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Abstract

Genome-wide association studies explain a fraction of the underlying heritability of genetic diseases. Investi-
gating epistatic interactions between two or more loci help closing this gap. Unfortunately, sheer number of
loci combinations to process and hypotheses to test prohibit the process both computationally and statistically.
Epistasis test prioritization algorithms rank likely-epistatic SNP pairs to limit the number of tests. Yet, they
still suffer from very low precision. It was shown in the literature that selecting SNPs that are individually
correlated with the phenotype and also diverse with respect to genomic location, leads to better phenotype
prediction due to genetic complementation. Here, we hypothesize that an algorithm that pairs SNPs from such
diverse regions and carefully ranks the pairs can detect statistically more meaningful pairs and can improve
prediction power. We propose an epistasis test prioritization algorithm which optimizes a submodular set
function to select a diverse and complementary set of genomic regions that span the underlying genome. SNP
pairs from these regions are then further ranked w.r.t. their co-coverage of the case cohort. We compare our
algorithm with the state-of-the-art on three GWAS and show that (i) we substantially improve precision (from
0.003 to 0.652) while maintaining the significance of selected pairs, (ii) decrease the number of tests by 25 folds,
and (iii) decrease the runtime by 4 folds. We also show that promoting SNPs from regulatory/coding regions
improves the precision (up to 0.8). Potpourri is available at http://ciceklab.cs.bilkent.edu.tr/potpourri.
∗Correspondence: cicek@cs.bilkent.edu.tr

1 Introduction

Genome-wide association studies (GWAS) have been an important tool for susceptibility gene dis-
covery in genetic disorders [1, 2, 3]. Analyzing single loci associations have provided many valuable
insights but they alone do not account for the full heritability [4]. Investigating the interplay among
multiple loci with has helped to bridge the missing heritability gap. Such statistically significant
interactions between two or more loci is called epistasis and it has a major role in complex genetic
traits such as cancer [5] and neurodevelopmental disorders [6].

Exhaustive identification of interacting loci, even just pairs, is intractable computationally. More-
over, such an approach lacks statistical power due to multiple hypothesis testing. Several methods
have been developed to circumvent this problem. TEAM and BOOST are exhaustive models which
exploit data structures and efficient data representation to improve the brute force performance [7, 8].
However, these methods still perform many tests and do not scale for large tasks. For instance,
BOOST reports a runtime of 60 hours for 360k SNPs. Another approach is to reduce the search
space by filtering pairs based on a type of statistical threshold. Examples include SNPHarvester [9],
SNPRuler [10] and IBBFS [11]. Despite their advantages, these methods mostly do not follow a
biological reasoning and tend to detect interactions that are in linkage disequilibrium (LD) as noted
in [12]. On another track, incorporating biological background and testing the SNP pairs that are
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annotated has also proven useful [13, 14, 15, 16, 17]. Yet, this approach requires most SNPs to be
discarded as many are quite far away from any gene to be associated. Moreover, this introduces a
literature bias in the selections of the algorithms.

A rather more popular approach is to prioritize the tests to be performed rather than discarding
pairs from the search space and controlling for Type-I error. In this approach, the user can keep
performing tests in the order specified by the algorithm until a desired number of significant pairs
are found. The idea is to provide the user with a manageable number of true positives (statistically
significant epistatic pairs) while minimizing the number of tests to ensure statistical power. The first
algorithm of this kind is iLOCi [12], which ranks SNP pairs by performing a dependence test and
avoiding pairs that are unrelated to disease but might seem related due to LD. This work was followed
by [18] who proposed testing pairs of SNPs in population covering locus sets - POCOs. First, the
algorithm greedily selects multiple exclusive groups of SNPs that cover all affected individuals. That
is, each case sample has to have at least one SNP in each POCO. Epistasis tests then are performed
across POCOs with the hope that independent coverage of the cases will lead different POCOs to
include complementary and epistatic SNPs [18, 19]. Finally, Cowman and Koyuturk, introduced the
LINDEN algorithm [20]. First, in a bottom-up fashion, the method generates SNP trees on greedily
selected genomic regions (LD forest). Each node represents the genotypes of cases and controls for
the SNPs in that node. Then, by comparing the roots of these trees, it decides if this pair of regions
is a promising candidate for epistasis test. Nodes in lower levels are continued to be checked and
leaf pairs (individual SNPs) are tested only if the estimation at higher levels is promising. LINDEN
was shown to achieve the state of the art results. Despite using various heuristics, all methods still
have high false discovery rates. For instance, the FDR of LINDEN ranges from 0.96 to 0.998 on three
GWAS from Wellcome Trust Case Control Consortium (WTCCC) - the ratio of significant pairs to
the number of detected (reciprocally) significant epistatic pairs [20].

Linkage disequilibrium is an important source of information for epistasis prioritization algorithms.
Two SNPs that appear to be interacting statistically, might not be biologically meaningful if they
are on the same haplotype block. For this reason, all three methods mentioned above focus on
such regions and aim at avoiding testing pairs that are located in close vicinity of each other. In
an orthogonal study, [21] propose a feature (SNP) selection algorithm which avoids LD for better
phenotype prediction. Authors show that while looking for a small set of loci (i.e., 100) that is
the most predictive of a continuous phenotype, selecting SNPs that are far away from each other,
results in better predictive power. This method, SPADIS, is designed for feature selection for multiple
regression. As the SNP set it generates contains diverse and complementary SNPs, it results in better
R2 values by covering more biological functions.

Inspired by this idea, we conjecture that selecting pairs of SNPs from genomic regions that (i)
harbor individually informative SNPs, and (ii) are diverse in terms of genomic location would avoid
LD better and yield more functionally complementing and more epistatic SNP pairs compared to the
current state of the art since no other algorithm exploits this information. We propose a new method
that for the first time incorporates the genome location diversity with the population coverage density.
Specifically, our proposed method, Potpourri, maximizes a submodular set function to select a set
of genomic regions (i) that include SNPs which are individually predictive of the cases, and (ii) that
are topologically distant from each other on the underlying genome. Epistasis tests are performed for
pairs across these regions, such that pairs that densely co-cover the case cohort are given priority.

We validate our hypothesis and show that Potpourri is able to detect statistically significant and
biologically meaningful epistatic SNP pairs. We perform extensive tests on three Wellcome Trust Case
Control Consortium (WTCCC) GWA studies (Type 2 Diabeteis (T2D), Biploar Disorder (BD), and
Hypertension (HT)), and compare our method with the state-of-the-art LINDEN algorithm. First,
we guide LINDEN by pruning its search space using Potpourri-selected-SNPs to show that (i) it is
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2 MATERIALS AND METHODS 3

possible to significantly improve the precision (from 0.003 up to 0.302) and (ii) that our diversification
approach is sound. Then, we show that the ranking of the diverse SNPs by the co-coverage of the case
cohort further improves the prediction power and the precision (up to 0.652 in the selected setting).
Potpourri drastically reduces the number of hypothesis tests to perform (from ∼ 380k to ∼ 15k), and
yet is still able to detect more epistatic pairs with similar significance levels in all there GWA studies
considered. The running time is also cut by 4 folds in the selected settings. Another problem with
the current techniques is the biological interpretation of the obtained epistatic pairs. Once the most
significant SNP pairs returned are in the non-coding regions and are too isolated to be associated
with any gene, the user can hardly make sense of such a result despite statistical significance. We
investigate the advantage of promotion of SNPs falling into regulatory and non-coding regions for
testing and propose three techniques. We show that these techniques further improve the precision
(up to 0.8) with similar number of epistatic pairs detected. Finally, we investigate the biological
meaning of the detected SNP pairs. We find (i) a SNP pair which supports the hypothesis of a shared
genetic architecture between T2D and chronic kidney disease; and (ii) a pair which suggests a new
candidate risk gene (NPW ) for HT which has loose indications only in rat studies.

2 MATERIALS AND METHODS

2.1 Notation

A GWAS dataset consists of genotypes of a set of samples S who are associated with a binary
phenotype: Case or Control. Let f(s) be an indicator function that corresponds to phenotype of
a sample s ∈ S, i.e.: f(s) = 1, if s is a case sample, and f(s) = 0, otherwise. Function h which
represents the genotype of sample s ∈ S at locus v ∈ V is encoded as:

h(s, v) =


0, if genotype of sample s at v is Homozygous reference

1, if genotype of sample s at v is Hetorozygous

2, if genotype of sample s at v is Homozygous alternative

One can generate an undirected SNP-SNP network G(V ′, E), where V ′ ⊆ V and vi ∈ V ′ if ∃s ∈ S
where h(s, vi) 6= 0. evi,vj ∈ E where vi, vj ∈ V and they are related. The definition of relatedness
might change with respect to the application and the biological definition. In our setting, two SNPs
are related if they are neighbors on the underlying genome.

2.2 Selection of Diverse and Informative SNP Regions

Regions harboring informative SNPs (ones that are correlated with the phenotype) and also far
away on the underlying genome with respect to a SNP-SNP network is likely to yield a diverse and
explanatory SNP set without introducing a literature bias. Our hypothesis is that those selected
SNPs are likely to be epistatic because SNPs selected using this technique leads to better phenotype
prediction due to better genomic complementation [21]. Hence, carefully picking pairs from such a
set should yield highly epistatic SNP pairs and is well situated for epistasis test prioritization. In our
application the goal is not to predict the phenotype. Our SNP set selection approach differs from [21]
in the calculation of the SKAT scores [22] as in epistatis test prioritization we are analyzing a GWA
study in which the phenotype is dichotomous. Moreover, we introduce an hyper-parameter which can
assign extra artificial price to SNPs that fall in regulatory or coding regions to give priority to SNPs
which are more likely to have functional effect. Also, node prizes are normalized by the set size to be
able to compare performances of selected sets of different sizes.

First, for every SNP vi, a score cvi is calculated using SKAT method which works by regressing
phenotype on the covariates using a flexible semiparametric linear model [22]. Instead of directly
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associating genotypes of the variants with the phenotype, SKAT uses a nonparametric function of
the genotypes that is possibly contained in a vector space generated by a positive semi-definite kernel
function. Given a user specified number SNPs to select (k), the second step selects a subset of loci
EP ⊂ V ′ such that it maximizes the sum of selected SNP scores while penalizing SNPs that are in
close vicinity of each other. In particular the function F as shown in Equation 1 is maximized:

F (EP ) =
∑

vi∈EP

cviωvi

k
+ β

1−
∑

vi,vj∈EP ;vi 6=vj

D − d(vi, vj)

2kD

 (1)

In this equation, D ∈ R>0 is a parameter that sets the upper limit on the distance that two
SNPs are considered close. d(vi, vj) is the distance between vertices vi, vj ∈ EP on graph G. In this
application function d(vi, vj) denotes the shortest path distance between vi, vj only if d(vi, vj) ≤ D,
otherwise d(vi, vj) = D to cancel out the penalty term. The parameter β ∈ R≥0 adjusts the relative
magnitudes of the prices and the penalties. Finally, the parameter ωvi ∈ R≥1 rewards vi ∈ V ′ if it
falls into a regulatory or coding region of interest. If this information is not taken into consideration
ωvi = 1, ∀vi ∈ V ′ - see Subsection Promoting SNPs in Regulatory and Coding Regions. The subset
EP ∗ that maximizes F is selected as the seed set for epistasis prioritization as shown in Equation 2.

EP ∗ = argmax
EP⊆V ′⊆V,|EP |=k

F (EP ) (2)

Given the set of SNPs V ′, the above-mentioned function F : 2V
′ → R is a submodular function

(see Supplementary Text 1.1 for the proof). Submodular optimization is NP-hard. However, the
greedy algorithm given in Supplementary Text 1.2, which basically iteratively adds the next best SNP
to the set that maximizes F at each step, ensures a

(
1− 1

e

)
-factor approximation to the optimum

solution [23]. This algorithm requires the submodular set function to be also monotone non-decreasing
and non-negative, which are proven in Supplementary Text 1.3.

Note that using only the SNPs in EP ∗ would restrict the epistasis testing to SNPs which are
individually correlated with the trait. We rather use those as anchors to detect genomic regions of
interest. Let R be a set of consecutive SNPs that fall into a region in the genome. After EP ∗ is
set, for every SNP vi ∈ EP ∗, a region Ri is formed such that it includes, vi and m upstream and m
downstream SNPs of vi. Thus, |Ri| = 2m+ 1. R is the set of sets (regions) Ri, ∀vi ∈ EP ∗. Note that
|
⋃

Ri∈R
Ri| = 2mk + k.

2.3 Prioritization of the Tests

The region set R generates a pruned search space for finding likely epistatic SNP pairs. Within
region tests are avoided in order to avoid LD. That is, SNPs vi and vj are not tested if both vi ∈ Rx

and vj ∈ Rx such that Rx ∈ R. Still, the number of possible tests is
k ∗ (k − 1)

2
(2m + 1)2 and

a prioritization scheme is needed to rank candidate pairs for testing. We employ two strategies as
explained next.

2.3.1 Guiding LINDEN for Ranking SNP Pairs

In this ranking strategy, we use LINDEN to rank the pairs selected in R. That is, we use Potpourri
selected SNPs to guide LINDEN. Thus, in this strategy, Potpourri acts as a preprocessing step for
LINDEN to prune its large search space. Doing so, we test if our diverse SNP selection scheme is
sound and whether it improves the performance of LINDEN.
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LINDEN is input with only SNPs that fall into the regions in R. Then, the algorithm is run as
described in [20]. That is, the algorithm forms LD trees over greedily selected regions. The leaves of
these trees represent actual SNPS each of which are represented by a sample genotype vector (i.e.,
the genotype of this SNP for every sample). The tree is constructed in bottom-up fashion and nodes
are merged to genertate higher levels. During this process, sample genotype vectors are merged and
ambiguous indices (i.e., samples with different genotypes) are assigned a NIL value. This merging
step continues until a threshold d is met that denotes the fraction of NIL values allowed. This is
a dynamically adjusted threshold goes up with the number of iterations. Then, the tree pairs are
tested with respect to the sample genotype vectors starting from the root, ignoring the NIL values.
Lower levels are tested only if the significance of the chi-squared test meets a certain threshold. In
parallel with our hypothesis on diversification of the regions, we prohibit LINDEN to merge SNPs
from different regions. Thus, the tests are performed across regions in R.

2.3.2 Population Co-covering For Ranking SNP Pairs

We propose a new strategy which aims at maximizing the population coverage of co-occuring SNPs.
Population cover for epistasis test prioritization was first proposed by [18]. This approach selects
multiple exclusive groups of SNPs (POCOs) that covers the case cohort. That is, the union of the
samples with the SNPs in a POCO should be equal to the case cohort. Epistasis tests are performed
across POCOs and the idea is that the independent coverage of the cases across POCOs will result
in detecting complementary SNPs. We take a different approach in terms of covering the population.
We would like the SNP pairs to be tested to co-cover the population. This is intuitive; the diverse
selection step finds complementing regions and avoids LD, but for a SNP pair to be epistatic they
also need to be observed together in cases. More formally, let p(vx, vy) be a function that scores the
SNP pair vx, vy ∈ V ′ for testing. Given three SNPs vx, vy and vz ∈ V ′, p(vx, vy) > p(vx, vz) if and
only if vx is observed more frequently with vy in cases as compared to vz. p is formally defined as
follows:

p(vx, vy) =
∑

s∈S;f(s)=1

1(h(s,vx) 6=0∧h(s,vy) 6=0) (3)

Potpourri computes the pairwise population co-covering of all SNP pairs (SNPi, SNPj) such that
SNPi ∈ Rx, SNPj ∈ Ry, ∀Rx, Ry ∈ R, x 6= y and i 6= j. Testing is then performed in the descending
population co-cover order. The algorithm is restricted to test top v pairs among all region pairs in R.

2.3.3 Promoting SNPs in Regulatory and Coding Regions

SNPs can alter gene expression and the downstream function depending on their genomic location.
Those that fall on to regulatory regions can affect mRNA levels and those that fall onto coding
regions can alter the structure and function of the the protein. Since such SNPs are likely to alter
the function and more likely to be related to the phenotype, we conjecture that we can find more
statistically significant and biologically meaningful SNP pairs via promoting mutations in regulatory
and coding regions. While this might introduce a literature bias, for a life scientist who would like
to narrow down the search space using functional regions this might be plausible and investigate the
usefulness of this approach. However, one should not totally disregard the unannotated parts of the
genome as most of the variation exists in such regions. Thus, we seek a balance.

We employ 3 techniques to promote regulatory/coding variants. In the first approach (Potpourri
RC1), we assign an artificial prize to SNPs in the diverse SNP selection phase of the algorithm as
described in the Selection of Diverse and Informative SNP Regions Section. This approach favors
the regions in R to be regulatory/coding regions. Then, the pairs are tested with respect to the
population co-cover ranking. The second approach (Potpourri RC2), uses ωi = 1, ∀vi ∈ V ′. That is,
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the SNP selection step does not promote selection of coding/regulatory SNPs. Rather, it first gathers
SNP pairs such that at least one SNP falls into regulatory/coding regions and then rank these pairs
with respect to the population co-cover. After all such pairs are tested, the algorithm test remaining
pairs with respect to their population co-cover ranking. The final strategy (Potpourri RC3) employs
both RC1 and RC2 strategies at the same time.

We use three functional region types which are (i) distant-acting transcriptional enhancer regions,
(ii) promoter regions (1kb downstream and upstream of the transcription start sites - TSS) and (iii)
coding regions.

3 Results

3.1 Datasets

In order to benchmark Potpourri, we used three GWAS datasets obtained from Wellcome Trust Case
Control Consortium (WTCCC): (i) Type 2 diabetes (T2D), (ii) Hypertension (HT), and (iii) Bipolar
disorder (BD). We use the 1958 Birth (58C) cohort as control for all datasets [24]. As exercised in
several articles [25, 26], we took the following quality control and preprocessing steps using PLINK
tool [27]:

• Gender assignment check: The subjects, in which the chromosome X data conflicts with
the gender reported, were removed from the datasets.

• Removing individuals with high missing genotype data: We removed the individuals
with more than 10 percent missing genotype rate from the datasets.

• Removing rare SNPs: Once we excluded the individuals with poor quality, we removed SNPs
with less than 5 percent minor allele frequency.

• Removing SNPs with high missing genotype rate: We removed SNPs with more than 10
percent missing genotype rate from the datasets.

• Removing SNPs that fail Hardy-Weinberg Equilibrium (HWE) test: We removed
SNPs that fail to pass HWE with a nominal p-value threshold 1e−6.

After preprocessing the datasets, remaining number of SNPs, as well as number of cases and number
of controls used are given in Supplementary Table 1.

We used the following resources to obtain the regulatory and coding region information. We ob-
tained the distant-acting transcriptional enhancer dataset from VISTA Enhancer Browser [28]. VISTA
enhancer dataset contains 1912 human noncoding fragments with gene enhancer activity. Transcrip-
tion start sites (TSSs) and coding region coordinates were obtained from UCSC Genome Browser [29].
We chose Ensembl Genes as gene annotation track [30] and the March 2006 NCBI36/hg18 assembly
of the human genome which matches the WTCCC datasets. The number and types of genes obtained
from the Ensembl dataset are given in Supplementary Table 2. We defined 1 Kb downstream and
upstream of the TSSs as a regulatory region. The coding region for a gene begins from the first base
of the first exon and continues to the last base of the last exon.

Potpourri operates on a SNP-SNP interaction network. In this study, we used the genomic se-
quence (GS) network as defined in [31]. In this network, SNPs are connected if they are adjacent on
the genome. This was the network of choice as it shown to provide the best regression performance
in [21].
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3.2 Experimental Setup

For Potpourri, the parameters were selected using a nested 10-fold cross validation. First, the distance
parameter D was selected via a line search in among 7 values (log-scale) between 1 and Dmax (a value
for which the distance penalty for all SNPs in the selected set is 0). D value that maximizes the
L2-regularized logistic regression performance was picked. Then, 16 β values between 10−4 and a
maximum β = 2kDmax were tried. Again, the β value that maximizes the classification performance
was picked. We experimented with the following k values: 500, 750, 1000, 1500, and 2000. Overall,
best results were obtained when k = 750 and it was set as the default parameter setting. Then, we
added m = 9 upstream and m = 9 downstream neighbors SNPs of the for further coverage analysis.
Unless otherwise stated, we set the wi = 1, ∀vi ∈ V ′. Once the regulatory and coding regions were
considered by the diverse SNP selection part, wi > 1, ∀i ∈ RC where RC contains SNPs that fall
into regulatory and coding regions. We experimented with the three ω values: 1 + 10−0.5, 1 + 10−0.25,
and 2.

Unless otherwise stated, we used the suggested settings for LINDEN as described by [20]. That is,
we set the parameter d to 0.45, which determines the fraction of ambiguous samples; and parameter
b to 10, which determines the extent of LD. We run LINDEN by setting the maximum number of
threads to 20 in parallel setting. The input data for LINDEN was also preprocessed as described in
the Datasets Section.

When guiding LINDEN with our approach, we used default parameters for LINDEN. The only
exception was that, we limited the extent of LD in the first two iterations of the merging procedure of
LINDEN as explained in the Guiding LINDEN for Ranking SNP Pairs Section. That is, LINDEN’s
merging step could merge SNPs form trees only within selected regions that contain of 2m + 1
SNPs (m = 9 in our experiments). We used the above-mentioned parameter selection techniques for
Potpourri. For the population co-cover, we performed epistasis test for the top v = 10 SNP pairs
among regions in R.

To quantify the performance of the proposed algorithms, we used precision as the evaluation
metric in which true positives (TP) refer to the reciprocally significant epistatic pairs that pass the
Bonferroni-adjusted statistical significance threshold. False positives (FP) refer to failed tests: the
reciprocally significant epistatic pairs that fail to pass the aforementioned threshold. We use the
definition of reciprocally significant epistatic pair from [20]. As the authors argue, most epistatic
pairs are dominated by some hub SNPs and this leads to detection of redundant pairs. On the
other hand, SNPs in a reciprocal pair are the most epistatic partner for each other. We also use
this definition to measure the performance of our algorithm. We set the significance level as 10%
throughout experiments and adjust the significance level using the Bonferroni correction based on the
number of test performed by each approach. Epistasis testing is performed via a chi-squared test on
a 9x2 contingency table of all genotype combinations between cases and controls for a selected SNP
pair (df = 8) as also done by [20]. All tests are performed on Intel(R) Xeon(R) CPU E5-2650 v3 with
two 2.30GHz processors. 251 GB RAM is used in the parallel setting.

3.3 Guiding LINDEN with Diverse and Informative Regions Improves Precision

We quantified the improvement in precision when LINDEN is guided by Potpourri-selected regions.
First, we ran LINDEN on all datasets and it detected 1786, 885, and 1022 reciprocally significant
epistatic pairs for T2D, BD, and HT datasets, respectively. Only 5, 35, and 2 pairs were statistically
significant at the 10% level after Bonferroni correction, respectively. These numbers correspond to
precision values of 0.003, 0.04, and 0.002, respectively. These results set our baseline. Then, we ran
Potpourri on these datasets with top k SNPs, where k = 500, 750, 1000, 1500 and 2000. We obtained
5 R sets. We then guide LINDEN with these regions and ran it as explained in the Guiding LINDEN
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Fig. 1: On the T2D dataset, this figure compares the p-values of the selected SNP pairs by the
following methods: (i) LINDEN, (ii) Potpourri guided LINDEN, (iii) Potpourri; and then
also the variants of Potpourri which further promotes SNP pairs in regulatory and coding
regions: (iv) Potpourri RC1, (v) Potpourri RC2, and finally (vi) Potpourri RC3. We show
the significance levels (y-axis) of each reported pair (dots) given the Bonferroni-corrected
significance threshold (0.1, green dashed lines). X – axis is just randomly assigned values to
pairs for better visualization. Potpourri is run with k = 750 for all 5 related subplots. For
RC1 and RC3 strategies ω is set to 1.31623, for Potpourri and RC2, it is set to 1. LINDEN is
run with default parameters. For Potpourri guided LINDEN, tree formation is restricted to be
done on distinct regions in Potpourri-selected regions R as descried in the Guiding LINDEN
for Ranking SNP Pairs Section.

for Ranking SNP Pairs Section.
Complete results are shown in Table 1, Supplementary Table 3, and Supplementary Table 4 for

T2D, BD and HT datasets, respectively. The guidance of Potpourri improves the precision substan-
tially, from 0.003 to 0.302 when k = 750 in the T2D dataset (up to .421 when k = 500). This is
achieved by drastically reducing the number of false positives, and also increasing the number of true
positives. Our pipeline outperforms LINDEN for all k values on all datasets, but we observe that the
ideal k values are 500, 750 and 1000. Similar precision increases are also observed for BD and HT
datasets.

The significance levels of each performed epistasis test by LINDEN and Potpourri-guided LINDEN
are shown in Figure 1, Supplementary Figure 1, and Supplementary Figure 2 for the T2D, BD and
HT datasets, respectively. The green lines denote the significance level (0.1) to be passed for each
approach (k = 750) after Bonferroni correction. Each point represents a SNP pair and the ones below
threshold are false positives and the ones above are true positives (reciprocally significant epistatic
SNP pairs). It is clear that the pipeline drastically reduces the number of false positives while
increasing the number true positives. Also, we can observe the importance of the number of tests
performed by looking at the difference between Bonferroni corrected significance thresholds. Since
Potpourri provides a pruned search space for LINDEN by eliminating SNPs that are most likely
irrelevant to the trait, it also reduces number of tests that will be performed during epistasis test.
Indirectly, it eliminates the negative effect of multiple hypothesis testing which reduces the statistical
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power. As seen in the figures, due to low Bonferroni threshold, the pipeline is able to discover more
true positives compared to LINDEN. We also show that our pipeline not only minimizes the number
of false positives but is also able to maintain the significance level of the returned pairs. While
LINDEN’s top SNP pair is more significant, guided LINDEN’s top SNP pairs still stand out in terms
of their p-values.

Tab. 1: Results for T2D dataset that compares LINDEN, Potpourri-guided LINDEN and Potpourri
(with population co-cover). Number of pairs reported is the total number of reciprocally
significant pairs returned by each method for varying number of selected SNPs. The number
in parentheses denotes the significant pairs passing significance threshold (0.1) after Bonferroni
correction based on the number of tests performed by each method. Bold denotes the best
result for a given k value. The table shows that the guidance of Potpourri substantially
improves the precision of LINDEN. For all considered k values, Potpourri provides the best
precision values.

Method # Tested Loci
# Reported
(Rec. Sig.)

Precision

LINDEN 378016 1786 (5) 0.003

Potpourri
guided

LINDEN

k = 500 9250 19 (8) 0.421
k = 750 14146 43 (13) 0.302
k = 1000 18943 55 (21) 0.382
k = 1500 28014 79 (18) 0.228
k = 2000 37927 95 (11) 0.116

Potpourri

k = 500 9250 12 (8) 0.667
k = 750 14145 23 (15) 0.652
k = 1000 18943 31 (20) 0.645
k = 1500 28014 50 (21) 0.420
k = 2000 37927 74 (18) 0.243

In short, by just providing a guidance to LINDEN using Potpourri’s diverse and informative SNP
region selection, we were able to improve the performance of the state-of-the-art with substantially
smaller number of tests performed. Next, we provide the results of the complete Potpourri pipeline
which uses population co-cover strategy for prioritization, instead of LINDEN’s tree based strategy.

3.4 Comparison of Potpourri with the State-of-the-art

In this section, we evaluate the performance of the Potpourri pipeline with population co-covering
technique for prioritizing the tests. Again, we compare the performance with the LINDEN algorithm.
Table 1 shows the results of the algorithm for different k values on the T2D dataset. We observe that
population co-cover ranking strategy results in even further performance improvements. The precision
is moved up to 0.652, as 15 out of 23 reciprocally significant pairs passes the Bonferonni-corrected
threshold (k = 750). See Supplementary Tables 3 and 4 for the results on BD and HT datasets,
respectively, which follow the same pattern.

LINDEN performs 7,629,272,394 tests (378,016 tests for leaves) as opposed to 14,146 tests per-
formed by Potpourri. This sets a much conservative significance threshold. One could argue that
the precision gain is only due to the reduced significance threshold. However, Figure 1 shows that
it is not the case. Third panel shows the significance levels of Potpourri-selected SNP pairs on the
T2D dataset. We see that 6 out of 15 Potpourri-selected reciprocally significant pairs are significant
even when the Bonferonni-corrected threshold of LINDEN is considered (dashed green line on the
left-most panel which is far more conservative). Note that LINDEN only detects 5 reciprocally signif-
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icant pairs. We also observe that the number of false positives are even further decreased compared
to Potpourri-guided LINDEN. See Supplementary Figures 1 and 2 for the results on BD and HT
datasets, respectively, which again show a similar pattern.

We also checked if adjusting LINDEN’s parameters to make it more conservative would improve
the precision. Increasing d to .9 and to .99 enforced it to perform a smaller number of tests but still
too many to get close to Potpourri’s efficiency, as shown in Supplementary Table 5.

3.5 Promoting Regulatory and Coding Regions Improves Precision

In this section, we investigate the advantage of promoting coding and regulatory regions in the
Potpourri pipeline. For the T2D dataset, Table 2 compares the performance of original Potpourri
pipeline with the three variants (RC1, RC2 and RC3) that promote selection of SNPs from coding
and regulatory regions. Results show that in the suggested setting (k = 750) RC1 technique can
increase the precision up to 0.8 and the original Potpourri pipeline cannot achieve a better result in
any of the k values. Last 3 panels in Figure 1 show the significance levels of tested pairs. For the RC1
technique, we see that while we keep the most significant pairs detected by the original pipeline, we
also discover new significant pairs (i.e., p < 10−15). Moreover, the 2 out of 3 pairs that failed to pass
the significance threshold are borderline. 7 out of 15 reciprocally significant pairs are also significant
with respect to LINDEN’s stringent significance threshold while LINDEN was able to detect only
5 such pairs and Potpourri was able to detect 6. Supplementary Tables 10 and 13 provide similar
results for the BD and HT datasets, respectively. The margin of improvement is relatively low in
the HT dataset (up to ∼0.2). Supplementary Figures 1 and 2 compare the significance levels of the
detected pairs for the BD and HT datasets, respectively.

We experimented with three ω values and picked the 1.31623 as the best performing and suggested
parameter. It is used to produce above-mentioned figures and tables. See Supplementary Tables 6
- 9, 11, 12 for all results obtained using other parameter choices. Finally, selected SNP pairs by all
Potpourri variant techniques with suggested settings (k = 750 and ω = 1 or 1.31623) are listed in
Supplementary Tables 14 - 25.

3.6 Novel Epistatic Pairs

One interesting pair discovered by Potpourri is the rs12548378 - rs10787472 pair that is detected for
T2D. The former falls into TCF7L2 gene and the latter falls into long intergenic non-coding RNA
LINC01111. On one hand, TCF7L2 is a well known type 2 diabetes susceptibility gene, which affects
the blood glucose balance by regulating of proglucagon gene expression over the WNT signaling
pathway [32]. Its other epistatic interactions were also reported in the literature [33]. On the other
hand, LINC0111 was shown to be related to urine creatinine level in UK Biobank samples (genome-
wide significant, p = 5.28E − 09) [34]. Elevelated levels of urine albumin-to-creatinine ratio (UACR)
is a biomarker for diabetic nephropathy (DN.) DN occurs as a result of the damage to renal nerves
due to high glucose levels in blood [35]. While, T2D causes nephropathy over nerve damage, it has
also been long debated that two might have overlapping genetic architectures. At least four T2D
loci are associated with kidney function in American Indians, and two are related to kidney disease
partially independently of T2D [36]. [37] reports that a variant in TCF7L2 causes renal dysfunction
but this affect is not independent of T2D in south Indian population. [38] reports that a variant
in TCF7L2 is significantly more frequent in patients with diabetic nephropathy compared to non-
diabetic nephropathy. Finally, an interaction between EGFR and RXRG genes was reported which
increases the risk of DN in a T2D cohort [39]. Thus, this new epistatic interaction further supports
the hypothesis of a shared genetic architecture between these two diseases and that T2D related loci
can also genetically increase risk for DN.
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Tab. 2: Comparison of the Potpourri pipeline with three strategies (RC1, RC2,and RC3) to promote
regulatory and coding regions on the T2D dataset. For RC1 and RC3 ω is set to 1.31623.
Number of pairs reported is the total number of reciprocally significant pairs. The number
in parentheses denotes the significant pairs passing significance threshold (0.1) after Bon-
ferroni correction based on the number of tests performed by each method. Results show
that promoting regulatory and coding regions improves Potpourri results substantially in all
strategies, RC1 performing the best. Bold denotes the best result for a given k value.

Method # Tested Loci
# Reported
(Rec. Sig.)

Precision

Potpourri
k = 500 9250 12 (8) 0.667
k = 750 14145 23 (15) 0.652
k = 1000 18943 31 (20) 0.645

Potpourri RC1
k = 500 9489 17 (13) 0.765
k = 750 13727 15 (12) 0.800
k = 1000 15500 21 (12) 0.571

Potpourri RC2
k = 500 9250 13 (7) 0.538
k = 750 14145 24 (14) 0.583
k = 1000 18943 33 (23) 0.697

Potpourri RC3
k = 500 9489 18 (11) 0.611
k = 750 13727 15 (11) 0.733
k = 1000 15500 20 (13) 0.650

In the HT data, we detect an epsitatic interaction between rs34585560 in MECOM gene and
rs8051877 in NPW gene. MECOM is a transcriptional regulator and is a well-known risk gene for
high blood pressure as detected in a large scale GWAS (200k samples) [40]. However, not much is
known about the mechanism over which MECOM affects blood pressure [41]. NPW is a G-coupled
protein activator which regulates neuroendocrine signals. While its ties to hypertension in humans
is loose, [42] and [43] demonstrate in rats that exogenously applied NPW increases mean arterial
pressure. Thus, this new epistatic pair finding can suggest NPW as a new risk gene candidate for
HT coupled with the effect of MECOM.

3.7 Runtime Comparison

In this section, we compare the runtime of each approach (LINDEN, Potpourri-guided LINDEN and
Potpourri) on the three datasets in terms of CPU time and clock-time. The results are provided in
Table 3, Supplementary Tables 26 and 27, for T2D, BD and HT datasets, respectively. While epistasis
test prioritization is an offline task and is not time critical, our results show that Potpourri decreases
the time requirement 4 folds (in the default setting, k = 750) while providing substantial improvements
in precision for all datasets. Additional time required by Potpourri to consider regulatory and coding
regions is negligible for all schemes.

4 Discussion

We compared Potpourri with the state-of-the-art, and have shown that in almost all settings epsitasis
detection power has been substantially improved with our technique. We also show that promoting
the testing of SNPs in regualtory and coding regions increases the precision and interpretability of
the results. This is actually one of the biggest challenges in epistasis test prioritization. It is just
a numbers game if one only considers the p-values and ignores the fact that SNPs in unannotated
regions might not lead to any biological insight. Interpreting the biological meaning is an important
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Tab. 3: Time performances of LINDEN, Potpourri-guided LINDEN and Potpourri on the T2D
dataset.

T2D

Method CPU Time (log10) Run Time (hh:mm:ss)

LINDEN 4.54 01:04:53

Potpourri
guided

LINDEN

k = 500 3.73 00:17:39
k = 750 3.67 00:16:50
k = 1000 3.79 00:24:40
k = 1500 3.85 00:28:18
k = 2000 3.88 00:30:20

Potpourri

k = 500 3.69 00:14:54
k = 750 3.77 00:19:16
k = 1000 3.75 00:20:47
k = 1500 3.84 00:22:45
k = 2000 3.89 00:22:30

issue to be reckoned with. One extreme is restricting the analysis to coding and regulatory regions
for interpretability (also to limit the number of tests) and performing gene/pathway/network level
analyses [13]. This approach totally discards variants in the non-coding regions. However, the top
pairs detected by Potpourri in all three datasets were in non-coding regions which could have been
missed this way. Thus, a balance is needed. In this study, we propose a trade off between analyzing
the exome and the genome. We show that out techniques to promote functional regions helps increase
the precision. We were also able to detect 2 novel interactions using the annotations provided which
suggest new risk candidates.

One drawback of our scheme is the large number of parameters to be optimized. Thus, we elected
to optimize β and D parameters with respect to the phenotype prediction performance and let k
and ω to be supplied by the user. We think this is a fair choice since the ultimate goal of epistasis
test prioritization is to provide the user with a managable number of candidates. The optimum k
value might yield a very large set of SNPs and stringent sigifiance threshold. Similarly, promotion
of regulatory/coding regions introduces a literature bias as dicussed earlier and it makes sense for a
user to be able to tune it themselves. Finally, our framework does not consider SNP effect sizes and
only rely on univariate correlations of SNPs with the phenotype. Incorporating this information can
further improve the performance, which is left as a future work.

5 Conclusion

Detecting epistatic interactions is a promising direction for understanding the genetic underpinnings
of complex traits, but the sheer number of possible hypotheses to test prohibits brute force techniques.
We proposed a new test prioritization technique and showed that selecting individually informative
and topologically diverse SNPs in terms of genomic location leads to detecting statistically significant
epistatic interactions. Our approach performs favorably compared to the state of the art.
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