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Abstract. We consider the following autocompletion search scenario: imagine a
user of a search engine typing a query; then with every keystroke display those
completions of the last query word that would lead to the best hits, and also
display the best such hits. The following problem is at the core of this feature:
for a fixed document collection, given a set D of documents, and an alphabetical
range W of words, compute the set of all word-in-document pairs (w, d) from the
collection such that w ∈ W and d ∈ D. We present a new data structure with the
help of which such autocompletion queries can be processed, on the average, in
time linear in the input plus output size, independent of the size of the underlying
document collection. At the same time, our data structure uses no more space
than an inverted index. Actual query processing times on a large test collection
correlate almost perfectly with our theoretical bound.

1 Introduction

Autocompletion, in its most basic form, is the following mechanism: the user types the
first few letters of some word, and either by pressing a dedicated key or automatically
after each key stroke a procedure is invoked that displays all relevant words that are
continuations of the typed sequence. The most prominent example of this feature is the
tab-completion mechanism in a Unix shell. In the recently launched Google Suggest
service frequent queries are completed. Algorithmically, this basic form of autocom-
pletion merely requires two simple string searches to find the endpoints of the range of
corresponding words.

1.1 Problem Definition

The problem we consider in this paper is derived from a more sophisticated form of au-
tocompletion, which takes into account the context in which the to-be-completed word
has been typed. Here, we would like an (instant) display of only those completions
of the last query word which lead to hits, as well as a display of such hits. For ex-
ample, if the user has typed search autoc , context-aware completions might be
autocomplete and autocompletion , but not autocratic . The following
definition formalizes the core problem in providing such a feature.

Definition 1. An autocompletion query is a pair (D, W ), where W is a range of words
(all possible completions of the last word which the user has started typing), and D is
a set of documents (the hits for the preceding part of the query). To process the query
means to compute the set of all word-in-document pairs (w, d) with w ∈ W and d ∈ D.
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Given an algorithm for solving autocompletion queries according to this definition, we
obtain the context-sensitive autocompletion feature as follows:

For the example query search autoc , W would be all words from the vocabu-
lary starting with autoc , and D would be the set of all hits for the query search.
The output would be all word-in-document pairs (w, d), where w starts with autoc
and d contains w as well as a word starting with search . 1

Now if the user continues with the last query word, e.g., search autoco , then
we can just filter the sequence of word-in-document pairs from the previous queries,
keeping only those pairs (w′, d′), where w′ starts with autoc . If, on the other hand,
she starts a new query word, e.g., search autoc pub , then we have another auto-
completion query according to Definition 1, where now W is the set of all words from
the vocabulary starting with pub , and D is the set of all hits for search autoc.
For the very first query word, D is the set of all documents.

In practice, we are actually interested in the best hits and completions for a query.
This can be achieved by the following standard approach. Assume we have precom-
puted scores for each word-in-document pair. Given a sequence of pairs (w, d) accord-
ing to Definition 1, we can then easily compute for each word w′ occurring in that
sequence an aggregate of the scores of all pairs (w′, d) from that sequence, as well as
for each document d′ an aggregate of the scores of all pairs (w, d′). The precomputation
of scores for word-in-document pairs such that these aggregations reflect user-perceived
relevance to the given query is a much-researched area in information retrieval [1], and
beyond the scope of this paper. It is for these reasons that the ranking issue is factored
out of Definition 1.

To answer a series of autocompletion queries, we can obtain the new set of can-
didate documents D from the sequence of matching word-in-document pairs for the
last query by sorting the matching (w, d) pairs. This sort takes time O((

∑
w∈W |D ∩

Dw|) log(
∑

w∈W |D ∩ Dw|)) and would in practice be done together with the ranking
of the completions and documents. The time for this sort is also included in the running
times of our experiments in Section 6, but is dominated by the work to find all matching
word-in-document pairs.

1.2 Main Result

Theorem 1. Given a collection with n ≥ 16 documents, m distinct words, and N ≥
32m word-in-document pairs 2, there is a data structure AUTOTREE with the following
properties:

(a) AUTOTREE can be constructed in O(N) time.
(b) AUTOTREE uses at most N�log2 n� bits of space (which is the space used by an

ordinary uncompressed inverted index)3.

1 We always assume an implicit prefix search, that is, we are actually interested in hits for all
words starting with search , which is usually what one wants in practice. Whole-word-only
matching can be enforced by introducing a special end of word symbol $ .

2 The conditions on n and N are technicalities and are satified for any realistic document col-
lection.

3 Strictly speaking, an uncompressed inverted index needs even more space, to store the list
lengths.
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(c) AUTOTREE can process an autocompletion query (D, W ) in time

O
(
(α + β)|D| +

∑

w∈W
|D ∩ Dw|

)
,

where Dw is the set of documents containing word w. Here α = N |W |/(mn),
which is bounded above by 1, unless the word range is very large (e.g., when com-
pleting a single letter). If we assume that the words in a document with L words are
a random size-L subset of all words, β is at most 2 in expectation. In our experi-
ments, β is indeed around 2 on the average and about 4 in the (rare) worst case.
Our analysis implies a general worst-case bound of log(mn/N).

Note that for constant α and β the running time is asymptotically optimal, as it takes
Ω(|D|) time to inspect all of D and it takes Ω(

∑
w∈W |D ∩ Dw|) time to output the

result.
We implemented AUTOTREE, and in Section 6 show that its processing time cor-

relates almost perfectly with the bound from Theorem 1(c) above. In that Section, we
also compare it to an inverted index, its presumably closest competitor (see Section
1.4), which AUTOTREE outperforms by a factor of 10 in worst-case processing time
(which is key for an interactive feature), and by a factor of 4 in average-case processing
time.

1.3 Related Work

To the best of our knowledge, the autocompletion problem, as we have defined it above,
has not been explicitly studied in the literature. The problem is derived from a search
engine, which we have devised and implemented, and which is described in [2]; for a
live demo, see http://search.mpi-inf.mpg.de/wikipedia. The emphasis
in [2] is on usability (of the autocompletion feature) and on compressibility (of the data),
and not on designing an output-sensitive algorithm. The data structures and algorithms
in [2] are completely different from those presented in this article.

The most straightforward way to process an autocompletion query (D, W ) would be
to explicitly search each document from D for occurrences of a word from W . However,
this would give us a non-constant query processing time per element of D, completely
independent of the respective |W | or output size

∑
w∈W |D ∩ Dw|. For these reasons,

we do not consider this approach further in this paper. Instead, our baseline in this paper
is based on an inverted index, the data structure underlying most (if not all) large-scale
commercial search engines [1]; see Section 1.4.

Definition 1 looks reminiscent of multi-dimensional search problems, where the col-
lections consists of tuples (of some fixed dimensionality), and queries are asking for
all tuples contained in a tuple of given ranges [3,4,5,6]. Provided that we are will-
ing to limit the number of query words, such data structures could indeed be used to
process our autocompletion queries. If we want fast processing times, however, any of
the known data structures uses space on the order of N1+d, where N is the number of
word-in-document pairs in the collection, and d grows (fast) with the dimensionality.
In the description of our data structures we will point out some interesting analogies to
the geometric range-search data structures from [7] and [8].

http://search.mpi-inf.mpg.de/wikipedia
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The large body of work on string searching concerned with data structures such as
PAT/suffix tree/arrays [9,10] is not directly applicable to our problem. Instead, it can
be seen as orthogonal to the problem we are discussing here. Namely, in the context of
our autocompletion problem these data structures would serve to get from mere prefix
search to full substring search. For example, our Theorem 1 could be enhanced to full
substring search by first building a suffix data structure like that of [10], and then build-
ing our data structure on top of the sorted list of all suffixes (instead of the list of the
distinct words).

There is a large body of more applied work on algorithms and mechanisms for pre-
dicting user input, for example, for typing messages with a mobile phone, for users with
disabilities concerning typing, or for the composition of standard letters [11,12,13,14].
In [15], contextual information has been used to select promising extensions for a query;
the emphasis of that paper is on the quality of the extensions, while our emphasis here is
on efficiency. An interesting, somewhat related phrase-browsing feature has been pre-
sented in [16,17]; in that work, emphasis was on the identification of frequent phrases
in a collection.

1.4 The BASIC Scheme and Outline of the Rest of the Paper

The following BASIC scheme is our baseline in this paper. It is based on the inverted
index [1], for which we simply precompute for each word from the collection the list
of documents containing that word. For an efficient query processing, these lists are
typically sorted, and we assume a sorting by document number.

Having precomputed these lists, BASIC processes an autocompletion query (D, W )
very simply as follows: For each word w ∈ W , fetch the list Dw of documents that
contain w, compute the intersection D ∩ Dw, and append it to the output.

Lemma 1. BASIC uses time at least Ω(
∑

w∈W min{|D|, |Dw|}) to process an auto-
completion query (D, W ). The inverted lists can be stored using a total of at most
N · �log2 n� bits, where n is the total number of documents, and N is the total number
of word-in-document pairs in the collection.

Lemma 1, whose proof can be found in [18], points out the inherent problem of BASIC:
its query processing time depends on the size of both |D| and |W |, and it can become
|D| · |W | in the worst case.

In the following sections, we develop a new indexing scheme AUTOTREE, with the
properties given in Theorem 1. A combination of four main ideas will lead us to this
new scheme: a tree over the words (Section 2), relative bit vectors (Section 3), pushing
up the words (Section 4), and dividing into blocks (Section 5). In Section 6, we will
complement our theoretical findings with experiments on a large test collection.

All space and time bounds are concisely stated in formal lemmas, the proofs of which
can be found in [18].

2 Building a Tree Over the Words (TREE)

The idea behind our first scheme on the way to Theorem 1 is to increase the amount
of preprocessing by precomputing inverted lists not only for words but also for their
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prefixes. More precisely, we construct a complete binary tree with m leaves, where m
is the number of distinct words in the collection. We assume here and throughout the
paper that m is a power of two. For each node v of the tree, we then precompute the
sorted list Dv of documents which contain at least one word from the subtree of that
node. The lists of the leaves are then exactly the lists of an ordinary inverted index, and
the list of an inner node is exactly the union of the lists of its two children. The list of
the root node is exactly the set of all non-empty documents. A simple example is given
in Figure 1.

Fig. 1. Toy example for the data structure of scheme TREE with 10 documents and 4 different
words

Given this tree data structure, an autocompletion query given by a word range W and a
set of documents D is then processed as follows.

1. Compute the unique minimal sequence v1, . . . , v� of nodes with the property that
their subtrees cover exactly the range of words W . Process these � nodes from left
to right, and for each node v invoke the following procedure.

2. Fetch the list Dv of v and compute the intersection D ∩ Dv. If the intersection is
empty, do nothing. If the intersection is non-empty, then if v is a leaf corresponding
to word w, report for each d ∈ D ∩Dv the pair (w, d). If v is not a leaf, invoke this
procedure (step 2) recursively for each of the two children of v.

Scheme TREE can potentially save us time: If the intersection computed at an inner
node v in step 2 is empty, we know that none of the words in the whole subtree of v is
a completion leading to a hit, that is, with a single intersection we are able to rule out a
large number of potential completions. However, if the intersection at v is non-empty,
we know nothing more than that there is at least one word in the subtree which will lead
to a hit, and we will have to examine both children recursively. The following lemma
shows the potential of TREE to make the query processing time depend on the output
size instead of on W as for BASIC. Since TREE is just a step on the way to our final
scheme AUTOTREE, we do not give the exact query processing time here but just the
number of nodes visited, because we need exactly this information in the next section.

Lemma 2. When processing an autocompletion query (D, W ) with TREE, at most
2(|W ′| + 1) log2 |W | nodes are visited, where W ′ is the set of all words from W that
occur in at least one document from D.
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The price TREE pays in terms of space is large. In the worst case, each level of the tree
would use just as much space as the inverted index stored at the leaf level, which would
give a blow-up factor of log2 m.

3 Relative Bitvectors (TREE+BITVEC)

In this section, we describe and analyze TREE+BITVEC, which reduces the space us-
age from the last section, while maintaining as much as possible of its potential for a
query processing time depending on W ′, the set of matching completions, instead of on
W . The basic trick will be to store the inverted lists via relative bit vectors. The result-
ing data structure turns out to have similarities with the static 2-dimensional orthogonal
range counting structure of Chazelle [7].

In the root node, the list of all non-empty documents is stored as a bit vector: when
N is the number of documents, there are N consecutive bits, and the ith bit corresponds
to document number i, and the bit is set to 1 if and only if that document contains at
least one word from the subtree of the node. In the case of the root node this means that
the ith bit is 1 if and only if document number i contains any word at all.

Now consider any one child v of the root node, and with it store a vector of N ′

bits, were N ′ is the number of 1-bits in the parent’s bit vector. To make it interesting
already at this point in the tree, assume that indeed some documents are empty, so that
not all bits of the parent’s bit vector are set to one, and N ′ < N . Now the jth bit of
v corresponds to the jth 1-bit of its parent, which in turn corresponds to a document
number ij . We then set the jth bit of v to 1 if and only if document number ij contains
a word in the subtree of v.

The same principle is now used for every node v that is not the root. Constructing
these bit vectors is relatively straightforward; it is part of the construction given in
Appendix A.

Fig. 2. The data structure of TREE+BITVEC for the toy collection from Figure 1

Lemma 3. Let stree denote the total lengths of the inverted lists of algorithm TREE.
The total number of bits used in the bit vectors of algorithm TREE+BITVEC is then at
most 2stree plus the number of empty documents (which cost a 0-bit in the root each).

The procedure for processing a query with TREE+BITVEC is, in principle, the same as
for TREE. The only difference comes from the fact that the bit vectors, except that of
the root, can only be interpreted relative to their respective parents.
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To deal with this, we ensure that whenever we visit a node v, we have the set Iv of
those positions of the bit vector stored at v that correspond to documents from the given
set D, as well as the |Iv| numbers of those documents. For the root node, this is trivial to
compute. For any other node v, Iv can be computed from its parent u: for each i ∈ Iu,
check if the ith bit of u is set to 1, if so compute the number of 1-bits at positions less
than or equal to i, and add this number to the set Iv and store by it the number of the
document from D that was stored by i. With this enhancement, we can follow the same
steps as before, except that we have to ensure now that whenever we visit a node that is
not the root, we have visited its parent before. The lemma below shows that we have to
visit an additional number of up to 2 log2 m nodes because of this.

Lemma 4. When processing an autocompletion query (D, W ) with TREE+BITVEC,
at most 2(|W ′| + 1) log2 |W | + 2 log2 m nodes are visited, with W ′ defined as in
Lemma 2.

4 Pushing Up the Words (TREE+BITVEC+PUSHUP)

The scheme TREE+BITVEC+PUSHUP presented in this section gets rid of the log2
|W | factor in the query processing time from Lemma 4. The idea is to modify the
TREE+BITVEC data structure such that for each element of a non-empty intersection,
we find a new word-in-document pair (w, d) that is part of the output. For that we store
with each single 1-bit, which indicates that a particular document contains a word from
a particular range, one word from that document and that range. We do this in such a
way that each word is stored only in one place for each document in which it occurs.
When there is only one document, this leads to a data structure that is similar to the
priority search tree of McCreight, which was designed to solve the so-called 3-sided
dynamic orthogonal range-reporting problem in two dimensions [8].

Let us start with the root node. Each 1-bit of the bit vector of the root node corre-
sponds to a non-empty document, and we store by that 1-bit the lexicographically small-
est word occurring in that document. Actually, we will not store the word but rather its
number, where we assume that we have numbered the words from 0, . . . , m − 1.

More than that, for all nodes at depth i (i.e., i edges away from the root), we omit
the leading i bits of its word number, because for a fixed node these are all identical
and can be computed from the position of the node in the tree. However, asympotically
this saving is not required for the space bounds in Theorem 1 as dividing the words
into blocks will already give a sufficient reduction of the space needed for the word
numbers.

Now consider anyone child v of the root node, which has exactly one half H of
all words in its subtree. The bit vector of v will still have one bit for each 1-bit of its
parent node, but the definition of a 1-bit of v is slightly different now from that for
TREE+BITVEC. Consider the jth bit of the bit vector of v, which corresponds to the
jth set bit of the root node, which corresponds to some document number ij . Then this
document contains at least one word — otherwise the jth bit in the root node would
not have been set — and the number of the lexicographically smallest word contained
is stored by that jth bit. Now, if document ij contains other words, and at least one of
these other words is contained in H , only then the jth bit of the bit vector of v is set
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to 1, and we store by that 1-bit the lexicographically smallest word contained in that
document that has not already been stored in one of its ancestors (here only the root
node).

Figure 3 explains this data structure by a simple example. The construction of the
data structure is relatively straightforward and can be done in time O(N). Details are
given in Appendix A.

Fig. 3. The data structure of TREE+BITVEC+PUSHUP for the example collection from Figure
1. The large bitvector in each node encodes the inverted list. The words stored by the 1-bits of
that vector are shown in gray on top of the vector. The word list actually stored is shown below
the vector, where A=00, B=01, C=10, D=11, and for each node the common prefix is removed,
e.g., for the node marked C-D, C is encoded by 0 and D is encoded by 1. A total of 49 bits is
used, not counting the redundant 000 vectors and bookkeeping information like list lengths etc.

To process a query we start at the root. Then, we visit nodes in such an order that
whenever we visit a node v, we have the set Iv of exactly those positions in the bit
vector of v that correspond to elements from D (and for each i ∈ Iv we know its
corresponding element di in D). For each such position with a 1-bit, we now check
whether the word w stored by that 1-bit is in W , and if so output (w, di). This can be
implemented by random lookups into the bit vector in time O(|Iv |) as follows. First,
it is easy to intersect D with the documents in the root node, because we can simply
lookup the document numbers in the bitvector at the root. Consider then a child v of the
root. What we want to do is to compute a new set Iv of document indices, which gives
the numbering of the document indices of D in terms of the numbering used in v. This
amounts to counting the number of 1-bits in the bitvector of v up to a given sequence of
indices. Each of these so-called rank computations can be performed in constant time
with an auxiliary data structure that uses space sublinear in the size of the bitvector [19].

Consider again the check whether a word w stored by a 1-bit corresponding to a
document from D is actually in W . This check can only fail for relatively few nodes,
namely those with a least one leaf not from W in their subtree. These checks do not
contribute an element to the output set, and are accounted for by the factor β mentioned
in Theorem 1, and Lemmas 5 and 7 below.

Lemma 5. With TREE+BITVEC+PUSHUP, an autocompletion query (D, W ) can be
processed in time O

(
|D| · β +

∑
w∈W |D ∩ Dw|

)
, where β is bounded by log2 m as

well as by the average number of distinct words in a document from D. For the special
case, where W is the range of all words, the bound holds with β = 1.
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Lemma 6. The bit vectors of TREE+BITVEC+PUSHUP require a total of at most
2N + n bits. The auxiliary data structure (for the constant-time rank computation)
requires at most N bits.

5 Divide into Blocks (TREE+BITVEC+PUSHUP+BLOCKS)

This section is our last station on the way to our main result, Theorem 1.
For a given B, with 1 ≤ B ≤ m, we divide the set of all words in blocks of equal

size B. We then construct the data structure according to TREE+BITVEC+PUSHUP
for each block separately. As we only have to consider those blocks, which contain any
words from W , this gives a further speedup in query processing time. An autocomple-
tion query given by a word range W and a set of documents D is then processed in the
following three steps.

1. Determine the set of � (consecutive) blocks, which contain at least one word from
W , and for i = 1, . . . , �, compute the subrange Wi of W that falls into block i.
Note that W = W1∪̇ · · · ∪̇W�.

2. For i = 1, . . . , �, process the query given by Wi and D according to TREE+
BITVEC+ PUSHUP, resulting in a set of matches Mi := {(w, d) ∈ C : w ∈
Wi, d ∈ D}, where C is the set of of word-in-document pairs.

3. Compute the union of the sets of matching word-in-document pairs ∪�
i=1Mi (a

simple concatenation).

Lemma 7. With TREE+BITVEC+PUSHUP+BLOCKS and block size B, an autocom-
pletion query (D, W ) can be processed in time O

(
|D| · (α + β) +

∑
w∈W |D ∩ Dw|

)
,

where α = |W |/B and β is bounded by log2 B as well as by the average number of
distinct words from W1 ∪W� (the first and the last subrange from above) in a document
from D.

Lemma 8. TREE+BITVEC+PUSHUP+BLOCKS with block size B requires at most
3N +n·�m/B� bits for its bit vectors and at most N�log2 B� bits for the word numbers
stored by the 1-bits. For B ≥ mn/N , this adds up to at most N(4 + �log2 B�) bits.

Part (a) of Theorem 1 is established by the construction given in Appendix A. Part (b)
of Theorem 1 follows from Lemma 8 by choosing B = �nm/N�. This choice of B
minimizes the space bound of Lemma 8, and we call the corresponding data structure
AUTOTREE. Part (c) of Theorem 1 follows from Lemma 7 and the following remarks.
If the words in a document with L words are a random size-L subset of all words, then
the average number of words per document that fall into a fixed block is at most 1. In
our experiments, the average value for β was 2.2. For the exact definition of β, see [18].

6 Experiments

We tested both AUTOTREE and our baseline BASIC on the corpus of the TREC 2004
Robust Track (ROBUST ’04), which consists of the documents on TREC disks 4 and
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5, minus the Congressional Record [20]. We implemented AUTOTREE with a block
size of 4096, which is the optimal block size according to Section 5, rounded to the
nearest power of two. The following table gives details on the collection and on the
space consumption of the two schemes; as we can see, AUTOTREE does indeed use no
more space (and for this collection, in fact, significantly less) than BASIC, as guaranteed
by Theorem 1.

Table 1. The characteristics of our test collection: n = number of documents, m = number of
distinct words, N/n = average number of distinct words in a document, B∗ = space-optimal
choice for the block size. The last two columns give the space usage of BASIC and AUTOTREE

in bits per word-in-document pair.

bits per word-in-doc pair

Collection raw size n m N/n B∗ BASIC AUTOTREE

ROBUST ’04 1,904 MB 528,025 771,189 219.2 4,096 19.0 13.9

Queries are derived from the 200 “old” 4 queries (topics 301-450 and 601-650) of the
TREC Robust Track in 2004 [20], by “typing” these queries from left to right, taking
a minimum word length of 4 for the first query word, and 2 for any query word after
the first. From these autocompletion queries we further omitted those, which would
be obtained by simple filtering from a prefix according to the explanation following
Definition 1. This filtering procedure is identical for AUTOTREE and BASIC and takes
only a small fraction of the time for the autocompletion queries processed according to
Definition 1, which is why we omitted it from consideration in our experiments. To give
an example, for the ad hoc query world bank criticism , we considered the
autocompletion queries worl , world ba , and world bank cr . We considered
a total number of 512 such autocompletion queries.

We implemented BASIC and AUTOTREE in C++ and measured query processing
times on a Dual Opteron machine, with 2 Intel Xeon 3 GHz processors, 8 GB of main
memory, running Linux. We measured the time for producing the output according to
Definition 1. The time for scoring and ranking would be identical for AUTOTREE and
BASIC, and would, according to a number of tests, take only a small fraction of the
aforementioned processing time. We therefore excluded it from our measurements. For
BASIC, we implemented a fast linear-time intersect, which, on average, turned out to be
faster than its asymptotically optimal relatives [21].

The results from Table 2 conform nicely to our theoretical analysis. Four main ob-
servations can be made: (i) with respect to maximal query processing time, which is
key for an interactive application, AUTOTREE improves over BASIC by a factor of 10;
(ii) in average processing time, which is significant for throughput in a high-load sce-
nario, the improvement is still a factor of 4; (iii) processing times of AUTOTREE are
sharply concentrated around their mean, while for BASIC they vary widely (in both di-
rections as we checked); (iv) the almost perfect correlation between query processing
times and our analytical bounds (explained in the caption of Figure 2) demonstrates

4 They are “old” as they had been used in previous years for TREC.
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Table 2. Processing times statistics of BASIC and AUTOTREE for all 512 autocompletion queries.
The 6th and 7th column show the kth worst processing time, where k is 10% and 5%, respectively,
of the number of queries. The last column gives the correlation factor between query processing
times and total list volume

�
w∈W (|D| + |Dw |) for BASIC, and input size plus total output

volume |D| + 5
�

w∈W |D ∩ Dw | for AUTOTREE.

Scheme Max Mean StdDev Median 90%-ile 95%-ile Correlation

BASIC 6.32secs 0.19secs 0.55secs 0.034secs 0.41secs 0.93secs 0.996

AUTOTREE 0.63secs 0.05secs 0.06secs 0.028secs 0.11secs 0.14secs 0.973

Table 3. Breakdown of query processing for BASIC and AUTOTREE by number of query words

1-word multi-word

Scheme Max Mean Max Mean

BASIC 0.10secs 0.01secs 6.32secs 0.30secs

AUTOTREE 0.37secs 0.09secs 0.63secs 0.02secs

both the soundness of our theoretical modelling and analysis as well as the accuracy of
our implementation.

Table 3, finally, breaks down query processing times by the number of query words.
As we can see, BASIC is significantly faster than AUTOTREE for the 1-word queries,
however, not because AUTOTREE is slow, but because BASIC is extremely fast on these
queries. This is so, because BASIC does not have to compute any intersections for 1-
query but merely has to copy all relevant lists Dw to the output, whereas AUTOTREE

has to extract, for each output element, bits from its (packed) document id and word
id vectors. On multi-word queries, BASIC has to process a much larger volume than
AUTOTREE, and we see essentially the situation discussed above for the overall figures.
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A The Index Construction for TREE+BITVEC+PUSHUP

In this appendix we describe the construction of the index for TREE+BITVEC+
PUSHUP. Full proofs of Lemmas 2, 3, 4, 5, 6, 7, and 8 can be found in [18].

The construction of the tree for algorithm TREE+BITVEC+PUSHUP is relatively
straightforward and takes constant amortized time per word-in-document occurrence
(assuming each document contains its word sorted in ascending order).

1. Process the documents in order of ascending document numbers, and for each doc-
ument d do the following.

2. Process the distinct words in document d in order of ascending word number, and
for each word w do the following. Maintain a current node, which we initialize as
an artificial parent of the root node.

http://www.mpi-inf.mpg.de/~bast/publications.html
http://www.mpi-inf.mpg.de/~bast/publications.html
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3. If the current node does not contain w in its subtree, then set the current node to
its parent, until it does contain w in its subtree. For each node left behind in this
process, append a 0-bit to the bit vector of those of its children which have not been
visited.
Note: for a particular word, this operation may take non-constant time, but once
we go from a node to its parent in this step, the old node will never be visited again.
Since we only visit nodes, by which a word will be stored and such nodes are visited
at most three times, this gives constant amortized time for this step.

4. Set the current node to that one child which contains w in its subtree. Store the
word w by this node. Add a 1-bit to the bit vector of that node.
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