è necessario derivare gli schemi esterni
 - eventuali viste
 - autorizzazioni agli utenti su tabelle e viste

◆ Esempio: due categorie di utenti

- segreteria: accesso a tutti i dati
- docenti: accesso a dati ristretti sugli esami (es: una vista "EsameSenzaVoto")

43


Progettazione Logica >> Sommario

Sommario

- Introduzione
 - Il Processo di Progetto della BD

◆ Algoritmo di Progettazione Logica

- Traduzione delle Classi
- Traduzione delle Gerarchie
- Traduzione delle Associazioni molti a molti
- Traduzione delle Associazioni 1-1 e 1-molti

