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Learning Associations

The biological brain has the ability to store long-term memories
of patterns..

...and to recall them when presented with associated stimuli
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Associative Memory

Short-term memory (seconds-to-minutes) is maintained by
persistent neural activity
Long-term memory (hours-to-years) involve storage in
synaptic weights
Associative memory: recall on content

Autoassociative - Enable to retrieve a stored pattern from a
partial or approximate sample of itself (template matching)
Heteroassociative - Recall a stored pattern that is
somewhat associated with the input stimuli but does not
represent it (input/output from different categories)
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Association as Recall, Recognition and Completing
Partial Information

Pattern recognition through a nearest prototype approach
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Association as Recall, Recognition and Completing
Partial Information

Address the problem through a associative memory approach
(via learning)
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Associative Memory Networks

Focus on recurrent neural networks

Biological plausible
Recall exact stored pattern
(accretive)
..and more interesting
overall

Persistent activity determines which memory is recalled
based on the stimuli
Synaptic weights provide the long-term storage for the
memories
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Stored Patterns

From a certain point onwards

v(t) = v(∞) = vm

Stored memories vm should be
(point) attractors
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Associative Network Models

Autoassociative models
Hopfield networks
Boltzmann machines
Adaptive Resonance Theory (ART)
Autoassociators

Heteroassociative models
Bidirectional Associative Memory (BAM)
ARTMAP
Typically combine autoassociative layers through a
mapping layer
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Characterizing an Associative Memory

For a pattern that is a fixed point of the net holds

vm = F (Mvm)

Capacity - Number of patterns vm that can simultaneously
satisfy equation given weights M (Capacity ∝ Nv )
Other factors affect memory performance

Spurious fixed points
Basin of attraction

Memories can be encoded as sparse patterns
αNv active neurons (vi 6= 0)
(1− α)Nv silent neurons (vi ◦ 0)
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Hopfield Network (1982)

Single-layer recurrent
network
Fully connected
Two popular models

Binary neurons with
discrete time
Graded neurons with
continuous time
All store binary patterns

The Catch
Started in any state (e.g. the partial pattern ṽ), the system
converges to a final state (the recalled pattern) that is a (local)
minimum of its energy function
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The Binary Model

Response in {−1,1} and discrete time t

vj(t + 1) =
{

1, if xj > 0
−1, otherwise

Neuron internal potential

xj =
∑

k

Mjkvk + Ij

Ij → direct input (sensory or bias)
Mjk → synaptic weight

No self-recurrent connections: Mjj = 0
Symmetric weight matrix: Mjk = Mkj
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Asynchronous State Update

At time t
1 Pick a neuron j at random
2 If xj > 0 set vj = 1 else vj = −1

Increment time and iterate

A magnetic Ising (spin) system (Boltzmann machines)
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The Graded Model
Synchronous Update

Upper-lower bounded continuous response (typically in [0,V ])
and continuous time

dxj

dt
= −

xj

τ
+
∑

k

Mjkvk + Ij

Instantaneous activity vj = F (xj), where F (·) bounded
monotone increasing function (e.g. sigmoid).
Mean potential xj with exponential decay τ

M often chosen symmetric
With no self-recurrence⇒ same fixed points of binary
model
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Energy Function

Will xj (or
dxj

dt
) converge to a fixed point?

Ensure that the network has an energy function E s.t.

Decreases monotonically under state dynamics:
dE
dt

< 0

Is bounded below (with
dE
dt

= 0 only if
dx
dt

= 0)
Lyapunov function (dynamical system stability)

Attractor ≡ local
minimum of energy
function
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Hopfield Energy Functions

Binary Neurons (symmetric and without self-recurrence)

E = −1
2

∑
jk

Mjkvjvk −
∑

j

Ijvj

Graded Neurons (symmetric)

E = −1
2

∑
jk

Mjkvjvk −
∑

j

Ijvj +
1
τ

∫ vj

F−1(z)dz

Third term = 0 when no self-recurrence
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Hopfield Network Stability

Asynchronous Binary Neuron Model

E = −1
2

∑
jk

Mjkvjvk −
∑

j

Ijvj

How do we show convergence?
Where are the fixed points?

Asynchronous Binary Hopfield
At each state change, the energy function decreases at least by
some fixed minimum amount, and because the energy function
is bounded, it reaches a minimum in finite time

A continuous Hopfield network can only be shown to converge
asymptotically
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Hopfield Network Learning

How can we set the values of M such that a set of patterns
{v1, . . . ,vP} is stored into its memory?

Weights M must be such that {v1, . . . ,vP} are fixed points of E

Hebbian learning describes associative learning
Simple Hebbian rule

Mjk = c
P∑

m=1

vm
j vm

k

or in matrix notation M = cUUT

Can also be used to incrementally add new memories v
′

Mnew = (1− c)Mold + cv
′
v

′T
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(Somewhat) Useful Things to Know about Hopfield

The similarity between current activation v(t) and m-th
stored pattern can be measured by the overlap

µm(t) =
1
N

N∑
j

vm
j vj(t)

The overlap fully describes the dynamics of the network

xj(t+1) =
∑

k

Mjkvk (t) = c
∑

k

P∑
m=1

vm
j vm

k vk (t) = cN
P∑

m=1

vm
j µm(t)

On average there are N/2 network neurons active for a
pattern (N →∞)
An Hopfield network can store a maximum of 0.138N
patterns (assuming neuron state flip probability
Perr = 0.001)
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Energy Picture

Using the overlap

E = −cN2
P∑

m=1

(µm)
2
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An Algorithmic Summary
Binary Asynchronous Hopfield

Given a set of N-dimensional training patterns U = [v1 . . . vP]

Set weights M = (1/N)UUT (Hebbian)
Zero the diagonal Mjj = 0 for j = 1, . . . ,N

Given a test pattern ṽ
1 (t=0, ne = 0) Bootstrap network by vj(0) = ṽj for

j = 1, . . . ,N
2 Repeat

1 Generate a random neuron order order , ne = ne + 1
2 for each neuron j ∈ order

1 t = t + 1;
2 Compute xj(t − 1) =

∑
k

Mjk vk (t − 1) + Ij

3 If xj(t − 1) > 0 set vj(t) = 1 else vj(t) = −1
Until |E(ne)− E(ne − 1)| ≈ 0 (convergence)

The state of the network now is the recalled pattern
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Hopfield Network Applications

Optimization problems - The function to be optimized
needs to be written as the network energy E

Travelling salesman
Timetable scheduling
Routing in communication networks

Image recognition, reconstruction e restoration
Hopfield neurons are pixels of the binary image
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Take Home Messages

Associative memories allow storing patterns and recalling
them from partial or corrupted inputs

Often recurrent neural networks
Short-term Vs long-term memory
Autoassociative Vs Heteroassociative

Energy function
Counterpart of error functions in other neural models
Memories are stored in its fixed points
Define the stability of the memory as a dynamical system
(Lyapunov)

Hopfield networks
Fully connected recurrent NN for binary input
Asynchronous and synchronous models
Solve nonlinear optimization problems (and are Turing
equivalent)
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Next Lecture

Next time will be first hand-on laboratory
Hebbian learning
Hopfield networks

Next lecture (in a week)
Boltzmann Machines
Contrastive divergence learning
Foundations of a family of deep learning models
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