
BUSINESS INTELLIGENCE

Data Analysis using SQL

DATA ANALYSIS USING SQL

A Data warehouse is all about **getting answers** to business questions, in the form of **reports**.

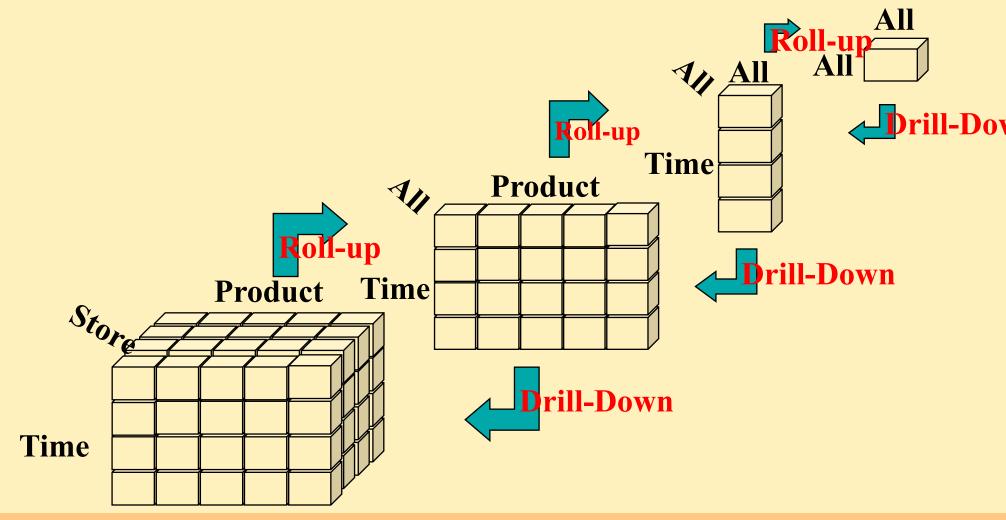
Reports must communicate pertinent information clearly and concisely.

Good reporting is imperative: Even the best schema design cannot guarantee success if answers are not delivered with useful reports.

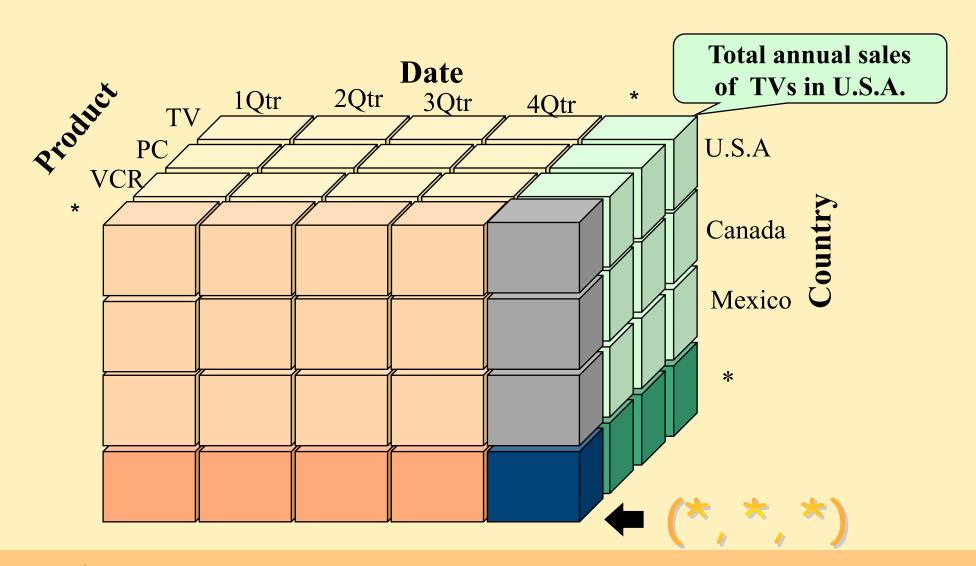
Three ways to present information.

Traditional reports.

Pivot tables.


Charts.

There are several kinds of reporting tools on the market.


Cuboids in SQL

Measure Aggregate Order or pivoting SELECT L.city, I.brand, T.month, SUM(dollars_sold) FROM fact AS F, location AS L, time AS T, item AS I WHERE F.location_key = L.location_key AND F.time_key = T.time_key AND F.item_key = I.item_key Star-Join GROUP BY L.city, I.brand, T.month Hierarchy levels

How many cuboids?

Data Cube (extended cube, hypercube)

Data cube in SQL Server

Order or pivoting

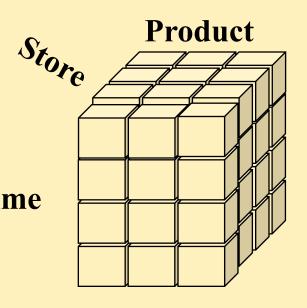
Aggregate

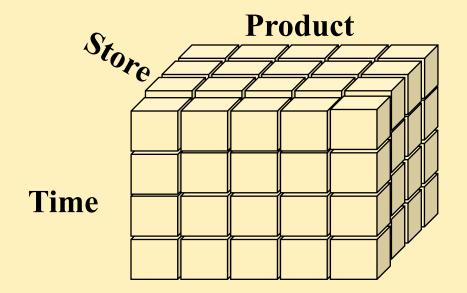
Measure

SELECT L.city, I.brand, T.month, SUM(dollars_sold)
FROM fact AS F, location AS L, time AS T, item AS I
WHERE F.location_key = L.location_key AND F.time_key =
T.time_key AND F.item_key = I.item_key
GROUP BY CUBE(L.city, I.brand, T.month)

Star-Join

Hierarchy levels

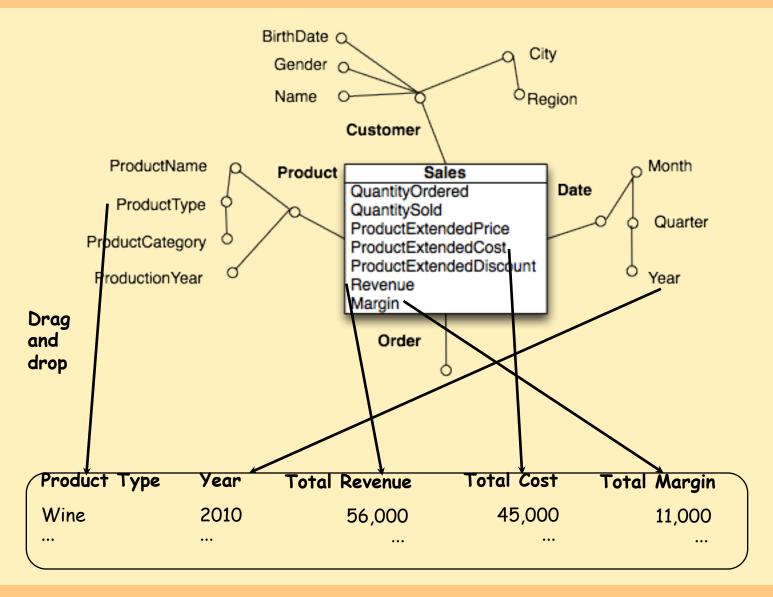

GROUP BY ROLLUP(L.city, I.brand, T.month)
- all initial subsequences of the group-by attributes


Slice and Dice

Product = A,B,C

Time

Slice in SQL Server

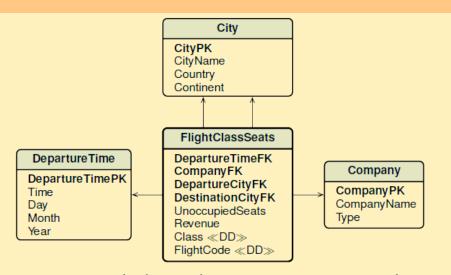

```
Measure
                              Aggregate
     Order or
     pivoting
SELECT L.city, I.brand, T.month, SUM(dollars_sold)
FROM fact AS F, location AS L, time AS T, item AS I
WHERE F.location_key = L.location_key AND F.time_key =
  T.time_key AND
 F.item_key = I.item_key AND
                                           Star-Join
 T.year = 2016
                       Slice
GROUP BY CUBE(L.city, I.brand, T.month)
                      Hierarchy levels
```

Star-join executions in SQL Server

- Star-join optimization
 - · automatically detected (vs to be setup in Oracle)
- · Bitmap join indexes
 - · not available (vs available in Oracle)
- · Columnstore indexes (since SQL Server 2012)
 - · see docs
 - http://msdn.microsoft.com/en-us/library/gg492088.aspx
 - Example (on a copy of sales_fact)
 - · CREATE CLUSTERED COLUMNSTORE INDEX cci_sales ON sales_fact_copy

Business Intel

REPORTING TOOLS


SIMPLE REPORTS WITH SQL

Sales (Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

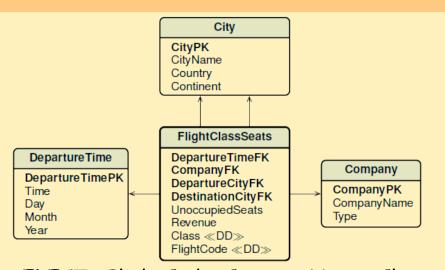
Margin by Brand and by Product Year 2009				
Brand	Product	Revenue (€)	Margin (€)	Margin% (%)
B1	P1	2100	273	13
	P2	3720	624	17
	P3	15300	1 803	12
B2	P4	12 600	756	6
	P5	22 500	2 196	10
	P6	48 300	4 496	9

	Slice
SELECT	Brand, Product, SUM(Revenue, AS Revenue,
	SUM(Margin) AS Margin,
	SUM(Margin) AS Margin, ROUND(100*SUM(Margin)/SUM(Revenue)) AS Margin%
FROM	Sales
WHERE	YEAR(Date) = 2009 Rollup & drill-down
GROUP BY	Brand, Product
ORDER BY	Brand, Product;
	Pivotina

AIRLINE COMPANIES: DATA ANALYSIS

Requirements analysis

Number of unoccupied seats in a given year, by flight code, by company name (or type), by class, by departure time (time, day, month, year)


Number of unoccupied seats in a given class and year, by flight code, by company name, by class, by departure (destination) city (country, continent).

Number of unoccupied seats and revenue of the Alitalia company, by year, by month, by destination country.

SELECT FlightCode, CompanyName, Class, Time, SUM(UnoccupiedSeats) As TotalUnoccupiedSeats FROM FlightClassSeats f, DepartureTime t, Company c

WHERE f.DepartureTimeFK = t.DepartureTimePK AND f.CompanyFK = c.CompanyPK and year = 2015 GROUP BY FlightCode, CompanyName, Class, Time,

AIRLINE COMPANIES: DATA ANALYSIS

Requirements analysis

Number of unoccupied seats in a given year, by flight code, by company name (or type), by class, by departure time (time, day, month, year)

Number of unoccupied seats in a given class and year, by flight code, by company name, by class, by departure (destination) city (country, continent).

Number of unoccupied seats and revenue of the Alitalia company, by year, by month, by destination country.

SELECT FlightCode, CompanyName, Class, City, SUM(UnoccupiedSeats) As TotalUnoccupiedSeats

FROM FlightClassSeats f, DepartureTime t, City c

WHERE f.DepartureTimeFK = t.DepartureTimePK AND f.DepartureCityFK = c.CityPK

AND Class='Business' AND year = 2015

GROUP BY FlightCode, CompanyName, Class, City

SELECT year, month, country, SUM(UnoccupiedSeats) As TotalUnoccupiedSeats, SUM(Revenue) As TotalRevenue

FROM FlightClassSeats f, DepartureTime t, City c

WHERE f.DepartureTimeFK = t.DepartureTimePK AND f.DestinationCityFK= c.CityPK

AND CompanyName='Alitalia'

GROUP BY year, month, country

SIMPLE REPORTS WITH SUBTOTALS

Sales (Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

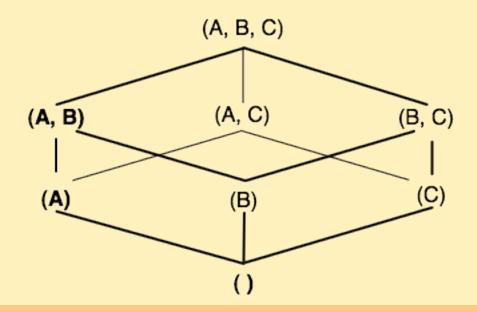
Margin by Brand and by Product Year 2009				
Brand	Product	Revenue (€)	Margin (€)	Margin% (%)
B1	P1 P2 P3	2 100 3 720	273 624	13 17
B1	Total	15300 21120	1 803 2 700	12 13
B2	P4 P5 P6	12 600 22 500 48 300	756 2 196 4 496	6 10 9
B2	Total	83 400	7 448	9
Total		104 520	10 148	10

SIMPLE REPORTS WITH SUBTOTALS IN SQL

Sales (Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Margin by Brand and by Product Year 2009				
Brand	Product	Revenue (€)	Margin (€)	Margin% (%)
B1	P1 P2	2100 3720	273 624	13 17
B1	P3 Total	15300 21120	1 803 2 700	12 13
B2	P4 P5 P6	12 600 22 500 48 300	756 2 196 4 496	6 10 9
B2	Total	83 400	7 448	9
Total		104 520	10 148	10

SQL: OPERATOR ROLLUP


GROUP BY ROLLUP(A,B)

Important the (attributes order)

Semantics: Union of 3 groupings:

(A,B)(A) subtotals() totals

ROLLUP compute one path through lattice

SIMPLE REPORTS WITH SUBTOTALS: ROLLUP

			Margin by	/ Brand and Year 2009		ct	
		Brand	Product	Revenue (€)	Margin (€)	Margin% (%)	
		B1	P1 P2 P3	2100 3720 15300	273 624 1 803	13 17 12	
(Brand, Product)		B1	Total	21 120	2700	13	
		B2	P4 P5 P6	12 600 22 500 48 300	756 2 196 4 496	6 10 9	2 (Brand)
	L	B2	Total	83 400	7 448	9	
		Total		104 520	10 148	10	(3) ()

SELECT Brand, Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100*SUM(Margin)/SUM(Revenue)) AS Margin%
FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY ROLLUP (Brand, Product)
ORDER BY Brand, Product;

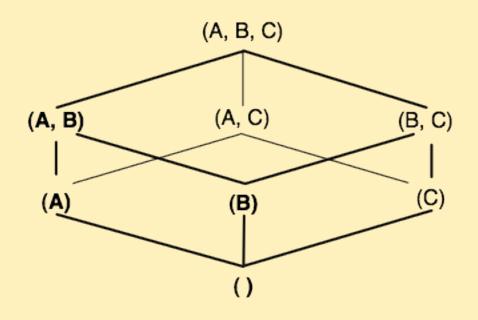
SIMPLE REPORTS WITH SUBTOTALS: CROSS-TABULATION

	Store			
Product	S1	S2	S3	Total
P1	300	500	50	850
P2	30	50	400	480
Total	330	550	450	1330

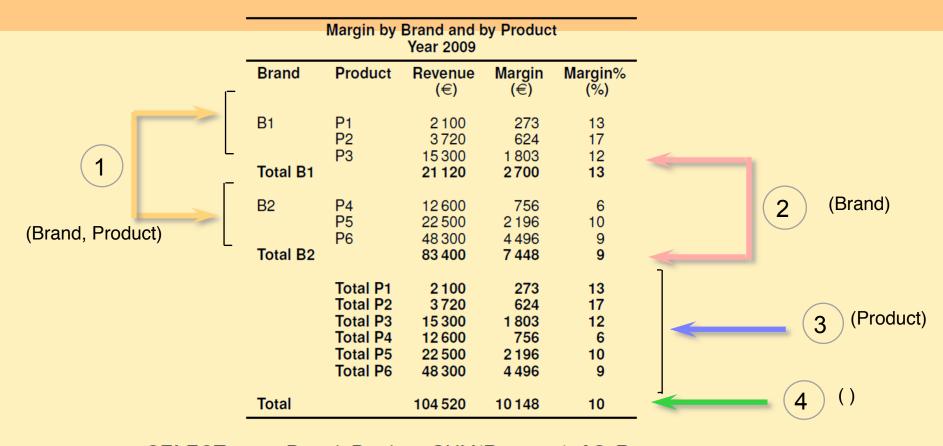
Margin by Brand and by Product Year 2009				
Brand	Product	Revenue (€)	Margin (€)	Margin% (%)
B1	P1 P2	2 100 3 720	273 624	13 17
Total B1	P3	15 300 21 120	1 803 2700	12 13
B2	P4 P5 P6	12 600 22 500 48 300	756 2 196 4 496	6 10
Total B2	PO	83 400	7 448	9 9
	Total P1 Total P2 Total P3 Total P4 Total P5 Total P6	2 100 3 720 15 300 12 600 22 500 48 300	273 624 1 803 756 2 196 4 496	13 17 12 6 10 9
Total		104 520	10 148	10

SQL: OPERATOR CUBE

GROUP BY CUBE(A,B)


Important: the (attributes order) doesn't matter

Semantics: Union of 4 groupings:

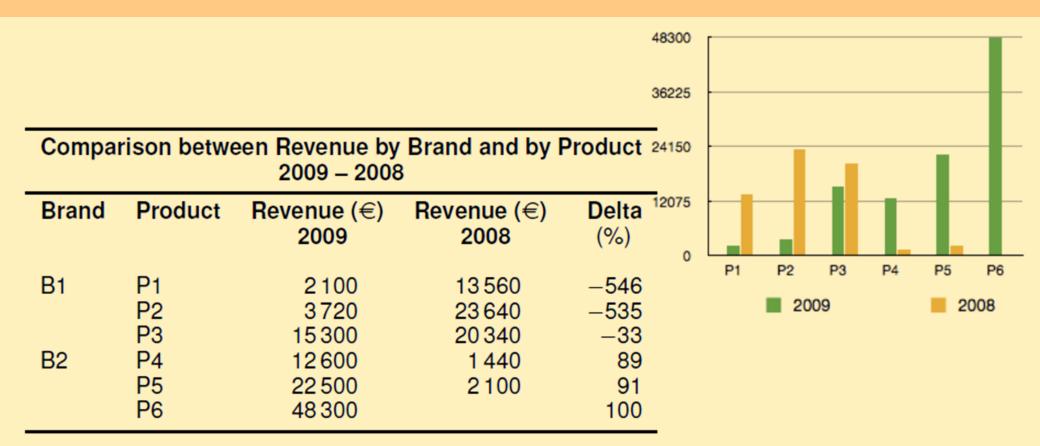

(A,B)

- (A) subtotals
- (B) subtotals
- () totals

CUBE compute a sub-lattice

SIMPLE REPORTS WITH SUBTOTALS: CUBE

SELECT Brand, Product, SUM(Revenue) AS Revenue, SUM(Margin) AS Margin,


ROUND(100*SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales

WHERE YEAR(Date) = 2009
GROUP BY CUBE (Brand, Product)

ORDER BY Brand, Product;

MODERATELY DIFFICULT REPORTS WITH COMPARISON BETWEEN COLUMNS (VARIANCE REPORT)

Delta = 100 x (Revenue2009 - Revenue2008)/Revenue2009

A product may have been sold in one year, but not in the other!

JOIN

R

5

Α	В
1	α
2	Ь

Α	С
1	×
2	У

SELECT	*
FROM	R
	NATURAL JOIN
	5;

Α	В	С
1	a	×
2	Ь	У

R

A B

1 a

2 b

3 c

5

Α	С
1	×
3	У
5	Z

SELECT *
FROM R
NATURAL JOIN
S;

Α	В	С
1	а	×
3	C	У

JOIN

R

A B
1 a
2 b
3 c

Α	С
1	×
3	У

Z

5

5

```
SELECT *
FROM R
NATURAL FULL JOIN
S;
```

A	В	С
1	α	×
2	Ь	
3	С	У
5		Z

```
SELECT *
FROM R
FULL JOIN
S USING (A);
```

SOLU	JTION	USING	VIFWS

Comparison between Revenue by Brand and by Product 2009 – 2008

Brand	Product	Revenue (€) 2009	Revenue (€) 2008	Delta (%)
B1	P1 P2	2 100 3 720	13 560 23 640	-546 -535
B2	P3 P4	15300 12600	20 340 1 440	-33 -33 89
	P5 P6	22 500 48 300	2100	91 100

CREATE VIEW VRevenue09 AS

SELECT Brand, Product, SUM(Revenue) AS Revenue2009

FROM Sales WHERE Year(Data) = 2009

GROUP BY Brand, Product;

CREATE VIEW VRevenue08 AS

SELECT Brand, Product, SUM(Revenue) AS Revenue2008

FROM Sales WHERE Year(Data) = 2008

GROUP BY Brand, Product;

SELECT VRevenue09.Brand AS Brand, VRevenue09.Product AS Product, Revenue2009, Revenue2008,

CASE

WHEN Revenue 2009 IS NULL THEN -100

WHEN Revenue 2008 IS NULL THEN 100

ELSE ROUND(100*(Revenue2009 - Revenue2008)/Revenue2009) END AS Delta

FROM VRevenue09 FULL JOIN VRevenue08 USING(Brand, Product)

ORDER BY Brand, Product

SOLUTION USING 'WITH' CLAUSE

```
WITH
           Revenue09 AS
            SELECT
                        Brand, Product, SUM(Revenue) AS Revenue2009
             FROM
                        Sales
             WHERE
                        YEAR(Date) = 2009
             GROUP BY Brand, Product
           .Revenue08 AS
            SELECT
                        Brand, Product, SUM(Revenue) AS Revenue2008
             FROM
                        Sales
             WHERE
                        YEAR(Date) = 2008
             GROUP BY Brand, Product
SELECT
           Revenue09.Brand AS Brand, Revenue09.Product AS Product
           , Revenue 2009
           , Revenue 2008
           . CASE
             WHEN Revenue 2009 IS NULL THEN -100
             WHEN Revenue 2008 IS NULL THEN 100
             ELSE ROUND(100*(Revenue2009 — Revenue2008) / Revenue2009)
           END AS Delta
FROM
           Revenue09 FULL JOIN Revenue08 USING (Brand, Product)
ORDER BY
           Brand, Product;
```

EXERCISE: MODERATELY DIFFICULT REPORTS WITH COMPARISON ACROSS AGGREGATION LEVELS

Sales (Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

P2 9 P3 11 M1 All products 36 M2 P4 10 P5 9	(€) 5,000 6,000 4,000	of Brand Revenue 45% 25% 30%	of Tota Revenue 21% 12%
P2 9 P3 11 M1 All products 38 M2 P4 10 P5 9	6,000 4,000	25%	12%
M1 All products 38 M2 P4 10 P5 9	4,000		
M1 All products 38 M2 P4 10 P5 9	•	30%	4 40
M2 P4 10		00 70	14%
P5 9	5,000	100%	47%
	2,400	23%	12%
DC 40	6,200	22%	12%
P0 12	4,000	28%	15%
P7 12	0,000	27%	14%
M2 All products 44	2,600	100%	53%

VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL: RUNNING TOTALS

Sales (Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Product P1 Revenue by Quarter and Month Year 2009				
Quarter	Month	Revenue (€)	Revenue QtoD (€)	Revenue YtoD (€)
Q1	January	16 500	16 500	16 500
Q1	February	14 220	30 720	30 720
Q1	March	27 480	58 200	58 200
Q2	April	7 920	7 920	66 120
Q2	May	1 200	9 120	67 320
Q2	June	1 260	10 380	68 580
Q3	July	5 400	5 400	73 980
Q3	August	11 730	17 130	85 710
Q3	September	10 860	27 990	96 570
Q4 Q4 Q4	October November December	5 850 2 100	5 850 7 950	102 420 104 520

VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL: RANK

Sales (Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Revenues and Ranks in the 2009 by Region and by Product				
Region	Product	Total Revenue	Product Rank by Region	Product Rank Global
Lazio	P3 P2 P4 P1 P5 P6	2880 960 2700 480 4800 11400	3 5 4 6 2	4 8 5 10 2 1
Toscana	P1 P6 P3 P5 P4 P2	120 3 600 1 800 1 500 900 240	6 1 2 3 4 5	12 3 6 7 9 11

Which are the best 5 products sold in Toscana?

VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL

Sales (Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

We want to partition the customers into four groups:

- Top5%, with 5% of customers with the highest amount of revenues.
- Next15%, with 15% of other customers with the highest amount of revenues.
- Middle30%, with 30% of other customers with the highest amount of revenues.
- Bottom50%, with 50 % of the customers with the lowest amount of revenues.

For each customer group we want to know their number, and the percentage of the sum of their revenues compared to total revenue of all sales.

Group	Number of customers	Percent of total revenue
Top5%	1	20
Next15%	3	50
Middle30%	6	20
Bottom50%	10	10

VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL

Sales (Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Syntax

SELECT Select Attributes (S_A) , Select Aggregation Functions (S_{AF}) ,

FROM Fact table (F) and a dimension table (D1)

WHERE Where condition (W_C)

GROUP BY Grouping Attributes (G_A)

HAVING Having condition (H_C) with aggregation functions (H_{AF})

ORDER BY Sorting attributes (O_A) ;

Intuition: Partition By

R	
Р	
P1	
P1	
P2	• • •
P2	• • •
P2 P2	
P2	
- 1 2	

SELECT P, COUNT(*) AS No FROM R GROUP BY P;

Р	No
P1	2
P2	5

SELECT P,
COUNT(*) OVER (PARTITION BY P) AS No
FROM R
ORDER BY P;

Р	No
P1	2
P1	2
P2	5

33

Intuition: without Partition By

R	
Р	
P1	
P1	
P2	• • • •
P2 P2	• • • •
P2	
P2	

SELECT	COUNT(*) AS No
FROM	R

No 7

SELECT	P, COUNT(*) OVER() AS No
FROM	R
ORDER BY	P;

Р	No	
P1 P1 P2 P2 P2 P2 P2	7 7 7 7 7 7	

34

Analytic Function (A_F) **OVER**(

[PARTITION BY < attribute list>]
[ORDER BY < sort attribute list>

[<window clause>]])

FROM Fact table (F) and a dimension table (D1)

WHERE Where condition (W_C) GROUP BY Grouping Attributes (G_A)

HAVING Having condition (H_C) with aggregation functions (H_{AF})

ORDER BY Sorting attributes (O_A) ;

Execution order

ORDER BY O_A

SELECT S_A , S_{AF} ,

 A_F OVER (...)

HAVING H_C

GROUP BY G_A

WHERE W_C

FROM F, D1

RANK

SELECT Customer, Product, SUM(Revenue) AS TotalRev,

RANK () OVER (ORDER BY SUM(Revenue)) AS Rank

FROM Sales WHERE Customer IN ('C1', 'C2')

GROUP BY Customer, Product ORDER BY TotalRev DESC;

Customer	Product	TotalRev	Rank
C1	P1	1100	7
C1	Р3	1000	6
C2	P1	1000	5
C2	P2	900	4
C2	P4	800	3
C1	P2	200	2
C2	Р3	200	1

RANK WITH PARTITIONS

SELECT Customer, Product, SUM(Revenue) AS TotalRevenue,

RANK () OVER (PARTITION BY Customer

ORDER BY SUM(Revenue) DESC) AS Rank

FROM Sales WHERE Customer IN ('C1', 'C2')

GROUP BY Customer, Product;

Customer	Product	TotalRev	Rank
C1	P1	1100	1
C1	Р3	1000	2
C1	P2	200	3
C2	P1	1000	1
C2	P2	900	2
C2	P4	800	3
C2	Р3	200	4

RANK vs DENSE_RANK vs ROW_NUMBER

```
<RankFunction>()
OVER(
     [PARTITION BY <attribute list>]
     ORDER BY <sort attribute list>
     ) [ AS Ide ]
```

- Consider the values in the ascending order
 - · (10; 20; 20; 30; 30; 40)
- RANK() of a value is 1 + the number of values that strictly precedes it
 - ranks (1; 2; 2; 4; 4; 6)
- · DENSE_RANK() of a value is 1 + the number of distinct values that precedes it
 - dense ranks (1; 2; 2; 3; 3; 4)
- PERCENT_RANK() is (RANK() 1) / (TotalRows 1)
 - percent ranks (0; 0.2; 0.2; 0.6; 0.6; 1)
- ROW_NUMBER() is the row number
 - row numbers (1; 2; 3; 4; 5; 6)
- CUME_DIST() is ROW_NUMBER() / TotalRows
 - cumulative distribution (0.16; 0.33; 0.5; 0.67; 0.83; 1)
- NTILE(3) is the tertile of the value (3 is a parameter, can be any integer)
 - tertiles (1; 1; 2; 2; 3; 3)

OTHER ANALYTIC FUNCTIONS

COUNT(), SUM(), AVG(), MIN(), MAX() ... and all standard aggregates

Sales(Brand, Product, Revenue)

Brand	Product	prodRevenue	PctOverBrand	PctOverTot
B1	P1	40	40	20
B1	P2	60	60	30
B2	Р3	20	20	10
B2	P4	80	80	40

WITH s AS (SELECT Brand, Product, SUM(Revenue) AS prodRevenue

FROM sales

GROUP BY Brand, Product)

SELECT Brand, Product, prodRevenue,

100 * prodRevenue / SUM(prodRevenue) OVER(PARTITION BY Brand) AS PctOverBrand,

100 * prodRevenue / SUM(prodRevenue) OVER() AS PctOverTot

FROM s

SELECT Brand, Product, SUM(Revenue) AS prodRevenue,
100 * SUM(Revenue) / SUM(SUM(Revenue)) OVER(PARTITION BY Brand) AS PctOverBrand,
100 * SUM(Revenue) / SUM(SUM(Revenue)) OVER() AS PctOverTot

FROM sales

GROUP BY Brand, Product

OTHER ANALYTIC FUNCTIONS

- LAG(attribute, offset, default) and LEAD(attribute, offset, default)
 - The value of attribute in offset rows before (LAG) or after (LEAD)

SELECT Store, Year, TotalRev,

LEAD(TotalRev, 1, 0) OVER(PARTITION BY Store ORDER BY Year DESC) AS PrevRev,

FROM TotalSales

ORDER BY Store, Year

Store	Year	TotalRev	PrevRev
51	2015	1100	1000
S 1	2014	1000	200
51	2013	200	0
52	2015	1000	900
52	2014	900	800
52	2013	800	200
52	2012	200	0

WINDOWING

```
<AggregateFunction>(<expr>)
OVER(
        [PARTITION BY <attribute list>]
        [ORDER BY <sort attribute list>
        [<ROWS or RANGE> <window size specification>]]
        ) [ AS Ide ]
```

Windowing functions are used to compute cumulative, moving and centered aggregates.

Window functions add a value to each row that depends on the other rows in the window.

Examples of window specifications:

ROWS UNBOUNDED PRECEDING. The window begin with the first record of the partition and ends with the current record.

ROWS BETWEEN ... PRECEDING AND ... FOLLOWING. The window include all records that fall within the given offset.

WINDOWING EXAMPLE

Sales (Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

	Product P1 Revenue by Quarter and Month Year 2009			
Quarter	Month	Revenue (€)	Revenue QtoD (€)	Revenue YtoD (€)
Q1	January	16 500	16 500	16 500
Q1	February	14 220	30 720	30 720
Q1	March	27 480	58 200	58 200
Q2	April	7 920	7 920	66 120
Q2	May	1 200	9 120	67 320
Q2	June	1 260	10 380	68 580
Q3	July	5 400	5 400	73 980
Q3	August	11 730	17 130	85 710
Q3	September	10 860	27 990	96 570
Q4 Q4 Q4	October November December	5 850 2 100	5 850 7 950	102 420 104 520

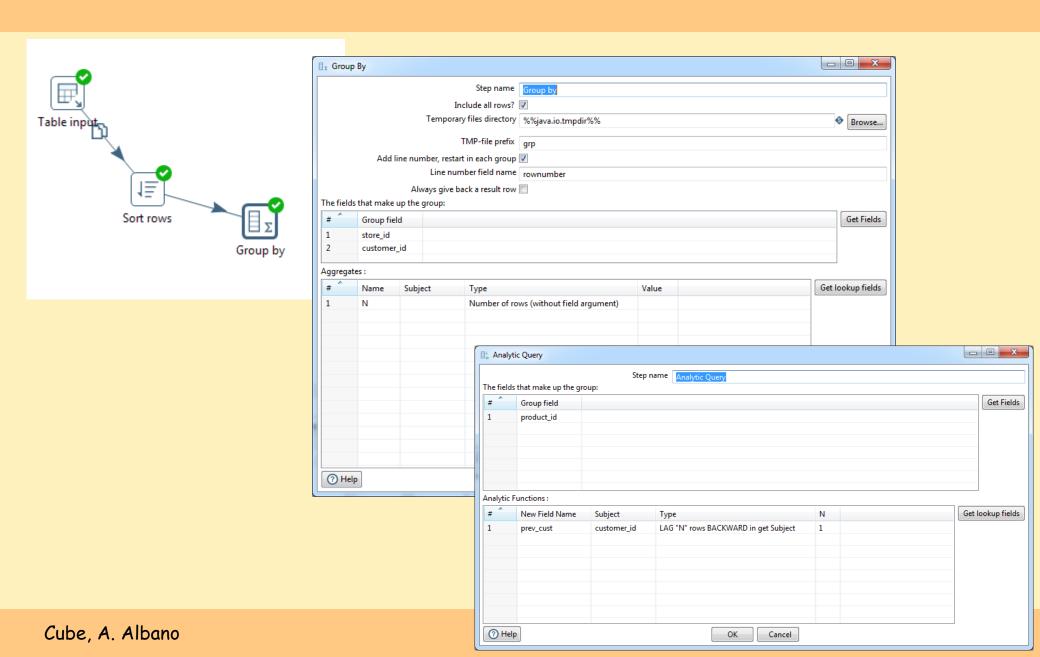
WINDOWING EXAMPLE

Sales (Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

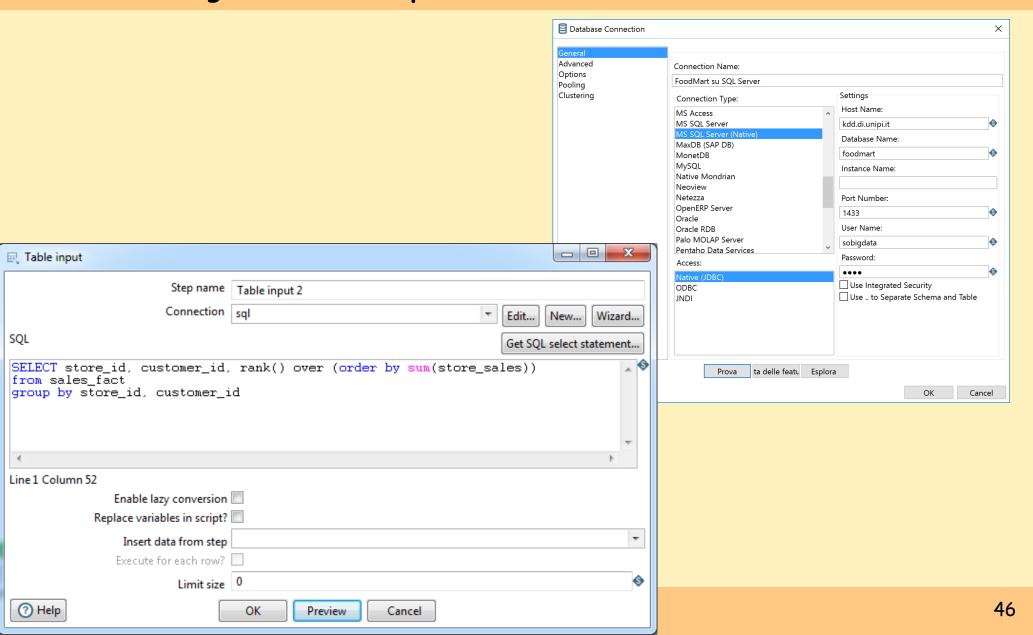
	Product P1 Revenue by Quarter and Month Year 2009			
Quarter	Month	Revenue (€)	Revenue QtoD (€)	Revenue YtoD (€)
Q1	January	16 500	16 500	16 500
Q1	February	14 220	30 720	30 720
Q1	March	27 480	58 200	58 200
Q2	April	7 920	7 920	66 120
Q2	May	1 200	9 1 2 0	67 320
Q2	June	1 260	10 380	68 580
Q3	July	5 400	5 400	73 980
Q3	August	11 730	17 130	85 710
Q3	September	10860	27 990	96 570
Q4	October	5 850	5.850	102 420
Q4	November	2 100	7 950	104 520
Q4	December			4

EXAMPLE

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)


A moving average of total revenue, with a moving window of 3 months, by month.

SELECT MONTH(Date) AS Month


FROM Sales
GROUP BY MONTH(Date)
ORDER BY Month;

Result visualization in Oracle...

ANALYTIC FUNCTIONS IN PENTAHO DATA INTEGRATION

OR CONNECT TO SQL SERVER 2014 ON KDD.DI.UNIPI.IT LOGIN: sobigdata PWD: pisa

SUMMARY

SQL is not select-from-where only.

Grouping and aggregation is a major part of SQL.

SQL has been extended for OLAP operations, because of intensive data warehouse applications during the last decade.

Make sure you understand SQL. It is much more than syntax.

Open Lab

· Redo exercises on ETL using SQL queries instead

Exercise

- FoodMart data mart
 - Write a SQL query that returns all constant customers in June 1998
 - Constant: with at least two baskets per month for at least two months in the last four months.

Exercise

```
WITH salesagg AS (
  SELECT customer_id, COUNT(DISTINCT s.time_id) AS npurchases
  FROM sales_fact s, time_by_day t
  WHERE s.time_id = t.time_id and
               (t.the_year*12 + t.month_of_year) BETWEEN 1998*12+6-3 AND
  1998*12+6
  GROUP BY customer_id, the_year, month_of_year
SELECT customer_id
FROM salesagg
WHERE npurchases > 1
GROUP BY customer_id
HAVING Count(*) > 1
```