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Abstract

Motivation: Single-cell DNA sequencing enables the measurement of somatic mutations in individual
tumor cells, and provides data to reconstruct the evolutionary history of the tumor. Nearly all existing
methods to construct phylogenetic trees from single-cell sequencing data use single-nucleotide variants
(SNVs) as markers. However, most solid tumors contain copy-number aberrations (CNAs) which can
overlap loci containing SNVs. Particularly problematic are CNAs that delete an SNV, thus returning the
SNV locus to the unmutated state. Such mutation losses are allowed in some models of SNV evolution,
but these models are generally too permissive, allowing mutation losses without evidence of a CNA
overlapping the locus.

Results: We introduce a novel loss-supported evolutionary model, a generalization of the infinite sites
and Dollo models, that constrains mutation losses to loci with evidence of a decrease in copy number.
We design a new algorithm, Single-Cell Algorithm for Reconstructing the Loss-supported Evolution
of Tumors (SCARLET), that infers phylogenies from single-cell tumor sequencing data using the loss-
supported model and a probabilistic model of sequencing errors and allele dropout. On simulated data,
we show that SCARLET outperforms current single-cell phylogeny methods, recovering more accurate
trees and correcting errors in SNV data. On single-cell sequencing data from a metastatic colorectal
cancer patient, SCARLET constructs a phylogeny that is both more consistent with the observed copy-
number data and also reveals a simpler monooclonal seeding of the metastasis, contrasting with published
reports of polyclonal seeding in this patient. SCARLET substantially improves single-cell phylogeny
inference in tumors with CNAs, yielding new insights into the analysis of tumor evolution.
Availability: Software is available at|github.com/raphael-group/scarlet

Contact: braphael @princeton.edu
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1 Introduction

Cancer arises from an evolutionary process during which somatic mutations accumulate in a population of
cells. Different cells within a tumor acquire distinct complements of somatic mutations, resulting in a het-
erogeneous tumor. Quantifying this intra-tumor heterogeneity and reconstructing the evolutionary history of
a tumor is crucial for diagnosis and treatment of cancer*2, The evolution of a tumor is typically described by
a phylogenetic tree, or phylogeny, whose leaves represent the cells observed at the present time and whose
internal nodes represent ancestral cells. Tumor phylogenies are challenging to reconstruct using DNA se-
quencing data from bulk tumor samples, since this data contains mixtures of mutations from thousands—
millions of heterogeneous cells in the sample®"!>. Recently, single-cell DNA sequencing (scDNA-seq) of
tumors has become more common, and new technologies such as those from 10X Genomics!®, Mission

BioZ, and others!®2Y

are improving the efficiency and lowering the costs of isolating, labeling, and se-
quencing individual cells. While scDNA-seq overcomes the difficulties of phylogeny reconstruction from
bulk samples, it introduces a new challenge of higher rates of missing data and errors due to DNA amplifi-
cation errors, undersampling, and sequencing errors'®.

Early work in phylogeny inference from scDNA-seq data uses single-nucleotide variants (SN'Vs) as phy-
logenetic markers. A particular challenge for SN'V-based analysis is high rates (up to 30% for high-depth
scDNA-seq!®) of allele dropout errors, where only one of two alleles is observed at a heterozygous site.
Methods address this challenge by using an evolutionary model to infer a phylogeny while simultaneously
imputing missing data and correcting errors in the observed SNVs. Algorithms such as SCITEZ!, On-
coNEM?%4, Sci®%*, and B-SCITE#* use the simplest phylogenetic model for SNV, the infinite sites model.
In this model, a locus in a cell has one of two states: an SNV (or mutation) iseither present at the locus (state
1) or absent (state 0). Transitions between states are constrained in the phylogeny such that each mutation
is gained (0 — 1) at most once during evolution, and never subsequently lost (1 — 0). A phylogeny that
respects the infinite sites model is known as a perfect phylogeny and the state of mutations in the leaves of
the phylogeny is summarized by a mutation matrix whose binary entries indicate the presence (state 1) or
absence (state 0) of every mutation in each observed cell (Fig. [[(A)). On error-free data, the perfect phy-
logeny is unique®. However, on typical scDNA-seq data, errors in the mutation matrix must be corrected
to yield a perfect phylogeny model. Because many such corrections are possible, multiple phylogenies are
typically equally consistent with the data (Fig. [T|B)).

An additional challenge in inferring phylogenies from cancer sequencing data is that somatic mutations
in tumors occur across all genomic scales from SNVs to copy-number aberrations (CNAs), which amplify

or delete larger genomic regions. CNAs may overlap SNVs and affect the state of SN'Vs in cells; e.g., a

deletion that overlaps an SNV may result in a mutation loss (1 — 0). The infinite sites model does not allow
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Fig. 1: Loss-supported model reduces ambiguity in inference of phylogeny from single-cell sequencing data. (A) A mutation
matrix with two mutations in three cells does not admit a perfect phylogeny. This may be due to either errors or mutation losses.
(B) Under the infinite sites model, existing methods correct errors in the observed matrix to yield a perfect phylogeny. (C) Under
the Dollo model, existing methods identify mutation losses to explain violations of the infinite sites model. Both the infinite sites
and Dollo models yield multiple equally-plausible phylogenies. (D) The loss-supported model overcomes this ambiguity by using

copy-number data to constrain mutation losses.

mutation losses and therefore may yield incorrect phylogenies when applied to SNVs in regions containing
CNAs. One solution is to exclude regions containing CNAs and build phylogenies from SNVs in diploid, or
copy-neutral, regions. However, ~90% of solid tumors are highly aneuploid?®, containing extensive CNAs,

and ~30% of solid tumors have whole-genome duplications®’

. Identifying collections of SNVs with no
possibility of overlapping CNAs during evolution of such tumors may be challenging.

Recently, several methods®33 have been introduced for single-cell phylogeny inference that allow loss
of mutations. SPhyr28, SASC?, and PyDollo®" use the Dollo model’*, which relaxes the infinite sites
model. In the Dollo model, a mutation may be gained (0 — 1) at most once, but may be lost (1 — 0)
multiple times. SiFit*!, SiCloneFit*?, and PhiSCS>? use the finite sites model, a further relaxation that
allows mutation to be gained more than once. A challenge in using these less stringent evolutionary models
is that they increase the ambiguity in phylogenetic reconstruction (Fig. [[{C)). Even in simple cases with
no error, multiple phylogenies are consistent with the data and the number of phylogenies further increases
when there are errors and uncertainty in the mutation matrix. Both the errors in scDNA-seq data and the
mutation losses in the phylogeny conspire to yield considerable challenges and ambiguity in the single-cell
phylogeny inference problem. This ambiguity is further amplified because both sequencing errors and losses
result in the same signal in the observed data: an observed ‘0’ in the mutation matrix instead of a ‘1. Thus,
it is particularly difficult to distinguish between errors in the data and potential mutation losses.

A major limitation in using the Dollo or finite sites models to allow mutation losses is that neither of these
models consider evidence from CNAs that support or refute a mutation loss at a locus. While more general
multi-state models of tumor evolution have been used to infer phylogenies from bulk tumor sequencing
data’™, these approaches neither model the errors in scDNA-seq data nor scale to hundreds—thousands of
observed cells. Since mutation losses are the major complication in SNV evolution and responsible for

30435

most of the violations of the infinite sites model in scDNA-seq data , the full generality of a multi-state
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model may not be necessary to obtain accurate phylogenies from scDNA-seq data. Rather, we describe an
approach that constrains mutation losses by using copy-number data from the same cells.

We introduce SCARLET (Single-Cell Algorithm for Reconstructing the Loss-supported Evolution of
Tumors), an algorithm that infers phylogenies from scDNA-seq data by integrating SN'Vs and copy-number
data. SCARLET is based a novel evolutionary model, the loss-supported phylogeny, that constrains muta-
tion losses to loci where the copy-number data has evidence of a deletion (Fig. [I(D)). The loss-supported
phylogeny generalizes the infinite sites and Dollo models. SCARLET also relies on a probabilistic model of
the read counts for each SNV to address errors and missing data that are common in scDNA-seq. On sim-
ulated data, we show that SCARLET infers more accurate phylogenies compared to existing methods. We
then use SCARLET to analyze scDNA-seq data from a metastatic colorectal cancer patient from Leung et
al. (2017)®. We find that the published phylogeny — constructed from SNVs under the infinite sites model —
has the implausible conclusion that genome-wide copy-number profiles evolved twice independently during
the evolution of this tumor. In contrast, SCARLET infers a loss-supported phylogeny that has three mutation
losses, with each loss supported by a copy-number change at the locus. Moreover, the SCARLET phylogeny
supports the hypothesis of a single migration between the colon primary tumor and liver metastasis (mon-

3236 reported a more complex origin of the

oclonal seeding). In contrast, previous published phylogenies
metastasis with multiple migrations (polyclonal seeding). By integrating information from both SNVs and

CNAs, SCARLET obtains more accurate reconstructions of tumor evolution at single-cell resolution.

2 Results

2.1 SCARLET algorithm for Loss-supported Phylogeny Model

We developed a new algorithm, SCARLET (Single-Cell Algorithm for Reconstructing the Loss-supported
Evolution of Tumors) to infer phylogenetic trees from single-cell DNA sequencing (scDNA-seq) data by
integrating data from both single-nucleotide variants (SN'Vs) and copy-number aberrations (CNAs). SCAR-
LET has three important features (Fig. [2): (1) a novel evolutionary model, the loss-supported phylogeny,
which constrains mutation losses to loci where there is a corresponding decrease in copy number; (2) an
algorithm to compute a loss-supported phylogeny by refinement of a coarse phylogenetic tree derived from
copy-number data alone; (3) maximum-likelihood inference of SNVs using a probabilistic model of ob-
served read counts in sScDNA-seq data. We describe each of these key features below.

The loss-supported model is a model of SNV evolution where mutation gains (0 — 1) occur at most
once, but mutation losses (1 — 0) are constrained by sets £ of supported losses that are defined by CNAs in
the same cells (Fig. [I(D)). Specifically, we assume that for each cell we measure both a mutation profile b

of SNVs and a copy-number profile c. For each pair (¢, ¢) of copy-number profiles, we define the supported
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Fig. 2: SCARLET algorithm for the Maximum Likelihood Loss-Supported Refinement problem. SCARLET integrates single-
nucleotide variants (SNVs) and copy-number aberrations (CNAs) for tumor phylogeny inference. For CNAs, observed copy-
number profiles indicate amplified (red) or deleted (blue) genomic regions along the entire genome and are used to obtain two inputs
for SCARLET. First, supported loss sets £(c, c’) for pairs of copy-number profiles (empty sets are not shown) indicate mutations
that are affected by deletions. Second, a copy-number tree 7" which describes the ancestral relationships between observed cells
(leaves) as determined by copy-number profiles. For SNVs, variant X and total Y read counts are provided to SCARLET for every
cell and every mutation. SCARLET computes a joint tree 7" on the observed cells and a maximum-likelihood mutation matrix B* by
constraining mutation losses to the supported loss sets £, computing a refinement 7" of T', and selecting the maximum-likelihood

B* using a probabilistic model for the presence (b;,; = 1) or absence (b;,; = 0) of each SNV in each cell.

loss set L(c, ') as the set of SN'Vs at loci where there is a decrease in copy number (e.g., due to a deletion or
loss-of-heterozygosity (LOH) event) between profiles ¢ and ¢’. In the loss-supported phylogeny, a mutation
loss at an SNV loci a is allowed between cells v and w only if a is in £(c¢y, ¢,). The loss-supported model
can thus be viewed as a generalization of other models for SNV evolution: the perfect phylogeny model
is the special case where £ = (), while the Dollo model and finite sites model corresponds to £ being the
complete set of all mutations. In contrast to these extremes, the loss-supported model allows for intermediate
values of £ derived from copy-number data.

The loss-supported model depends on the copy-number profiles of both the observed and ancestral cells.
However, we do not directly measure the copy-number profiles of the ancestral cells. To overcome this
limitation, SCARLET uses a copy-number tree T" which is derived from the copy-number profiles of the
observed cells!>>373% (Fig, . SCARLET computes the supported loss sets £ from the copy-number profiles
of the observed cells (leaves of T") and the copy-number profiles of the ancestral cells (internal vertices of T').

Typically, scDNA-seq data of SNVs (e.g., from targeted sequencing) measures copy-number profiles with
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Fig. 3: SCARLET outperforms existing methods for phylogeny inference on simulated single-cell data. (A) Mutation matrix
error, (B) Pairwise ancestral relationship error, and (C) Runtime for each method. SCARLET was run either knowing (‘True CN

Tree’) or not knowing (‘Optimal CN Tree’) the true copy number tree.

low resolution, and thus tumor cells share a limited number of distinct copy-number profiles. Consequently,
the copy-number tree 7' has many multifurcations, or unresolved ancestral vertices with more than two
children. SCARLET finds a joint tree 7" that is a loss-supported phylogeny and a refinement*of T' by
resolving multifurcations in 7" using the mutation profiles of the observed cells (Fig. [2).

Data from scDNA-seq typically has high error rates in identifying SNVs, and particularly high rates
of false negatives and missing data due to amplification bias and allele dropout!®, SCARLET models these
errors using a beta-binominal distribution®? of the observed read counts. As such, SCARLET computes
the loss-supported refinement 7" that maximizes the likelihood of the observed sequencing data under this

probabilistic model (Fig. 2).

2.2 Simulated Data

We compared SCARLET to four existing algorithms that build phylogenies from single-cell sequencing data,
SCITE4L, Sci®??, SPhszg, and SiFit*L, on simulated data. We simulated 50 trees, each with 20 mutations,
4 copy-number profiles, and 1-8 mutation losses per tree. From these trees, we simulated 100 observed cells
with each cell having equal probability of being a child of any vertex in the simulated tree, and simulated
sequencing data with an expected sequencing depth of 100x and allelic dropout rate of 0.15.Additional
details of simulated data and parameters of each method are in Section S2.4]

We evaluated the phylogenies output by the methods by two measures that have been previously used in
tumor evolution studies 323282981 Firgt the muration matrix error M (B, B) = LS > i1 |bij —
lA)i, ;| is the normalized Hamming distance between the inferred binary mutation matrix B and the true binary
mutation matrix B and assesses the accuracy of the error-corrected mutation profiles for each observed

cell. Second, the pairwise ancestral relationship error E(T, T ) is the proportion of pairwise ancestral

relationships between mutations in the inferred tree T that differ from the ancestral relationships in the true
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tree T. Specifically, every pair a,a’ of mutations has one of four possible ancestral relationships in T and
inT: (1) a and @' occur on the same branch; (2) a is ancestral to a’; (3) @’ is ancestral to a; (4) a and o’
are incomparable. Note that we do not calculate the tree error for SiFit because it uses a finite sites model
which allows mutations to recur and consequently pairs of mutations may not have a unique relationship.

SCARLET outperforms all other methods on both mutation matrix error and ancestral relationship error
(Fig. B(A)-(B)). The high errors of SCITE and Sci® were expected since these methods use an infinite
sites model while the simulations include mutation losses which violates the model assumptions. However,
the methods that do allow mutation losses, SPhyR (based on the k-Dollo model) and SiFit (based on the
finite sites model), do not exhibit improvement over the other methods and perform worse than SCARLET.
These results confirm that models that include unconstrained mutation losses have significant ambiguity as
it is difficult to distinguish between true mutation losses and false positives/negatives in the data (Fig. [I).
By using copy-number information to constrain mutation losses, SCARLET overcomes the ambiguity in
phylogeny reconstruction and obtains lower error in the inferred mutation matrix and phylogeny.

We evaluated the effect of the input copy number tree on SCARLET’s accuracy by running SCARLET
in two modes: when the true copy-number tree is either known (‘SCARLET True CN Tree’) or unknown
(‘SCARLET Optimal CN Tree’). In this latter case, we enumerated all copy-number trees, ran SCARLET
once for each copy-number tree, and output the solution with the highest likelihood. In both cases, we
provided SCARLET with the true copy-number profiles of each cell and the true set £ of supported losses.
SCARLET exhibited comparable performance when running with or without knowledge of the copy-number
tree (Fig. 3 A)-(B)). Notably, in 46/50 simulated instances, the maximum likelihood solution obtained when
running SCARLET with unknown copy-number tree was identical to the solution found when providing the
true copy-number tree. Clearly, running SCARLET with all possible copy-number trees (16 copy-number
trees in this simulation) increases the runtime (Fig. [3(C)), but the runtime remains reasonable when the

number of copy-number profiles is small, which is the case for many real datasets (see below).

2.3 Single-cell phylogeny of metastatic colorectal cancer

We used SCARLET to analyze single-cell DNA sequencing of a metastatic colorectal cancer patient CRC2
from Leung et al*®. This data set included targeted sequencing of 1000 genes in 141 cells from a primary
colon tumor and 45 cells from a matched liver metastasis (Fig. §I(A)). The authors identified 36 single-
nucleotide variants (SNVs) and used SCITE?! to derive a perfect phylogeny from these SNVs (Fig. A)).

159 concluded

This perfect phylogeny tree shows two distinct branches of metastatic cells, and Leung et a
that this was evidence of polyclonal seeding of the liver metastasis; i.e., two distinct cells (or groups of cells)
with different complements of mutations migrated from the primary colon tumor to the liver metastasis.

Examining the copy-number data, one finds a curious discrepancy between the SCITE tree and the single-
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Fig. 4: SCARLET infers a loss-supported phylogeny consistent with copy-number profiles from a metastatic colorectal cancer
patient. (A) Published perfect phylogeny tree®d of 141 single cells from the primary colon tumor (blue) and 45 single-cells from
the liver metastasis (green) of patient CRC2. Two distinct branches of metastatic cells — suggesting polyclonal seeding of the
liver metastasis — are separated by four “bridge mutations” occurring in cells of the primary tumor. (B) Published copy-number
profiles from DOP-PCR whole-genome sequencing of 42 single cells from both the primary tumor and metastasis of CRC2 (figure
adapted from Leung et al®%). All metastatic cells share deletions of six chromosomes (black boxes), but are separated into two
groups (light and dark green) by a small number of additional CNAs. (C) SCARLET infers a loss-supported phylogeny from the
same data. The SCARLET tree has a single branch containing all metastatic cells — suggesting monoclonal seeding of the liver
metastasis and consistent with the similar copy-number profiles of all metastatic cells. SCARLET identifies mutation losses (red) in
LINGO2, LRP1B, and FHIT. (D) Significant decreases in read depths are observed at the loci of the three mutation losses identified

by SCARLET.

cell copy-number profiles. Whole-genome sequencing of 42 single cells from the same patient reveals that
all metastatic cells share losses of chromosomes 2, 3p, 4, 7, 9, 16, 22 relative to the cells in the primary
tumor (Fig. EKB)). According to the SCITE tree, all of these large copy-number aberrations (CNAs) would
had to have occurred twice independently in the two distinct branches of metastatic cells. Although CNAs
can exhibit homoplasy, this high rate of occurrence of the exact same events seems highly unlikely. Thus,
we observe an inconsistency between the copy-number data and the SCITE tree constructed using only
SNV data. Notably, this same dataset was recently analyzed by SiCloneFit3? using a finite sites model.
The SiCloneFit tree also showed two branches of metastastic cells and concluded that there was polyclonal
seeding of the metastases. Thus, the SiCloneFit phylogeny also has the same inconsistency between the
SNV phylogeny and copy-number data.

We analyzed this dataset using SCARLET to see whether joint analysis of SNVs and CNAs data could
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help resolve the inconsistency between the tree derived from SNVs and the observed copy number profiles.
We first derived four distinct copy-number profiles by hierarchical clustering of ploidy-corrected read-depth
ratios from the targeted single-cell sequencing data. These copy-number profiles included an aneuploid
profile for all primary cells (P), two different aneuploid profiles for metastatic cells (M1 and M2), and the

profile of diploid cells (D); Leung et al 2®

similarly derived four copy-number profiles from whole-genome
sequencing of a different set of 42 cells from the same patient. Since four copy-number profiles is a small
number to infer a tree using a copy-number evolution model, we instead ran SCARLET in the ‘Optimal
CN Tree’ setting selecting the copy-number tree that produced the highest likelihood. Specifically, we ran
SCARLET on all nine possible rooted copy-number trees with the root having the diploid profile (D), and
internal vertices labeled by one of the three aneuploid copy profiles (P, M1, M2). For each copy-number
tree, we derived the set £ of supported losses as the mutation loci that exhibited significant decreases in read
depth (i.e., number of aligned sequencing reads). Additional details are in Section

SCARLET constructed a tree (Fig.[4(C) and Fig. SI[(B)) with a single clade containing all metastatic cells.
This is consistent with the copy-number data, since the shared chromosomal losses could have have occurred
once in a common ancestor of all metastatic cells. Moreover, this tree suggests that the liver metastasis
was the product of monoclonal seeding; i.e., a single cell (or small group of cells) with the same somatic
mutations migrated from the primary colon tumor to the metastasis and all metastatic cells descended from

S5O of a more

the founder cells present in this single migration. This result contradicts previous results
complicated polyclonal seeding of the metastasis. The SCARLET tree contains three mutation losses: in
genes FHIT, LRP1B, and LINGO2. Each of these losses is supported by a significant decrease in read depth
(Fig. f{(D)), providing evidence that the loci containing these mutation were likely affected by deletions.
Notably FHIT and LRP 1B are located in fragile sites in the genome**, which are known regions of genomic
instability. In addition, the loss of the mutation LINGOZ2 : 1 in LINGO?2 is further supported by a shift in
the variant allele frequency of another mutation, LINGOZ2 : 2, in the same gene. Specifically, the variant
allele frequency of LINGO2 : 2 is ~1 in the metastatic cells (Fig. SI(A)), suggesting that this mutant allele
is homozygous, consistent with a deletion or loss of heterozygosity event where the LINGOZ2 : 1 mutations
was lost.

We examined further the evidence for polyclonal seeding in the initial study of this patient. Leung et
al 2% included a statistical analysis of the variant read counts of the four “bridge mutations”, ATP7B, FHIT,
APC and CHN1 that occurred between the first and second metastatic branches in the SCITE tree. This
analysis showed that mutations in ATP7B and FHIT were present in a subset of primary tumor cells and
in the second metastatic branch (detected in 10/13 and 13/13 cells respectively) while being absent in the
second metastatic branch (detected in 1/15 and 1/15 cells respectively). Under the infinite sites model used

by SCITE, mutation loss is not allowed and thus polyclonal seeding is necessary to explain the absence of
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these mutations. The same analysis found high uncertainty regarding the placement of mutations in APC
and CHN1 and thus these were not cited as evidence for polyclonal seeding.

The loss-supported model used by SCARLET provides an alternate explanation for the absence of FHIT
and ATP7B. SCARLET identifies a supported mutation loss to explain the presence of the mutation in FHIT
only in a subset of metastatic cells (M1). This loss is supported by a shift in read depth (p = 0.005) in
the 10Mb region containing the locus (Fig D). SCARLET does not identify a supported mutation loss to
similarly explain ATP7B as we did not observe a significant decrease in read depth for the corresponding
locus (p = 0.34). However, this lack of a significant decrease in read depth at the ATP 7B locus does not
necessarily imply that there was no mutation loss. In particular, because targeted sequencing was performed
for only 1000 genes, the copy number data is fairly low resolution and we calculated read depth in 10Mb
bins. Thus, we may lack the statistical power to identify a shorter deletion, especially a deletion present in
only the 10 metastatic cells with copy number profile M2. In summary, we argue that the sequencing data
provides stronger evidence for the phylogeny constructed by SCARLET, which is consistent with both SNV
and copy-number data, and supports a more parsimonious explanation of monoclonal seeding of the liver

metastasis.

3 Discussion

Somatic mutations in tumors range across all genomic scales, from single-nucleotide variants (SNVs)
through large copy-number aberrations (CNAs). To date, most methods for constructing phylogenies from

single-cell DNA sequencing (scDNA-seq) data2!724:28133

used only SNVs, ignoring CNAs and thus throw-
ing out important information for phylogenetic inference. Here, we introduced SCARLET, the first algorithm
— to our knowledge — that uses measurements of both SNVs and CNAs to reconstruct tumor phylogenies
from scDNA-seq data. SCARLET is based on a novel loss-supported evolutionary model, which constrains
mutation losses to loci containing evidence of a CNA. By using the information about CNAs that is readily
available in scDNA-seq data, the loss-supported model has less ambiguity in the phylogeny inference than
the Dollo and finite sites models which allow mutation losses to occur anywhere on the tree. In scDNA-seq
data, where there is often considerable uncertainty in the mutations present in each cell, this reduction in
ambiguity enables more accurate phylogeny inference. On simulated scDNA-seq data, we find that SCAR-
LET outperforms existing methods that do not utilize copy-number data. On targeted scDNA-seq data from
a metastatic colorectal cancer patient, we showed that SCARLET found a phylogeny containing three muta-
tion losses. Notably, SCARLET’s tree was both more consistent with the copy-number data and provided a

simpler explanation of monoclonal seeding of the liver metastasis, compared to the more complex phyloge-

nies reported previously>22%. Thus, accurate modeling of mutations losses results in different conclusions
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regarding the migration patterns of metastasis.

There are a number of directions for future improvement. First, the current implementation of SCARLET
either requires the copy-number tree in input or enumerates all possible copy-number trees and selects the
maximum likelihood result. This approach is applicable when the number of distinct copy-number profiles

is small; e.g., in the case of targeted scDNA-seq datal/#344

where copy-number data typically is lower
resolution. However, with higher-quality copy-number data, extensions to larger numbers of copy-number
profiles is needed. One approach is to use copy-number evolution models'*37+3% to identify a modest num-
ber of copy-number trees that summarize the uncertainty in the copy-number evolutionary history. Second,
one could extend the loss-supported model into a unified evolutionary model for SNVs and CNAs. Indeed,
the loss-supported model provides a natural framework to integrate SN'Vs directly with evolutionary models
of CNAs. As single-cell sequencing technologies continue to improve, higher quality measurements of both

SNVs and CNAs from the same sets of cells will become available. We anticipate that SCARLET and the

loss-supported model will play a crucial role in the analysis of these data.

4 Methods

4.1 Loss-supported phylogeny model

We model the evolutionary history of a tumor as a rooted, directed phylogenetic tree T’ = (V(T), E(T)),
whose vertex set V(T') = L(T) U I(T) consists of a set L(T) of n leaves corresponding to observed cells
and a set I(T') of inner vertices corresponding to ancestral cells. A directed edge (v, w) € E(T) indicates
that cell v is an ancestor of cell w. We do not directly observe 7" but rather we measure a set of phylogenetic
markers for every observed cell v € L(T). In the case where the markers are somatic single-nucleotide
variants (SNV), the measurements correspond to a binary mutation profile b, € {0,1}™ for each observed
cell v, where b, , = 1 indicates that cell v has a somatic mutation at locus @ and b, , = 0 indicates that
cell v does not have a somatic mutation at locus a. We assume that the mutation profile b, of the root  is
b, = 0 since the root represents the normal cell that preceded the tumor. We define the mutation matrix
B = [by]yer(1) to be the matrix whose rows are the mutation profiles of leaves v € L(T).

The problem of phylogenetic tree inference is to find a tree T" and an augmented mutation matrix B’ =
[b,]uev (1) whose rows correspond to binary mutation profiles of the vertices of 7" and where the submatrix
[by]uer(r) is equal to B. Since there are many possible trees that relate the observed cells, methods for
phylogeny inference find 7" and B’ that best fit a specific evolutionary model.

The simplest evolutionary model for SNVs is the infinite sites, or perfect phylogeny model. In this
model, each mutation is gained (0 — 1) at most once, and is never subsequently lost. A more general model

the Dollo model allows mutations to be gained (0 — 1) at most once, but lost (1 — 0) multiple times.
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Formally, the Dollo model is defined as follows.

Definition 1. A phylogenetic tree T is a Dollo phylogeny with respect to augmented mutation matrix B’

provided that for every locus a, there is at most one edge (v, w) € E(T) such that b;, , = 0 and b}, , = 1.

In contrast to the perfect phylogeny model, under the Dollo model there are often multiple phylogenies that
are consistent with input data (Fig. [I).
DNA sequencing data often contains contains additional information about the genomic locations where

mutation losses are possible. Specifically, we assume that for each cell v, we also observe a copy-number

profile p, = [pw, ey Do, ~| where Dv,i indicates the number of copies of genomic segment ¢ in cell v. For
simplicity, we label the unique copy-number profiles observed for all the cells by integers {1, ..., k}, such
that the vector ¢ = [¢, | represents the copy-number profile assignment ¢, € {1,..., k} of every cell v. The

copy-number profiles of cells provide constraints on mutation losses. In particular, we allow mutation losses
only at loci where an overlapping deletion or loss-of-heterozygosity (LOH) distinguishes the copy-number
profiles. We record the information about the loci where losses are allowed in a collection £ of supported
loss sets. For each pair ¢, ¢’ of distinct copy-number profiles we define the set L(c,¢’) C {1,...,m} of
supported losses to be the set of all the mutation loci located in genomic regions with a decrease in copy
number (indicating possible deletion or LOH) between ¢ and ¢’. We define £(c, c) = () for all . We denote
the collection of supported losses as £ = {L(c,c) : (¢,c) € {1,...,k} x {1,...,k}}. We define a

loss-supported phylogeny as a Dollo phylogeny where all mutation losses are supported.

Definition 2. Given copy number profiles ¢’ = [CU]UGV(T) and supported losses £, a phylogenetic tree T is
a loss-supported phylogeny with respect to augmented mutation matrix B provided that: (1) T is a Dollo

phylogeny; (2) If ¥, , = 1 and b, , = 0 for edge (v, w) and locus a then a € L(cy,, c,,).

v W

The loss-supported phylogeny inference problem is to infer a loss-supported phylogeny 7" given a mu-
tation matrix B and copy-number profile vector c that label the leaves of 7', as well as a set £ of supported
losses. However, this general problem has a major complication: the copy-number profiles of the ancestral
cells are unknown. Without knowledge of ancestral copy-number profiles, the loss sets £ cannot be used
to constrain mutation losses. Ideally, one might infer copy-number profiles of ancestral cells (e.g., using
a copy-number evolution model>373%) while simultaneously inferring a loss-supported phylogeny on the
SNVs. The derivation of a score/likelihood for such joint model is not straightforward, and is left for fu-
ture work. Instead, in the next section, we describe an algorithm that infers a loss-supported phylogeny by

refining a copy-number tree given in input.
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4.2 Loss-supported Refinement Problem

In this section, we introduce the Loss-Supported Refinement (LSR) problem, a special case of the loss-
supported phylogeny inference problem, where we have additional information about the evolutionary re-
lationships between copy-number profiles. In particular, we assume that we are given a copy-number tree
T = (V(T), E(T)) and a copy-number profile vector ¢ = [cy] ey (7) for all vertices in T". As single-cell
DNA sequencing data of SNVs typically measures copy-number profiles with low-resolution, this copy-
number tree typically has many multifurcations. (i.e., unresolved ancestral vertices with more than two
children). We use the mutation matrix B = [b,] for all v € L(T') to refine vertices in 7', which results in a
Joint tree T" that reflects the evolutionary history of both the SNVs and CNAs. This sequential approach is
inspired by an asymmetry between SNVs and CNAs in the loss-supported model: CNAs affect the observed
state transitions of SNVs as deletions result in SNV loss, but SNVs do not result in changes in copy-number
state.

The joint tree 1" is a refinement™ of T'; i.e., T may be obtained by contracting edges in 7", according to

the following definition.

Definition 3. A tree T' is a refinement of a tree T provided L(T'") = L(T) and there exists a mapping
v V(T) = 2VT) satisfying the following conditions.
(1) Forallv € V(T),~(v) is a rooted subtree T'[y(v)] of T with root r(v). (Contiguity)
(2) For all (v,w) € E(T), there exists exactly one edge (p(r(w)),r(w)) € E(T") such that p(r(w)) €
~(v). (Edge consistency)

(3) Forallv € L(T), v(v) = {v}. (Leaf consistency)

We define the LSR problem as the problem of finding a refinement 7" of a copy-number tree 7" such that 7"
is a loss-supported phylogeny.

Problem 1. Loss-Supported Refinement (LSR) problem

Given a copy-number tree T, a copy-number profile vector ¢ = [cv]veV(T), a mutation matrix B =
[by]ve (), and supported losses L, find a refinement T of T, a copy-number profile vector ¢’ =
[co]wev (1), and an augmented mutation matrix B = [b],],ycy vy with by = b, for all v' € L(T"),
such that

(1) ¢, =cyforallve V(T)andv' € y(v), and

(2) T’ is a loss-supported phylogeny with respect to B', ¢/, and L.

We provide four sufficient and necessary conditions for a solution 7", ¢/, B to the LSR problem.
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Theorem 1. Given copy-number tree I', copy-number profile vector c, mutation matrix B, and supported
losses L, a refinement T' of T, copy-number profile vector c', and augmented mutation matrix B' are a

solution to the LSR problem if and only if
(1) For all loci a, there exists exactly one edge (v',w') € E(T") with b, , = 0and b;,, , = 1;
And forallv € V(T):

(2) ¢, = ¢y forallv' € v(v);
(3) Ifb;ﬂ(v),a = 1 then b;(r(v)),a = 1foralla ¢ L(C;(T(v))’ C;"(U));

(4) There does not exist any edge (v',w') € E(T'[y(v)]) with V), , = 1 and b, , = 0.

Note that Theorem|[I|characterizes a solution 7" to the LSR problem as composed of n + k subtrees 7" [y(v)]
for v € V(T) (Fig.[2). Moreover, conditions (1) and (4) imply that each of these subtrees T”[y(v)] is a
perfect phylogeny with respect to submatrix B[ (v)]. We use this structure to solve the LSR problem in the

next section.

4.3 Solving the Loss-Supported Refinement problem

In this section, we derive an efficient algorithm to solve the LSR problem. This algorithm decomposes the
LSR problem into & = |I(7T')| instances — one for each copy-number profile — of the Incomplete Directed
Perfect Phylogeny (IDP) problem*®, using the characterization of LSR solutions given in Theorem Specif-
ically, Theorem|l|characterizes LSR solutions by giving a set of conditions on the set T = {77, : v € V(T)}
of subtrees of T defined by the refinement mapping -, such that 7, = T'[~(v)]. We design an algorithm to
find a set 7 of subtrees, mutation matrix B’, and copy-number profiles ¢’ that satisfy conditions (1)-(4) of
Theorem|1] Using T and B, we then construct a refinement 7" such that T"[y(v)] = T}, and ¢/, = ¢, for all
vertices v € V(7). By conditions (1) and (4), each subtree T} is a perfect phylogeny with respect to the
corresponding mutation submatrix B'[V'(T},)] = [b,]uev (17). Moreover, by condition (3), B[V (T})] is con-
strained by the mutation profiles b/, (w) Of the root r(w) of every descendent subtree 7}, with (v, w) € E(T).
Thus, we recursively solve for 7), and B’[V'(T)] for every vertex v € V(T') starting from the leaves L(T),
as L(T') do not have any descendants and thus can be solved independently. The algorithm relies on three

additional constraints on the solution 7", ¢’ and B’, described in the following lemma.

Lemma 1. If there exists a solution to the LSR problem for a given T, c, B, L, then there exists a solution

T', ¢/, B’ that satisfies the following conditions.
(i) Forall (v,w) € E(T), p(r(w)) is a leaf of subtree T"[y(v)].
(ii) Forallv e V(T)\{r}, ift], = 1forallv' € L(T'[(v)]) then b;"(v) =1

(iii) Forallv € V(T) and all loci a, b;,(r(v)) a

r(v),a’
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Our recursive algorithm is composed of a base and recursive step.
Base step

The base case determines 7, and B'[V/(T7)] for leaf vertices v € L(T'). By Definition |3} v(v) = {v}
for any leaf in a refinement 7”. Thus the subtree 7] € T is composed of a single vertex v, with mutation
profile b/, = b, and copy-number profile ¢, = ¢,.

Recursive step

The recursive step aims to find 7)) and B’[V (T})] for internal vertices v € I(T'). We recursively solve
for T}, and B[V (T7,)] for every vertex w such that (v,w) € E(T). By condition (i) of Lemmal[l] T}, has
a leaf for every (v, w) € E(T), such that L(T}) = {p(r(w)) : (v,w) € E(T)}. We know that T} is a
perfect phylogeny with respect to B’[V/(T})] (condition (3)), and the structure of perfect phylogeny 7 is
determined when the mutation profiles B/[L(T7)] of the leaves are given®. Therefore, identifying B[ L(T})]
is sufficient to obtain 7}, and B'[V (T})].

We do not directly observe B’[L(T})], but there are two constraints on B’[L(7})] in addition to
B'[L(T})] being a perfect phylogeny matrix. We summarize these two constraints on B'[L(7})] as a ternary
matrix B}, = [b),],err,) such that b, = [b], ,] € {0,1,7}™. The first constraint is provided by condition
(2) of Theorem 1] and condition (iii) of Lemma [I] which fix the values for some entries of B'[L(77)] such

that l_);(r(w)),a = 1 when b;(w)ﬂ =1 and l_);(r(w)),a = 0 when ¥’ = 0and a € L(cy,¢y). The second

r(w),a
constraint is provided by condition (4) and we meet this constrain(t lf))y further setting some of the previously
non-fixed entries in B’[L(7})] to minimize the total number of mutation gains in 7,,. A mutation gain is
present in 77, only if there are vertices v, w’ € L(T;) such that b, , = 1 and ¥, , = 0. To achieve the
minimum number of mutation gains, we thus maximize the number of all-zero and all-one columns of B! :
we set to 0 any previously undetermined entries nga for columns of B’ that only have ‘0’ (‘1°, resp.) entries
(setting of nga =0, 17)1,/7@ = 1resp.). At last, we set any remaining undetermined entry of Bz’) to be ‘7.
Finally, we aim to find B/[L(T;,)] by filling the *?* entries of B/. More specifically, given B!, we
seek B'[L(T},)] such that if b, , € {0,1} then by o= 5;’,(1 for all mutations a and B'[L(T,)] is a perfect
phylogeny matrix. This problem is known as the Incomplete Directed Perfect Phylogeny (IDP) problem
and has been shown to be solvable in O(n?m) time*®. In our case n = |L(T,)| = d, where d, is the

out-degree of vertex v in 7. Solving an instance of the IDP problem yields a perfect phylogeny mutation

matrix B'[L(T,)], which in turn determines the perfect phylogeny tree 7, and mutation matrix B'[L(7})].

4.4 Maximum Likelihood Loss-supported Refinement Problem

The LSR problem assumes that the mutation matrix B is error-free. In practice, we do not observe this
mutation matrix B, but instead we observe read counts from a sequencing experiment. Specifically, we

measure a variant read count matrix X = [X,],er(7) and a total read count matrix Y = [yy]yer,(7), Where
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Ty, € Nis the number of variant reads at locus a in cell v and y,, , € N is the total number of reads. Whole-
genome amplification!®, which typically precedes single-cell DNA sequencing, introduces a considerable
amount of error into these read count matrices. Specifically, single-cell sequencing SNV data has high
rates of false negative errors (i.e., £, , = 0 when b, , = 1) and missing data (i.e., ¥, = 0). In addition,
sequencing and whole-genome amplification introduce false positive errors (i.e., T, , > 0 when b, , = 0)
as well. Most existing methods?!22252831533 for single-cell phylogeny inference discretize read counts
into an observed mutation matrix B, using either two or three genotypes in addition to missing data (i.e,
l;vﬂ € {0,1,7} or I;Uﬂ € {00,01, 11, 7}). However, discretizing the mutation data loses information about
the likelihood of errors. For example, a locus with a single variant read is far more likely to be a false positive
error than a locus with hundreds of variant reads, but a discretized mutation matrix does not distinguish
between these cases.

Here, we adopt a maximum-likelihood approach that models the observed variant and total read counts.
A similar approach was used in Sci®?? with the infinite sites model for SNVs. Our approach aims to find
the mutation matrix B* = argmax Pr(X | Y, B); i.e., the mutation matrix that admits a solution 7", B, ¢’
to the LSR problem and maximizes the likelihood of the observed variant read counts X given the total
read counts Y. This formulation is not specific to a particular likelihood model for read counts but does
assume that variant read counts X are independent of each other across cells and loci given Y and B —i.e, a
likelihood of the form Pr(X | Y,B) = [[,_; [ 1.2 Pr(%v.a | Yv,a,bv.a)- Let By ¢ be the set of mutation
matrices B such that there exists a solution 7”7, ¢/, B to the LSR problem given T, ¢, and £. We formulate

the problem as follows.

Problem 2. Maximum Likelihood Loss-Supported Refinement (ML-LSR) problem
Given variant read counts X = [X,]yer (1), total read counts Y = [yy|yer(r), copy-number tree T, copy-
number profile vector ¢ = [Cv]vev(T), and supported losses L, find the mutation matrix B* € Br ¢ that

maximizes Pr(X | Y, B).

We show the ML-LSR is NP-hard by reduction from the Minimum Flip Problem* (Section S3.3)). Since
current datasets have mutation matrices with hundreds—thousands of cells, we derive an algorithm in the next
section that finds an approximate solution to the ML-LSR problem by subdividing the ML-LSR problem

into k instances of the maximum likelihood Incomplete Directed Perfect Phylogeny problem.

4.5 SCARLET Algorithm for Maximum-Likelihood Loss-Supported Refinement Problem

We introduce SCARLET (Single-Cell Algorithm for Reconstructing the Loss-supported Evolution of
Tumors), an algorithm to find a loss-supported phylogeny 7" from single-cell DNA sequencing data.

SCARLET aims to solve the ML-LSR problem by finding the maximum likelihood mutation matrix B*
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such that there exists a solution 7", ¢’, B’ to the LSR problem where B’ is an augmentation of B* (i.e.,
B* = B/[L(T)] = B/[L(T")]). We proceed here by finding B’, which gives us B*. In Section 2.3, we
showed that finding B’ for the LSR problem decomposes into a set of IDP instances if we know the muta-
tion profiles R = [b/, (v)]ve 1(7) of the roots of subtrees T. Given B, we inferred R recursively, starting with
the leaves L(7') whose mutation profiles are known. In the ML-LSR, however, we are not given B. There-
fore, SCARLET uses a heuristic to find B* where we first compute maximum likelihood mutation profiles
R* of the roots, and then solve a set of instances of a maximum likelihood IDP (ML-IDP) problem given
R*. We compute R* by marginalizing over possible mutation profiles for each mutation (Section S2.2). As
ML-IDP input, we define a ternary matrix B, = [b/,,],c r(ry) for each vertex v € V(T). Forv € I(T),
we define b’p,(,.(,)) as in Section given the mutation profile b/, (v Of the root r(v) of T). Forv € L(T),
we have that b’,,.(,)) = by but unlike in the LSR problem, we are not given the mutation profile b, in the
ML-LSR problem. Instead, we are able to compute the likelihood of b, as in Equation|I| As such, finding
B* is equivalent to find the maximum likelihood submatrices {B*[{v : ¢, = ¢, }] : v € I(T)} such that B/,
admits an incomplete directed perfect phylogeny. We show in Section §2.3]how to compute these maximum
likelihood submatrices using an integer-linear programming (ILP) formulation.

This heuristic is not guaranteed to find the overall maximum likelihood solution B* as there may be cases
where B* does not admit a solution with the maximum likelihood set of roots R*. However, we showed
in the Section [2.2] that SCARLET is both accurate and fast in practice. SCARLET can be used with any
likelihood model that assumes conditional independence between variant read counts given the mutation
matrix and total read counts as described in the previous section. In this work, we used a beta-binomial
model for variant read counts, similar to the one used by Sci®%*, which accounts for overdispersion due to

whole-genome amplification as well as sequencing error. Additional details are in Section S2.1]
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