Representation Learning and Deep Neural Networks

Davide Bacciu

Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it

Applied Brain Science - Computational Neuroscience (CNS)

Representation Learning Deep Representations Bio-Inspired Foundations

Learning Representations in the Brain

Sensory information is represented by neural activity

- Response selectivity of individual neurons
- Distribution of activation in neural population
- Something we have seen so far
- Neural representation is hierarchical
 - Brain cortex processes information incrementally
 - Increasing levels of abstraction

Representation Learning

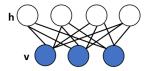
How can we obtain articulated hierarchical representations of information in computational models?

Representation Learning - A Computational View

Learning the unknown causes underlying data

- Causes explain the data we observe
- Are also the basic building blocks which, when combined, generate the data we observe

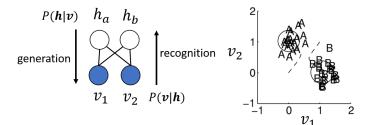
Something we have already seen with RBM



- Try explaining input data **v** using the unknown causes **h**
- Learning is
 - Generative as causes can reconstruct the data
 - Unsupervised as interest is in representing information rather than, e.g., predicting a class

Representation Learning - A Classical View

Representation learning as density estimation: learn a probability distribution for the data ${\bf v}$ that uses latent variables ${\bf h}$



Learning of a Gaussian Mixture Model

- Data likelihood P(v|h)
- Posterior $P(\mathbf{h}|\mathbf{v})$

Several models in this classical view: PCA, ICA, factor analysis, clustering, ...

Representation Learning - A Modern View

Learn representations (a.k.a. causes or features) that are

- Hierarchical: representations at increasing levels of abstraction
- Distributed: information is encoded by a multiplicity of causes
- Shared among tasks
- Sparse: enforcing neural selectivity
- Characterized by simple dependencies: a simple (linear) combination of the representations should be sufficient to generate data

Deep models follow this modern view of representation learning

Representation Learning Deep Representations Bio-Inspired Foundations

What is Deep Learning?

Machine learning algorithms inspired by brain organization, based on learning multiple levels of representation and abstraction

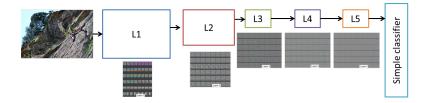
- Learning models with many layers trained layer-wise
- Build a hierarchical feature space through layering
- Reduce the need of supervised information
 - Unsupervised discovery of features in the internal layers
 - Final layer performs supervised step

Representation Learning Deep Representations Bio-Inspired Foundations

Learning Features

The traditional shallow way

The deep way



Representation Learning Deep Representations Bio-Inspired Foundations

Why Deep Learning?

Representation Learning Deep Representations Bio-Inspired Foundations

No, Seriously.. Why Deep Learning?

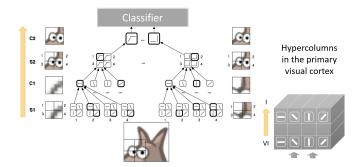
- Deep learning is THE hot topic now
- Revolutionized performance in
 - Speech recognition
 - Machine vision
- Now expanding to other topics
 - Natural language
 - Reinforcement learning
 - Robotics

Its origins and inspiration can be traced back to brain/cortex organization

Representation Learning Deep Representations Bio-Inspired Foundations

Hierarchical Representation

Explaining the structure of the visual cortex in mammals

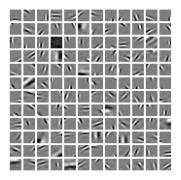


M. Riesenhuber, T. Poggio, Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience 2: 1019-1025, 1999

Representation Learning Deep Representations Bio-Inspired Foundations

Sparse Representation

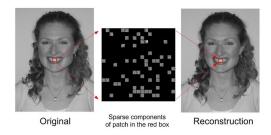
Sparse coding theory in brain: sensory information in the brain is represented by a relatively small number of simultaneously active neurons out of a large population (B.A. Olshausen, D.J. Field, 1996)



Representation Learning Deep Representations Bio-Inspired Foundations

Sparse Representation Machine Learning

The machine learning perspective: a single layer network learns better to generate a target output if the input has a sparse representation (Willshaw and Dayan, 1990)



Introduction Deep Learning Architectures Practical Things to Know

Deep Networks

- Deep architecture with multiple layers focused on learning sparse encoding of input data
- Unsupervised training between layers to decompose the problem into distributed sub problems with increasing levels of abstraction
- Deep networks type
 - Deep Generative Models
 - Stacked Neural Autoencoders
 - Deep convolutional neural networks
 - Recurrent neural networks
 - Hybrids of the above

Introduction Deep Learning Architectures Practical Things to Know

Training Deep Networks

Problem with conventional backpropagation training

- Strongly relies on labeled training data
- Learning does not scale well to multiple hidden layers

Greedy layer-wise training

- Unsupervised (internal) layer by layer representation learning (pre-training)
- Supervised training of last layer (read-out) plus optional fine-tuning

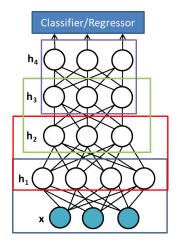
Key advantages

- Give full learning focus to each layer
- Exploit unlabeled data using supervised training only for fine tuning

Introduction Deep Learning Architectures Practical Things to Know

Deep Generative Models

Intuition - Train a network where hidden units \mathbf{h} organized into a hierarchy extract a good representation data from visible units \mathbf{x}

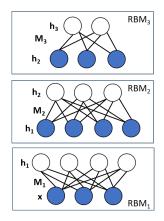


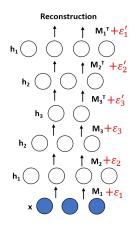
Architecture - A network of stacked Restricted Boltzmann Machines (RBM) plus a supervised read-out layer for making predictions

Introduction Deep Learning Architectures Practical Things to Know

Deep Belief Networks (DBN)

Pretraining of the independent RBM by Contrastive-Divergence, which are then unrolled to form the deep architecture that is fine-tuned by error backpropagation

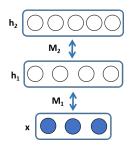




Introduction Introduction
Deep Learning
Applications
Practical Things to Know

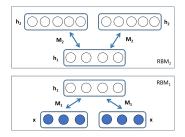
Deep (Restricted) Boltzmann Machines

DBM are directed generative models \Rightarrow To train a Deep RBM we need a pre-training trick



Sampling \mathbf{h}_1 by averaging bottom-up and top-down contribution

$$h_{1j} \sim \sigma(\sum_{i} M_{ij}x_i + \sum_{m} M_{jm}h_{2m})$$



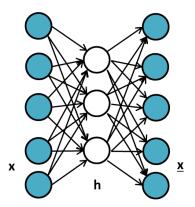
For multiple layers

- Apply modified training to first and last layer
- Halve the weights of inner layers

Introduction Deep Learning Architectures Practical Things to Know

Neural Autoencoder Networks

Non-accretive associative memories for feature discovery and data compression

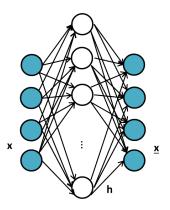


E.g. linear hidden units with MSE perform PCA (guess why?)

Introduction Deep Learning Architectures Practical Things to Know

Sparse Autoencoders

Autoencoders using more features with a significant number being 0 when encoding an input

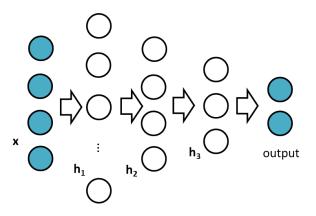


Using regularization approaches to enforce sparsity

Introduction Deep Learning Architectures Practical Things to Know

Stacked Neural Autoencoders

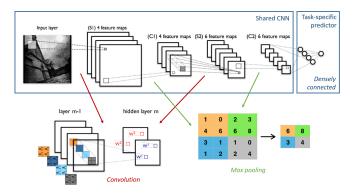
Stack autoencoders with level-wise training as with DBM



Train each autoencoder in isolation and drop the decoding layer when training is completed

Convolutional Neural Networks (CNNs) - LeNet

Very much inspired by the visual processing pipeline in the brain

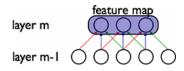


Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998

Introduction Deep Learning Architectures Practical Things to Know

Strategies to Control Model Complexity (Regularization)

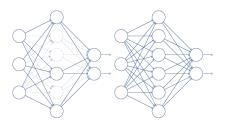
Weight Sharing



Dropout

- Randomly disconnect hidden neurons during training
- Need to scale hidden weights at test time

- Exploit symmetry or stationarity assumption to reduce the number of parameters
- Convolutional NN, recurrent and recursive NN



Introduction Deep Learning Architectures Practical Things to Know

Stochastic Gradient Descent

Mini-batches

- Compute stochastic gradient on small batches of data rather than on single sample
- Stabler and quicker learning and facilitates GPU computing as a byproduct

Momentum Method

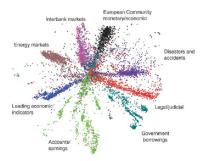
$$\Delta w(t+1) = \alpha \Delta w(t) - \epsilon \frac{\partial E}{\partial w}(t+1)$$

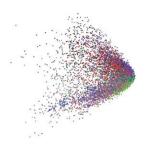
- Changes the velocity of the weight particle instead of the position
- May quicken convergence due to avoiding oscillations

Deep Learning Applications Conclusions

Document Encoding - Deep Belief Network

Finding sparse features for > 800K newswire stories





DBN document encoding

Latent semantic analysis

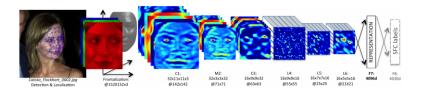
Hinton, Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006

Deep Learning Applications Conclusions

DeepFace: a.k.a. beating humans at recognizing faces

DeepFace recognition accuracy is $\approx 97.35\%$

- 23% better than previous results
- CNN with more than 120 million parameters



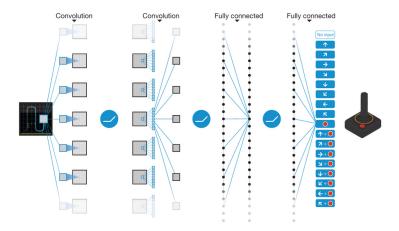
facebook.

Taigman et al, Deepface: Closing the gap to human-level performance in face verification, CVPR 2014

Deep Learning Applications Conclusions

Learning to Play Atari (I)

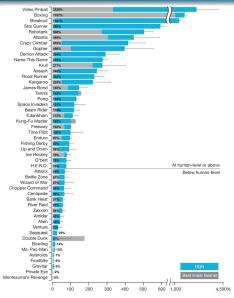
Integrating CNN with Reinforcement Learning



Mnih et al, Human-level control through deep reinforcement learning, Nature 2015

Deep Learning Applications Conclusions

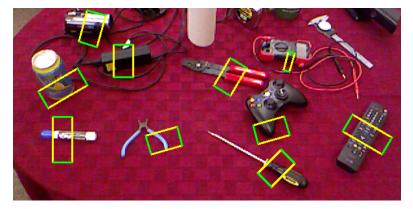
Learning to Play Atari (II)



Deep Learning and Robotics

Learning where to grasp objects with robotic manipulators

- Deep auto-encoder network
- Predicts which grasping box works better



Lenz et al, Deep Learning for Detecting Robotic Grasps, IJRR 2014

Deep Learning Applications Conclusions

Cheap DL Robots

3D Depth Camera

Google TensorFlow Robot Operating System (ROS) Torch Theano Caffe CUDA + cuDNN Tegra K1 Wifi + Bluetooth

Mobile Base

Deep Learning Applications Conclusions

Deep Learning API

- Caffe DL framework for computer vision
 - http://demo.caffe.berkeleyvision.org/
- Theano Python library with GPU support
 - http://deeplearning.net/software/theano/
- Torch Scientific computing environment
 - http://torch.ch/
- MatConvNet CNN in Matlab with GPU support
 - http://www.vlfeat.org/matconvnet/
- CNTK Microsoft NN and DL toolkit
 - http://www.cntk.ai/
- Tensorflow Google NN and DL library
 - https://www.tensorflow.org/

Make sure you have a good GPU!

Deep Learning Applications Conclusions

Want to try something easy out?

Google Tensorflow Playground

• http://playground.tensorflow.org

Language learning and generation

- http://karpathy.github.io/2015/05/21/
 rnn-effectiveness/
- Caffe image classification demo
 - http://demo.caffe.berkeleyvision.org/
- Nvidia Digits deep learning GUI
 - https://developer.nvidia.com/digits

Deep Learning Applications Conclusions

Where is DL heading?

- Image and video understanding by integration with natural language descriptions
 - Bringing in biological models of attention
- Natural language understanding and generation
 - Emotion understanding
 - Moving from sequential representation of text to parse trees
- Will soon impact heavily in robotics
 - Sensorimotor learning
 - Policy learning: deep reinforcement learning
 - Cloud robotics: deep learned knowledge available to connected devices
 - Onboard GPU computing
 - Self-driving cars, drones, connected devices

Deep Learning Applications Conclusions

Take Home Messages

• Deep learning is about learning features of complex data

- Features \equiv hidden stochastic neurons
- Strongly rooted in hierarchical information processing in the brain
- Stacking and level-wise training
 - Let the deep network discover the features and then place your preferred learning model to perform your task
- Breakthrough performance in several learning tasks/application areas
 - Complex spatio/temporal structured data
- Do we really know what is going on with the encoding? How many layers?