bioRxiv preprint doi: https://doi.org/10.1101/2020.01.15.908517. The copyright holder for this preprint (which was not peer-reviewed) is the
author/funder. It is made available under a CC-BY-ND 4.0 International license.

Identifying Causal Variants by Fine Mapping Across Multiple
Studies

Nathan LaPierre’’*, Kodi Taraszka!", Helen Huang?, Rosemary He?,
Farhad Hormozdiari®, and Eleazar Eskin*?

! Department of Computer Science, University of California, Los Angeles, CA, 90095, United States
2 Department of Ecology and Evolutionary Biology, Los Angeles, CA, 90095, United States

3 Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, 90095, United States

4 Department of Human Genetics, University of California, Los Angeles, CA, 90095, United States
5 Department of Computational Medicine, University of California, Los Angeles, CA, 90095, United States

5 Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
t These authors contributed equally
* Email corresponding author at: nlapier2@cs.ucla.edu

Abstract

Increasingly large Genome-Wide Association Studies (GWAS) have yielded numerous variants as-
sociated with many complex traits, motivating the development of “fine mapping” methods to
identify which of the associated variants are causal. Additionally, GWAS of the same trait for dif-
ferent populations are increasingly available, raising the possibility of refining fine mapping results
further by leveraging different linkage disequilibrium (LD) structures across studies. Here, we in-
troduce multiple study causal variants identification in associated regions (MsCAVIAR), a method
that extends the popular CAVIAR fine mapping framework to a multiple study setting using a
random effects model. MsCAVIAR only requires summary statistics and LD as input, accounts for
uncertainty in association statistics using a multivariate normal model, allows for multiple causal
variants at a locus, and explicitly models the possibility of different SNP effect sizes in different
populations. In a trans-ethnic, trans-biobank Type 2 Diabetes analysis, we show that MsCAVIAR
returns causal set sizes that are over 20% smaller than those given by current state of the art
methods for trans-ethnic fine-mapping.
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Introduction

Genome-Wide Association Studies (GWAS) have successfully identified numerous genetic variants
associated with a variety of complex traits in humans [1-3]. However, most of these associated
variants are not causal, and are simply in Linkage Disequilibrium (LD) with the true causal variants.
Identifying these causal variants is a crucial step towards understanding the genetic architecture
of complex traits, but testing all associated variants at each locus using functional studies is cost-
prohibitive. This problem is addressed by statistical “fine mapping” methods, which attempt to
prioritize a small subset of variants for further testing while accounting for LD structure [4].

The classic approach to fine mapping involves simply selecting a given number of SNPs with the
strongest association statistics for follow-up, but this performs sub-optimally because it does not
account for LD structure [5]. Bayesian methods that did account for LD structure were developed
[6, 7], but were based upon the simplifying assumption that each locus only harbors a single causal
variant, which is not true in many cases [8]. Additionally, many early methods required individual-
level genetic data, whereas many human GWAS often provide only summary statistics due to
privacy concerns. CAVIAR [8] introduced a Bayesian approach that relied only on summary statis-
tics and LD, accounted for uncertainty in association statistics using a multivariate normal (MVN)
distribution, and allowed for the possibility of multiple causal SNPs at a locus. This approach was
widely adopted and later made more efficient by CAVIARBF [9] and FINEMAP [10].

There is growing interest in improving fine-mapping by leveraging information from multiple
studies. One of the most important examples of this is trans-ethnic fine mapping, which can sig-
nificantly improve fine mapping power and resolution by leveraging the distinct LD structures in
each population, as seen in methods such as trans-ethnic PAINTOR [11] and MR-MEGA [12].
Intuitively, the set of SNPs that are tightly correlated with the causal SNP(s) will be different in
different populations, allowing more SNPs to be filtered out as potential candidates. However, the
varying LD patterns also present a unique challenge in the multiple study setting that trans-ethnic
fine mapping methods must handle. Additionally, while there is evidence that the same SNPs drive
association signals across populations, there is also heterogeneity in their effect sizes, presenting
another challenge [13]. Existing methods either assume a single causal SNP at each locus [12, 14]
or do not explicitly model heterogeneity [11], limiting their power [15].

In this paper, we present MsCAVIAR, a novel method that addresses these challenges. We re-
tain the Bayesian MVN framework of CAVIAR while introducing a novel approach to explicitly
account for the heterogeneity of effect sizes between studies using a Random-Effects (RE) model.
Our method requires only summary statistics and LD matrices as input, allows for multiple causal
variants at a locus, and models uncertainty in association statistics and between-study heterogene-
ity. The output is a set of SNPs that, with a user-set confidence threshold (e.g. 95%), contains all
causal SNPs at the locus.

We show in simulation studies that MSCAVIAR outperforms existing trans-ethnic fine mapping
methods [11] and extensions of methods such as CAVIAR [8] to the multiple study setting. In a
trans-ethnic, trans-biobank analysis of Type 2 Diabetes, we demonstrate that MSCAVIAR signif-
icantly improves the resolution of fine mapping compared to trans-ethnic PAINTOR or running
CAVIAR on either population individually. MsCAVIAR is freely available at
https://github.com/nlapier2/MsCAVIAR.
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Fig. 1. Overview of MsCAVIAR. MsCAVIAR takes as input the Z-scores and LD matrices for SNPs at a locus
in two or more studies (left). Based on this input, MsCAVIAR leverages the different LD structures and models SNP
effect heterogeneity to produce a refined “causal set” of SNPs (shown as red stars above) for follow-up functional
validation studies. This set is often smaller than the set of SNPs that are significant in meta-analysis results (right).

Results

MsCAVIAR overview

Our method, MsCAVIAR, takes as input the association statistics (e.g. Z-scores) for SNPs at the
same locus in multiple studies and the linkage disequilibrium (LD) structure between variants ob-
tained from in-sample genotyped data. MsCAVIAR computes and outputs a minimal-sized “causal
set” of SNPs that, with probability at least p, contains all causal SNPs. This process is visualized
in Figure 1.

By our definition of a causal set, every causal SNP must be contained in the set with high
probability, but not every SNP in the set need to be causal. Concretely, each SNP can be assigned
a binary causal status: 1 for causal or 0 for non-causal. So long as none of the SNPs outside of the
causal set are set to 1, the assignments are compatible with our definition of a causal set. We can
represent these causal status assignments in a binary vector with one entry for each SNP denoting
its causal status; we call such a vector a “configuration” and denote it as C. For each configuration
C compatible with the causal set, we compute its (posterior) probability in a Bayesian manner: the
probability of a configuration of SNPs being causal given the association statistics can be computed
by modeling a prior probability for that configuration and a likelihood function for the association
statistics given the assumed causal SNPs given by C' (see Methods for details).

The overall likelihood function can be decomposed into a product over the likelihood function
for each study, since we assume that the studies are independent. More specifically, we assume
that there is a true global effect size for a SNP over all possible populations, around which the
effect sizes for that SNP in different studies are independently drawn according to a heterogeneity
variance parameter (Methods). This allows MsCAVIAR to model the fact that effect sizes of a SNP
across different studies are related, but not equal. Because we expect the summary statistics to be a
function of their LD with the causal SNPs, the parameters of the likelihood function for each study
are different, assuming the studies have different LD patterns. By computing the product over the
likelihood of each study, we are able to account for their different LD patterns in determining the
likelihood over all the studies.

The posterior probability for a causal set is then computed by summing the posterior probabili-
ties of all compatible configurations, and then dividing by the sum of the posterior probabilities for
all possible configurations. We start by assessing causal sets containing only one SNP, and continue
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increasing the size of the causal sets analyzed until one of them exceeds the posterior probability
threshold p. In practice, p is set to a high value such as 95%.

MsCAVIAR improves fine mapping resolution in a simulation study
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Fig. 2. Comparison of accuracy and set size using simulated data. We simulated a trans-ethnic GWAS by
using LD matrices generated from European and East Asian populations in the 1000 Genomes project. One relatively
low LD region and one relatively high LD region were chosen (far left). Using these LD matrices, we implanted either
1, 2, or 3 causal SNPs and simulated their effect sizes. For each number of causal SNPs, we performed 1000 simulations
(e.g. re-picking the causal SNPs and re-drawing the causal SNP effect sizes). In this figure, we report the average
accuracy and standard deviation for each method in the bar graph (middle) and the set size in the box-plot (right).
All methods were run with posterior probability threshold p* = 0.95, so methods with 95% or higher accuracy were
considered “well-calibrated” (dashed line in the bar plots).

In order to evaluate the performance of MsCAVIAR as compared with other methods, we
performed a simulation study. In order to select realistic loci for fine-mapping, we identified regions
in a trans-ethnic GWAS of rheumatoid arthritis [16] that contained peak SNPs with p-values of less
than 0.0001 and contained ten or more SNPs in a 100kbp region centered around that peak. For
each such locus, we used the 1000 Genomes project [17] to generate LD matrices for the SNPs at
that locus for both European and East Asian populations. Out of these loci, we selected one region
with relatively low LD, where 20% of the SNPs have LD equal to or higher than 0.5, and one region
with relatively high LD, where 80% of the SNPs have LD equal to or higher than 0.5 (Figure 2, LD
matrices). These represent easier and more difficult scenarios, respectively, for fine mapping, since
LD makes signals more difficult to distinguish. We pruned groups of SNPs that were in perfect LD
in one or more of the populations, leaving one SNP for each. If a group of SNPs were in perfect LD
in one population, but not the other, we retained the SNP with the highest Z-score in the other
population in order to retain the most signal.

Using these LD matrices, we implanted causal SNPs and simulated their effect sizes. In each
simulation, we implanted either 1, 2, or 3 causal SNPs. Each casual SNP’s true non-centrality
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parameter A was drawn according to N(5.2,0.1252). We then drew the non-centrality parameter
for each study ¢ according to A; ~ N(A,0.5), and subsequently the summary statistics according
to S; ~ N(A; X, %;). For each number of causal SNPs, we performed 1000 replicate simulations
(e.g. re-drawing the causal SNP effect sizes and re-picking the causal SNPs).

Using this data, we compared MsCAVIAR to the trans-ethnic mode of PAINTOR [11] and to
CAVIAR [8] run on East Asians and Europeans, individually (Figure 2). All methods were run with
posterior probability threshold p* = 0.95, so methods with 95% or higher accuracy were considered
“well-calibrated” (dashed line in the bar plots). MsSCAVIAR'’s heterogeneity parameter was set to
72 = 0.5 (Methods); different settings for 72 gave similar results. All methods were well-calibrated
in both LD settings (Figure 2, bar plots). This is unsurprising since CAVIAR is well-known to be
calibrated in the single study setting [8-10], as is PAINTOR in the trans-ethnic setting [11].

However, when considering the subset of simulations in which each method was able to correctly
capture all causal variants (i.e. 100% accuracy), we observed that MSCAVIAR consistently returns
the smallest average set size (Figure 2, box plots). MsCAVIAR and PAINTOR return smaller set
sizes than CAVIAR run on either population across all settings, highlighting the value of using
varying LD patterns in different populations to refine fine-mapping results. MsCAVIAR returned
smaller set sizes than PAINTOR with multiple causal variants or high LD. This may be due to
MsCAVTIAR’s explicit modeling of heterogeneity between studies. In both the high LD and multiple
causal variants setting, complex and strong correlations between non-causal and causal SNPs are
induced, and modeling heterogeneity between studies allows for more effective use of the differing
LD structures to disentagle non-causal from causal SNPs.

MsCAVIAR is well-calibrated with different population sizes between studies

It is possible that input studies can have different sample sizes, in which case the effect sizes of
their SNPs is expected to be different proportionally to sample size, in addition to heterogeneity.
We tested whether MsCAVIAR would still be well-calibrated in this setting, and compared it again
with trans-ethnic PAINTOR and with CAVIAR run on the individual populations (Figure 3).

In order to evaluate performance under this scenario in a simulation study, we used the same LD
matrices from the previous section, but now varied the population size for one of the studies. We
fixed the population size of the Asian study at 10,000 individuals, and varied the European study to
have population sizes of 1, 2, 5, or 10 times that of the Asian study. Consequently, the effect sizes of
causal SNPs in the European study were larger than those of the corresponding SNPs in the Asian
study by a factor of v/1, v/2, v/5, and v/10 (Methods). For the sake of sufficient statistical power, we
ensured that the causal variants in the smaller study were still statistically significant genome-wide.
1000 simulation replicates were run for each LD setting. In each simulation, we implanted three
causal SNPs and simulated their effect sizes, with the association statistics of non-causal SNPs
being based on their correlation with causal SNPs (Methods). All methods were run with posterior
probability threshold p* = 0.95, so methods with 95% or higher accuracy were considered “well-
calibrated” (dashed line in the bar plots). MSCAVIAR was run with its heterogeneity parameter
set at 72 = 0.5 (Methods).

Once again, MsCAVIAR was well-calibrated and generally returned the smallest causal set sizes.
As the sample size difference grew, the difference between MsCAVIAR, CAVIAR on Europeans,
and PAINTOR tended to diminish. This is likely due to the fact that we required SNPs to be
genome-wide significant in the smaller study, such that the larger study had very large effect sizes
for causal SNPs when there was a significant sample size imbalance, making the fine mapping
problem easier. Reinforcing this interpretation is the fact that CAVIAR on Asians had consistently
much larger causal set sizes than the other methods when the sample size imbalance was large.
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Fig. 3. Comparison of accuracy and set size using simulated studies with unequal sample sizes. We
simulated a trans-ethnic GWAS by using LD matrices generated from European and East Asian populations in the
1000 Genomes project. Using these LD matrices, we implanted 3 causal SNPs and simulated their effect sizes. In each
set of simulations, we fix the population size of the Asian study at 10,000 individuals, and vary the European study
to have population sizes of 1, 2, 5, or 10 times that of the Asian study. In this figure, we report the average accuracy
and standard deviation for each method in the bar graph (left) and the set size in the box-plot (right).

All methods were well-calibrated in the low LD setting, but we observed that as the sample
size increases with high LD that CAVIAR’s calibration on the larger population decreases. This
is likely due to the extremity of the situation, with exceptionally large effect sizes in combination
with the high LD setting.

MsCAVIAR improves fine mapping resolution in trans-ethnic Type 2 Diabetes
analysis

In order to evaluate the performance of MsCAVIAR on real data, we performed a trans-ethnic,
trans-biobank fine mapping analysis of Type 2 Diabetes (T2D) using summary statistics from the
UK Biobank (UKB) [18] and Biobank Japan (BBJ) [19] projects. These studies involved 361,194 and
191,764 people, respectively. Only White Europeans from the UK Biobank were used. To generate
loci for fine mapping, we centered 100kbp windows around genome wide-significant peak SNPs (p-
value < 5 % 1078), discarding all SNPs with p-values above 0.0001, as they were highly unlikely to
be informative. We applied several other filters to identify loci where trans-ethnic fine mapping was
worthwhile. If a SNP was genome wide-significant in one ethnic GWAS but had a p-value above
0.0001 in the other ethnicity, we did not allow this to be a peak SNP, as information from the other
ethnicity would be unlikely to help improve resolution in this case. In these instances, fine mapping
within one population would be sufficient. We also excluded all loci with fewer than ten SNPs with
p-values below 0.0001 in each study, as fine mapping is not as useful when there are few strongly
associated SNPs. We excluded loci from chromosome six, where there were numerous statistically
significant SNP effect sizes due to the presence of human leukocyte antigen (HLA) regions.
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Fig. 4. MsCAVIAR improves fine mapping resolution in trans-ethnic Type 2 Diabetes analysis. We
compare the results of MsCAVIAR when applied to two Type 2 Diabetes (T2D) GWAS, White European people
from the UK Biobank [18] and Japanese people from the Japan Biobank [19], versus trans-ethnic PAINTOR [11] and
applying CAVIAR [8] to each population individually. The T2D data sets have five independent loci with at least
one significant variant. The Y-axis is the size of the causal set for each locus. Each dot indicates the causal set for
one locus. The violins represent the range of causal set sizes identified by each tool, and the width corresponds to the
frequency of that causal set size for that tool.

After these filters, five loci remained to be analyzed by trans-ethnic fine mapping. Linkage
disequilibrium (LD) matrices were generated from the 1000 Genomes project [17], with “European”
and “East Asian” as the population names, using the “CalcLD_1KG_VCF.py” script from the
PAINTOR [20] GitHub repository. As a final step, we pruned groups of SNPs that were perfectly
correlated with each other in both studies (arbitrarily picking one SNP in the group to retain), as
they provided identical information and would cause the LD matrix to be low-rank. The resulting
five loci had 9, 10, 10, 42, and 42 SNPs.

We ran CAVIAR (8], the trans-ethnic mode of PAINTOR [11], and MsCAVIAR on these loci,
and evaluated their causal set sizes, since these methods have been shown to be well-calibrated and
no ground truth is available (Figure 4). For MsCAVIAR, we set the heterogeneity parameter 72
(Methods) to 0.5. For CAVIAR, we evaluated its performence when applying it to only the Asian
(BBJ) data or to only the European (UKB) data. For all methods, we set the posterior probability
threshold px to 80% and set the maximum number of causal SNPs to 3.

Whereas the original five loci contained a combined 113 SNPs, MsCAVIAR yielded causal set
sizes of 3, 4, 4, 5, and 6, for a total of 22 SNPs (80.53% reduction). CAVIAR on BBJ returned 23
SNPs, CAVIAR on UKB returned 35 SNPs, and Trans-ethnic PAINTOR returned 28 SNPs. Thus,
MsCAVIAR yielded a reduction in combined set size of 4.34%, 37.14%, and 21.34%, respectively,
compared to those alternative approaches. The Wilcoxon signed-rank test p-values for the alternate
hypothesis that MsCAVIAR'’s returned causal set sizes were smaller than those given by CAVIAR
on BBJ, CAVIAR on UKB, and trans-ethnic PAINTOR were 0.159, 0.019, and 0.031, respectively.
All methods ran in less than two minutes for all loci combined, with CAVIAR running the fastest,
followed by MsCAVIAR, followed by trans-ethnic PAINTOR.

Based on these findings, the BBJ data seems to have an LD structure that is more favorable
to fine mapping for these particular loci for T2D, since CAVIAR on BBJ refined loci much more
than CAVIAR on UKB. However, MsCAVIAR was able to leverage both studies to achieve the best
resolution. It is interesting that trans-ethnic PAINTOR refined loci less than CAVIAR on BBJ.
This may be due to a lack of explicit modeling of heterogeneity and differing sample sizes between
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the studies in PAINTOR’s model. Overall, the finding that MsCAVIAR improves fine mapping
resolution versus these other approaches is consistent with the findings in our simulation study.

Discussion

In this work, we introduced MsCAVIAR, a method for identifying causal variants in associated
regions while leveraging information from multiple studies. Our approach requires only summary
statistics as opposed to genotype data and handles heterogeneity of effect sizes, differing sample
sizes, and different LD structures between studies, making trans-ethnic fine mapping an ideal ap-
plication. We demonstrated that our method is well-calibrated in simulation studies and improves
fine-mapping resolution in both simulated and real data. MsCAVIAR is available as free and open
source software (https://github.com/nlapier2/MsCAVIAR).

We make several important assumptions in this model, which may not always be true. While
it has been shown that many causal SNPs are shared across populations [13], this may not always
be the case. Ideally, this would be obvious from the summary statistics because the population in
which the SNP is causal should have much more association signal, in which case one should just
apply CAVIAR or a similar single-study method to that study. We also assume that all studies
are drawn with equal heterogeneity 72. This is unlikely to be true if multiple studies are from a
single population while another study is from a different population. Since the primary benefit of
MsCAVTIAR is its utilization of varying LD structures, it is unlikely that multiple studies from the
same population will confer much benefit. Therefore, we recommend using only one study from
each population. However, it is still possible that even ostensibly different populations may be
more similar to each other at certain loci than other populations. Therefore, we plan to extend our
method to handle this case in future work.

Methods

Fine mapping in a single study

We now describe a standard approach for fine mapping significant variants from a genome-wide
association study (GWAS). In the GWAS, let there be n individuals, all of whom have been geno-
typed at m variants. For each individual j, we measure a quantitative trait y;, resulting in the
n X 1 column vector Y of phenotypic values. We denote G as the n x m matrix of the genotypes
where g;; € {0,1,2} is the minor allele count for the jth individual at variant i. We standard-

ize G according to the population proportion p of the minor allele and denote this as X where
T € { —2p 1-2p 2—2p }
J V2p(1-p)” \/2p(1-p)” \/2p(1—p)
We assume Fisher’s polygenic model, which means Y is normally distributed and each variant

x; has a linear effect on Y. We, therefore, have the following model:

m
Y =pl+> Bmi+e (1)

i=1
where (; is the effect size variant x; and e is variation in Y not explained by additive genetic
effects. e is an n x 1 vector and follows the Gaussian distribution e ~ N(0,0.I) where each
individual’s residual is independently and identically distributed. From this linear model, we define
N = %, the standardized effect size of the ith variant, which is also referred to as the “non-
centralitgf parameter” (NCP). Let A = [A;...\y] be an m x 1 column vector of non-centrality

parameters. Furthermore, we define the the summary statistic s; for each effect size (;, where
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S; = &T‘/F, where s; = ”BZT‘/!TZ ~ N(&T‘/F,l) Let S be an m x 1 vector of summary statistics
measured for each variant. As previously shown [8,21], S follows a multivariate normal (MVN)
distribution, S|A ~ N (A, X) where X is the pairwise correlation structure between variants (LD).
The expected value of each statistic s; is a function of its correlation to a causal variant.

While the values of A are a function of a variant’s relationship to a causal variant, the vector
itself does not indicate the variant’s causal status; therefore, we introduce an m x 1 binary vector
C = {0,1}™ for indicating whether a variant truly does have a non-zero effect size. We will now

define A where each index A\¢, is as follows:

0, ifei=0
)\ = ) T 2
< {)\i, if e =1 @

This means that if C = [1...1], Ac = A because all variants would be causal. The distribution
of A¢ can be defined as:

Ac|C ~ N(0, X¢) (3)
where
0, ifi#]j.
Yo = {0, ifiis causal. (4)

€, if 7 is not causal.

and where € is a small constant to ensure that the matrix X¢ is full rank. Here, and below, we
use the shorthand o to represent the variance of the A¢, (see the subsection “Extending MsCAVIAR
to different sample sizes” for details on this parameter). The off-diagonals of X are zero because
the effect sizes of causal variants are independent of one another.

We will now more formally define A as A = XA, which is to say the non-zero values in A
are either due to the variant being truly causal or the variant’s correlation structure with the
causal variant(s). This and the fact that LD structure is symmetric X = X7 leads to the following
distribution for A|C:

(A|C) ~ N(0, XX X) ()

We will now define v as the probability of a variant being causal, which makes the causal
status for the ith variant a Bernoulli random variable with the following probability mass function:
flei;y) = 7% (1 — v)t=¢. We assume the causal status for each variant is independent of the other
variants, leading to the following prior for the our indicator vector: P(C) = H;n:l A (1 — y)t=e
Assuming that each variant has a probability v of having a causal effect, the prior can then be
written as follows:

P(4,C) = P(A|C)P(C) = f(4,0,Zc) [ [ (1 = 7)™ (6)
j=1

where f(A,0,X¢) is the probability density function shown in equation 5.

We determine which variants are causal by calculating the posterior probability of each con-
figuration C* € C, where C is the set of all possible configurations, given the set of summary
statistics:
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sy = e P(S[O)P(c) — Y oee [o, P(SIA,0)P(A = XA, c)dA, (7)

For us to calculate the posterior probability of C* given S, we need to integrate over all possible
values for the non-centrality parameters of the causal variants in A in order to get the values of A
that makes observing S most probable.

Given a set of KL SNPs, Cx, the posterior probability that this set of SNPs contains all the causal
SNPs can then be calculated as follows:

P(Ck|S)= > P(C*, Ac-
C*eCx

S)

The goal is then to find the minimum-sized set I* that has a posterior probability of at least
p*, called the “p* confidence set”:

P(Cx+|S) > p*

This is done by evaluating causal configuration vectors with only one non-zero element, and
then those with two non-zero elements, and so on until the end condition above is met.

Efficient computation of likelihood functions

The integral above is intractable. Fortunately, a closed-form solution is available due to the fact that,
when a conjugate prior is multivariate normally distributed, its posterior predictive distribution
is also multivariate normal. As shown above, S|A ~ N (4,X) and (A|C) ~ N(0,XXcX). The
posterior predictive form of S is then

S~ N0, X+ E5cX) (8)

However, computing the likelihood of S with this distribution is still computationally expensive.
Consider the multivariate normal probability density function, assuming the variable Z below is
MVN distributed with mean p and covariance matrix 2

1 1 T ol
NCoED] eap(=5(Z = p)" Z7HZ — p))

For S, the covariance matrix is X'+ X' XX which has dimension (M x M). Taking the determi-
nant or inverse of this covariance matrix, as required by the above likelihood function, would take
O(m3) time. Here, we demonstrate how to compute this likelihood efficiently, leveraging insights
from several studies that have explored this topic [9, 10, 22].

We need to compute ST (X + X XcX) 1S and | ¥+ X XX (note that our y is 0). We can factor
out X from both of the equations above:

f(Z;pu, X)

ST+ 2Xc2) 'S =STy "Y1+ 2c%)71s

’2+2202| = |ZHI+202|

Notably, ST X =1 and |¥| can be computed once and re-used for every causal configuration X¢.
Below, we assume Y is of full-rank; Lozano et. al [22] show how to address the low-rank case.
We use the Woodbury matrix identity [23], below, to speed up the matrix inversion equation:
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(A+UEV) ' =A"' A 'Uu(Et+vA Uy lva!

Here, we set A = Iyxm, E = Ipxk, and UV = Yo X In particular, U is the (mx k) matrix of rows
corresponding to causal SNPs in Y. We are taking advantage of the fact that rows corresponding
to non-causal SNPs are zeros and thus do not affect the matrix multiplication. Similarly, V is the
corresponding columns of X', and is (k x m). Applying the Woodbury matrix identity to our case,
we get:

(Imxm + X0 X) ™t = (Lnxm +UV) ™1
= = I UL+ VLU W (9)

mxXm mXxXm

mxm — UlTex + VU) 1V

Crucially, we are now inverting a (k x k) matrix instead of an (m x m) matrix, where k << m
since most SNPs are not causal [22]. We use Sylvester’s determinant identity [24] to speed up the
determinant computation as follows:

e + UV| = | I + VU]

Similarly, we are computing the determinant of a (k x k) matrix instead of an (m x m) matrix.
Using these speedups, the computation of the likelihood function of S is reduced from O(m3) to
O(K?) plus some O(mk?) matrix multiplication operations, which is tractable under the reasonable
assumption that each locus has at most k& = 3 causal SNPs.

Fine mapping across multiple studies

As GWAS continue to grow in size, frequency, and diversity, there is an increasing need for fine
mapping methods that leverage results from multiple studies of the same trait. A simple approach
is to assume that there is one true non-centrality parameter for every variant; therefore Ao is
identical across studies. This approach is referred to as a fixed effects model. In this case, the tth
study’s A¢, = Ac.

While there is evidence that many causal SNPs are shared across populations [13], the assump-
tion that the true causal non-centrality vector A¢ is the same across studies is unrealistic, especially
when the studies are measured in different ethnic groups [12, 14, 11].

We relax this assumption by utilizing a random effects model, in which each study ¢ is allowed
to have a different Ac;. Under this model, a causal SNP ¢ has an overall mean non-centrality
parameter, which we denote with the scalar A;, from which the non-centrality parameter for SNP
q in each study t, denoted by the scalar Ay, is drawn with heterogeneity (variance) 72. According
to the polygenic model, )\, is distributed as A\; ~ N(0,0); therefore, Ay is distributed as Ay ~
N ()\q,72). Consequently, the vector Ag, for this SNP across all studies will have the following
distribution:

Acy ~ N(0,0117 + 727) (10)

where T is the number of studies, 1 is a (T' x T') matrix of 1s, and [ is the (7" x T) identity
matrix. Intuitively, since the SNP ¢ was drawn with variance o, this variance component is shared
across studies, while the variance component 72 is study-specific and therefore it is only present
along the diagonal of the covariance matrix. If a variant is not causal, its true effect size should
be zero. We construct a matrix A of size (mT x mT'), where m is the number of SNPs and each
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row corresponds to the T-length vector Ac, corresponding to SNP ¢. In practice, we ensure that
this matrix is full-rank by drawing the non-causal SNPs according to Acq ~ N (0, €l), where € is a
small constant.

From this we will now build out the posterior probability of P(C*|S) similarly to equation 7.
Now instead of A; = Xy A¢ for study ¢, we have to account for A = Xy Ac, where A; is drawn from
a multivariate normal distribution. This means we have to integrate over the domain-space of A¢,

to as well as A¢ to describe P(C*|S;) = Zf(itg;)tfé?;gc)
€

fAcg P(St| 4, C") [y, P(A = XiAcy|Ace, C)P(Ac-, C*)dAcdAc; (11)
S oec PSTA) [y P(SiA0,0) [, PUAr = Srdley|Aes¢) P(Ac,c)dAcd A

P(C*|Sy) =

Efficient meta-analysis

Now that we have described the distribution of each SNP in our meta-analysis, we show how to
jointly analyze them. We begin by explicitly defining the structure of the covariance matrix between
studies by way of a small example with three SNPs at a locus in two different studies. Since the
covariance of a matrix is undefined, we denote vec(A¢) as the vectorized form of the original matrix
(Ac). Concretely:

A1
A
A11 A21 )\12
vec(Ag) = vec | | A12 A22 = )\;i’
A13 A23 Ao
| A23 |

Assume SNPs 1 and 3 are causal and SNP 2 is not causal. Then the vectorized form of the non-
centrality parameters given the causal statuses has the following multivariate normal distribution:

o] [o+72 0 o0 s 0 0 |

0 0 € 0 0 0 0

0 0 0 o+ 72 0 0 o
(vec(Ag)|vec(C)) ~ N ,

0 o 0 0 o+712 0 0

0 0O 0 0 0 € 0

ol | 0o 0 o 0 0 o472 ]

We call the covariance matrix above Y. Viewing Y as having a block structure, the blocks
along the diagonal represent SNPs from the same study, while off-diagonal blocks represent SNPs
from different studies. Here Y¢ is (3%2 x 3%2) = (6 x 6); in general, for m SNPs and n studies, X¢
will be (mn x mn). In other words, there will be an (n x n) grid of (m x m) blocks. Within each
block, the diagonal represents each SNP’s variance, while the off-diagonal represents covariation
between different SNPs. As SNPs are assumed to be independent, these are always 0. There are
two variance components: the global genetic variance o from which the global mean non-centrality
parameter for a SNP is drawn, and the heterogeneity between studies 72. When a SNP is causal,
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its variance (its covariance with itself in the same study) will contain both variance components
(12 4 o), while its covariance with the same SNP in a different study will be o, because they were
drawn from the same overall non-centrality parameter with variance o but were drawn separately
with variance 72.

The Y above, leaving aside € for now, can alternately be written in the more-compact form

100
24+ o
Yo = ® 1000
o 7'2+0
001

where ® represents the Kronecker product operator. This can be further condensed and gener-
alized into:

Yo = (7’2In + O‘lnlz) & diag(lcausal)m

where n is the number of studies, m is the number of SNPs, 1,17 is the (n x n) matrix of all 1s,
I,, is the (n x n) identity matrix, and diag(1eqyusai)m is an (m x m) diagonal matrix whose diagonal
entries are given by the (1 x m) indicator vector 1.4ysq; Whose entries i are 1 if SNP i is causal and
0 otherwise.

As with CAVIAR, the € entries along the diagonal are small numbers to ensure full rank. Also
note that the CAVIAR model is a specific case of this model, in which there is only one study and
thus there is no 72 component. The CAVIAR Y has the same structure as the upper left block in
the X above, when there are 3 SNPs and 72 is set to 0.

The efficient computation properties for the single-study case also apply to the multiple-study
case. In the latter setting, the matrices that need to be inverted are (mn x mn) instead of (m x
m), where m and n are the number of SNPs in a locus and the number of studies, respectively.
Consequently, in the Woodbury matrix identity equations, U and V are (mn x kn) and (kn x mn),
respectively, where k << m is the number of causal SNPs, and the matrix given by the Woodbury
identity is (kn x kn). Sylvester’s determinant identity gives a matrix of this size as well. The
computation time is thus reduced from (mn x mn) to (kn x kn).

Extending MsCAVIAR to different sample sizes

Previously, we have assumed the ith SNP has one true mean non-centrality parameter, )\;. This
simplifying assumption implies that all studies have the same sample size n, as the non-centrality
parameter is a function of sample size \; = B “f . We are able to relax this assumption in MsCAV-

IAR to accommodate studies with differing sample sizes and in doing so will need to more precisely
Bzf

define 0. Additionally, we can no longer assume the summary statistic s; = is drawn according

to the global mean \;; instead we will need to assume that study m’s observed effect size [5’m7z is an
unbiased estimate of the true effect size of the SNP, 3;, across studies where

7252

(:‘

V m

We now draw the true effect size of the ith SNP according to 8; ~ N(0, 02) ; therefore, the
mean effect size is 0 and the variance in effect size is the variance explained by this variant under
an additive model, which we denote with 03. We will again draw the mth study’s non-centrality

Binsi ~ N (B, 22
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parameter for variant i according to this model. Each study m has its own sample size n,,, envi-
ronmental component o, , and we draw it with heterogeneity parameter 72 as previously defined,
SO

Mo ~ N (L i 72)

Oe

m

We will now operate under the standard assumption that o, has been standardized (o, = 1),
SO

Ami ~ N (Bin/Tom, 72)

Using our previous definition for a single study, we now have

Ac|C ~ N(0, X¢) (12)
where
0, ifi#j.
Yo =<0, ifiis causal (13)

€, if 4 is not causal.

We now define o more formally to be o4n,, for the mth study. When we consider our matrix

100
24+0 o
Yo = ® 1000
o T’+4o0
001

The ¢ along the diagonal is defined identically to the precise single study definition; however,
when modeling multiple studies, this adjustment changes the covariance between causal variant
for two studies. We now define o = \/@\/@03 for two studies = and y with population sizes n,
and n,. Note that if two studies have the same population size n, we get the original definition of
o = /ny/nog, = no; (recalling that here we are assuming o2 = 1).

Parameter setting in practice

Traditionally, the effect size 8 ~ N (0, 03) would be derived as a notion of the per-snp heritability.
Here we do not define 03 as such, but rather treat it as an abstraction: we avoid making any
assumptions on how heritable the given trait is and how that heritability is partitioned between
loci. The way we set this parameter in practice is as a parameter for statistical power. If study m
has the smallest sample size, we set this value such that Jgnm = 5.2 for all variants. Then the NCP

for variant i in the corresponding study m is A ~ N(5.2,72). For another study x with larger

sample size, its NCP is drawn as A\, ; ~ N (5.2, /%, 72). This value of 03 may not represent the

actual heritability partitioning, but we set the parameter this way in our method for the practical
purpose of giving MsCAVIAR power to fine map borderline significant variants in the smallest
study.
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