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ABSTRACT
Query recommendations are an integral part of modern search
engines. Their goal is to facilitate users’ search tasks, as
well as help them discover and explore concepts related to
their information needs. In this paper, we present a formal
treatment of the problem of query recommendation. In our
framework we model the user-querying behavior by a proba-
bilistic reformulation graph, or query-flow graph [Boldi et al.
CIKM 2008], so that the sequence of queries submitted by
a user can be seen as a path on this graph. Assigning score
values to queries allows us to define suitable utility functions
and to consider the expected utility achieved by performing
a random walk on the query-flow graph. Furthermore, pro-
viding recommendations can be seen as adding shortcuts in
the query-flow graph that “nudge” the reformulation paths
of users, in such a way that users are more likely to follow
paths with larger expected utility.

We discuss in detail the most important questions that
come up in the proposed framework. In particular, we pro-
vide examples of meaningful utility functions to optimize,
we discuss how to estimate the effect of recommendations
on the reformulation probabilities, we address the complex-
ity of the optimization problems we consider, and we suggest
efficient algorithmic solutions. We validate our models and
algorithms with extensive experimentation.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval

1. INTRODUCTION
A prominent feature of modern search engines is the pres-

ence of query recommendations in response to user queries.
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Query recommendations serve several purposes: correcting
possible spelling errors, guiding users through their informa-
tion seeking tasks, allowing them to locate information more
easily, and helping them explore other concepts related to
what they are looking for.

The simplest form of a query recommendation is spell cor-
rection, a topic that we do not address in this paper. Instead
we focus on more elaborate forms of query recommenda-
tions. For instance, by submitting the query “chocolate
cookie” a user may be prompted to other queries such
as “chocolate cookie recipe”, “chocolate chip cookie

recipe”, but also to related queries such as “brownies”,
“baking”, and so on.

A key enabling technology for query-recommendation is
query log mining, which is used to leverage information
about how people use search engines, and how they rephrase
their queries when they are looking for information. Most
of the proposed query recommendation algorithms in the
literature use aggregate user information found on query
logs to find potentially successful queries that are relevant
to what the user is searching [2–4, 15, 16]. Current state-of-
the-art methods often produce relevant query recommenda-
tions, but often there is no clear objective to optimize and
the query-recommendation algorithms are fairly ad-hoc.

In this paper we propose a general and principled method-
ology for generating query recommendations. We model the
query-recommendation problem as a problem of optimizing
a global utility function. Our methodology makes the fol-
lowing assumptions, which are also the main ingredients of
our approach:

• First, we assume that it is possible to aggregate histor-
ical information from the query logs to build a query-
reformulation graph G [3]. The nodes of the graph
are distinct queries, and an edge (q, q′) is annotated
with the probability that a user will submit query q′

after submitting query q. We then model the query-
ing behavior of users as weighted random walks on this
graph.

• Second, we assume that the queries in the query-flow
graph have intrinsic score values w(q) that are increas-
ing on a desired property of the query q, for example,
the probability that users that issue q will be satisfied
with the search engine results. We assume that dur-
ing the random walk on the query-flow graph, users
collect the scores of (a subset of) the nodes that they
are visiting. The higher the total value collected the
higher is the overall utility of the system.



• Last, we assume that query recommendations can be
viewed as shortcuts that perturb the transition proba-
bilities in the query-flow graph. The motivation is that
during the random walk, users tend to follow edges ac-
cording to their propensity to reformulate queries, but
they also move to queries that are recommended to
them by the search engine. Thus, given the desider-
ata to maximize the overall utility of the system, we
formulate the query-recommendation problem as the
problem of deciding where to add shortcuts in a graph
so that the expected utility collected during a random
walk is maximized.

From the algorithmic point of view, the problem of finding
the best k shortcut edges to add at each node in order to
improve the overall utility is an NP-hard optimization prob-
lem. In this paper, we discuss the complexity of the problem
and we propose approximate algorithms for obtaining solu-
tions of high quality.

Assumptions. We discuss below the most important as-
sumptions we make in the framework we propose.

First, we discuss notions of score values w(q) that can be
used to define suitable utility functions to optimize. One
possible choice is to use values w(q) that model the quality
of the query q and the satisfaction of the user after submit-
ting the query q and inspecting the results. Measuring user
satisfaction is a challenging task on its own, and we resort
to user clicks on search engine results for submitted queries
as a surrogate for user satisfaction. Another choice for the
values w(q), resulting in a different utility function, is to
use expected click-through rate to ads, or expected revenue.
Notice that even when attempting to explicitly optimize the
revenue for the search engine, one has to provide valuable
and interesting recommendations to the users: recommen-
dations that do not keep users interested and engaged with
the search engine are not going to be good solutions for the
revenue-related utility objective.

Second, we discuss how to estimate the effect of query rec-
ommendations on transition probabilities. Even if a query
q′ has high value w(q′) but q is not related to q′, the tran-
sition probability of a recommendation/shortcut (q, q′) will
probably be small, since users who type q are not likely to
be interested in clicking q′. This is a challenging problem in
its own right; based on empirical observations, we propose
a simple model in which the transition probability for a rec-
ommendation (q, q′) is related to the transition probability
on the edge (q, q′) in the query-flow graph. Learning these
transition probabilities is an interesting statistical problem
involving explore-exploit ideas and it is outside of the scope
of this paper.

We note here that our framework is very general and
works with any other model used to estimate the utility of
a query or the recommendation transition probabilities. In
particular, improving the models used to estimate transition
probabilities will improve the performance of our algorithms.

Applications. While we present the problem using query
recommendations as a motivation, our model and meth-
ods can be applied to other scenarios where user behav-
ior can be modeled as a Markov process. A concrete ap-
plication that also partly motivated our work is leisure-
related search in entertainment sites such as Yahoo! OMG
(celebrity/fashion/gossiping columns). Usually, users start
browsing these services either from the frontpage or by per-
forming some query. Our goal in this case is to show recom-

mendations that take into account the users’ future browsing
behavior in order, for example, to deliver an entertaining ex-
perience to the user, involving a path along several of the
best pages in the site.

As another example, consider exploring media sites such
as YouTube or Flickr, where the system allows for browsing
the collection in a guided way, suggesting related contents in
order to provide an entertaining experience. In such a sce-
nario, contents should be recommended according to some
“interestingness” criteria, and they should depend not only
on the next step in the user navigation, but also on her
future browsing path.

In general, our work can be applied to recommendation
systems where we take into account the entire future brows-
ing behavior of the user and where the ideal recommendation
to propose might depend on various factors.

Roadmap. This paper is organized as follows. Section 2
discusses related work. Section 3 defines the scenario that
we are interested in and formally describes the model we
adopt in the rest of the paper, while Section 4 formalizes
the task of providing effective recommendations as a suit-
ably defined optimization problem. Section 5 addresses the
complexity of the general problem we consider. In this sec-
tion, we further present effective algorithms for the general
problem and for an important, special case. For the latter,
we provide a thorough analysis of the structural properties
of optimal solutions and we present an easy, greedy heuris-
tic with provably good performance on instances of practical
interest. In Section 6, we present our analysis of historical
data to model the user browsing behavior and query utility,
while in Section 7 we build on this model to solve the query
recommendation problem using the methodology presented
in Section 5 and we compare it with other natural baselines.
Finally, in Section 8 we conclude and present some ideas for
future work.

2. PREVIOUS WORK
Query recommendations. Query recommendation tools
are commonly part of the interface provided to users by
large-scale search engines. Devising effective strategies for
query recommendation has been recognized as an important
task since the early 2000’s.

A first line of research has focused on the task of finding
queries that are related to those submitted by the user. To
this purpose, strategies based on measures of query similar-
ity [2], on query clustering [15] or association rules [8] have
been proposed.

A different approach has been taken by Zhang and Nas-
raoui [16], who attempted to model the users’ sequential
search behavior. To this purpose, they considered query
graphs in which nodes are the queries and arcs link con-
secutive queries in the same user session. In [16], arcs are
weighted by a damping (or forgetting) factor, providing a
measure of similarity between consecutive queries, whereas
the similarity for non consecutive queries within the same
session is calculated by multiplying the similarity values of
arcs along the path connecting them. An overall similarity
value is obtained by adding up the contributions of different
sessions.

The concept of a query graph has been further expanded
in [3]. Here, the authors introduce the concept of a query-
flow graph. The authors define a graph in which nodes



are the queries appearing in the query log and arc (q, q′)
is present if at least one user submitted query q′ after sub-
mitting q in the same session. Arcs come with weights that,
generally speaking, estimate the probability that a query
transition connects related queries, and are computed from
aggregate information extracted from the query log. In [3],
the authors considered three heuristics for query recommen-
dations: i) a simple one based on recommending, for a user
at query q’s search results page, the query q′ such that the
weight of arc (q, q′) is maximum; ii) two heuristics based
on random walks with restart, where restart may either oc-
cur at q or at some of the last k nodes visited by the user
in the current session, according to a suitable probability
distribution.

Different types of graphs can be defined over the summary
information contained in query logs. We considered above
the approaches that are most closely related to the contents
of this paper. An overview of literature, techniques and a
broader range of applications of graphs extracted from query
logs is presented in [1].

Our work uses the query-flow–graph framework. How-
ever, while in previous work the query-flow graph is used
to recommend queries that are related to the search goals
of the user, the novelty of our approach is that we use the
summary information contained in the query-flow graph to
define a whole optimization framework with respect to the
browsing behavior of the average user. In this context, we
define several optimization problems, investigating impor-
tant properties of optimal solutions in significant cases. Fi-
nally, we propose and analyze heuristics that have provable
performance with respect to the optimization objectives we
consider.

Perturbation of Markov chains. The applications that
we consider in this paper revolve around the problem of per-
turbing a Markov chain so as to optimize some suitable func-
tion of it1. While perturbation theory is a well assessed area
of matrix analysis, there is no large literature on sensitivity
analysis of probability distributions defined over a (possibly
non-ergodic) Markov chain. In fact, most literature about
it concerns sensitivity analysis of Pagerank [12, Chapter 6],
mostly providing bounds on the change in norm in the Page-
rank vector when perturbations occur. One key contribution
in the area [6] provides an interesting and deep analysis to
prove the apparently intuitive fact that Pagerank is mono-
tonic, that is, adding a link to a Web graph cannot decrease
the Pagerank value of the target page.

In this paper, we consider a related, but different prob-
lem: we are interested in optimizing the change in the ex-
pected utility achieved by a random walk on a (generally
non-ergodic) Markov chain when at most k outgoing links
are added to the same node (or, in general, at most k links
are added to each node in a subset of the nodes).

Link optimization. A scenario in which links have to be
added to a weighted graph in order to optimize some func-
tion is considered in [7] and [11], which address the hotlink
assignment problem. Here, we are a given a DAG ( [11] con-
siders the special case of a tree) with a distinguished root
node, representing the home page of a Web site. Leaf nodes
have associated weights, representing the probability with
which a leaf node will be visited. The goal is adding at most

1More precisely, some suitable probability distribution de-
fined over the Markov chain under consideration.

one link per internal page, so as to minimize the expected
number of steps needed for a user to reach the desired leaf
from the root. This problem is NP-hard in general and the
authors prove several approximation results that depend on
the probability distribution on the leaves.

The paper [5] considers the problem of adding “quick-
links” (i.e., shortcuts) to search engine results to optimize
some utility measure. More in detail, the authors assume
that, upon submitting a query, a user is returned the most
relevant page for the query, which in some cases will be the
home page of some Web site W . This in turn becomes the
source of a possible, further user navigation of Web site W ,
which they call trail. A trail will possibly meet the user’s
information needs. The problem considered in [5] is recom-
mending at most k further links that are likely to meet the
user’s information needs. To this purpose, the authors as-
sume that (i) each page u in W has some probability α(u)
to be considered a useful page in a trail meeting the user’s
information needs and (ii) provided this happens, the page
gives a benefit described by a suitable benefit function. The
goal is choosing the links to add so as to maximize the sum
of the benefits achieved over a given set of possible naviga-
tion trails. The authors prove that the problem is in general
NP-hard and that it admits a constant approximate solution
under mild assumptions on the benefit functions.

The scenario we consider is similar in spirit to cthose con-
sidered in [7] and [11], though with some remarkable dif-
ferences: they consider DAGs and trees in particular, while
we consider general graphs. In [7, 11], probabilities are as-
signed to leaves of a tree suitably defined over the graph and
rooted at the home page, whereas in our case each node is
assigned its visiting probability in the underlying random
walk. In [7,11], addition of hotlinks does not change the un-
derlying probability while in our case, as explained further
below, providing recommendation links modifies the struc-
ture of the underlying Markov chain. Furthermore, in [7,11]
the goal is minimizing the expected distance travelled to
reach the desired leaf, while we define different objective
functions that depend on node weights and the visiting prob-
abilities of a non-ergodic Markov chain. The approach in [5]
differs from ours in significant ways: i) the problem stud-
ied is different, since the goal in [5] is providing a set of
quicklinks to pages belonging to a Web site reported in the
top position of a search engine’s result list, while we con-
sider the problem of suggesting queries that will maximize
the benefit over the entire navigation path of the user, i.e.,
the recommendation is for other result lists; ii) the objective
to optimize in [5] depends on the set of suggested quicklinks
and on a measure of noticeability assigned to nodes, which is
inferred from click-through data. In our case, it depends on
the Markov chain underlying the query-flow graph, with the
complication that this is itself perturbed by the addition of
recommendation links, thus modifying the objective func-
tion itself and complicating the optimization task; iii) the
approach of [5] requires knowledge about user trails which
is collected from toolbar data, while our approach relies on
query-log data.

3. USER-BEHAVIOR MODEL

3.1 Query reformulation graph
Users interact with a search engine in sessions. During a

session, a user submits a sequence of queries within a rea-



sonably short time interval. It is clear that, defined in this
way, a session may consist of a sequence of topically-related
queries, or it may contain unrelated queries, corresponding
to unrelated tasks performed by the same user during that
period. More precise and refined definitions of user sessions
have been proposed in the literature [10,14]. In our experi-
ments we will use search goals as defined in [10], which are
sequences of queries with the same atomic intent.

The query-flow graph [3] is a directed graph G = (V, E).
Nodes in V represent queries plus one special symbol t indi-
cating the end of a search goal in our case. Let |V | = n. The
edges E ⊆ V × V of the query-flow graph represent query
reformulations done by users.

We also associate a Markov chain to the query-flow graph.
In particular, let Pn×n be a row-stochastic matrix, arranged
so that its last row represents session end t. Accordingly,
Pn,i = 0 ∀i 6= n,Pn,n = 1, so that the only possible transi-
tion from the terminal state is a self-loop. The other transi-
tion probabilities of P can be estimated either (i) as observed
reformulation frequencies, or (ii) by a machine-learning al-
gorithm that uses many types of features; see [3] for details.

When a user submits a query q ∈ V , we expect that,
in the absence of any query recommendation, the user will
submit the next query according to the distribution Pq,· —
the q-th row of matrix P. In other words, we assume that
the users’ querying behavior is modeled by a random walk
on the matrix P. Let τq = Pq,n, the probability that a user
will terminate her session at query q, possibly after clicking
on a search result for q.

In the remainder, we let w : N → R represent node
weights, so that w(q) provides a quantitative indication of
the intrinsic value of query q to the users (or to the search
engine, as we see later). We will assume w(t) = 0, given that
t is not an actual query. The generic weight w(q) models the
quality of a query q, for instance, how satisfied a user is with
the result list obtained upon submitting query q. Obviously,
it is impossible to know if a user is satisfied or not from the
results of a query. However, we can use cheap proxies avail-
able in the query logs, such as clicks to search results, dwell
time, etc. Another option for setting the weights w(q) is to
consider the monetization of a query q, which can be also
estimated by query-log analysis, for instance by the clicks
to advertisement links. We can also consider combinations
of the two. Finally, other options are possible and in this
paper, we are completely agnostic about the interpretation
of the weights w(q).

3.2 Query-recommendation model
The Markov chain P models the behavior of users re-

garding query reformulations when they are not shown any
query recommendations. When users are shown recommen-
dations, their behavior can change in complex ways. Defin-
ing sound and reasonably simple models for estimating tran-
sition probabilities between queries in the presence of recom-
mendations is important when investigating effective query
recommendation strategies. Naturally, any proposed query-
recommendation model has to be validated with respect to
real query-log data.

In general, providing recommendations to a query q in-
duces a perturbation of P. In the remainder, we assume
that this perturbation only affects Pq,·, leaving other rows
unaffected. We emphasize that this assumption and others
that follow are consistent with experimental observations,

as shown further in Section 6. Correspondingly, the per-
turbation induced by adding a set of recommendations Q
to q can be described by a set of values ρP

q,q′(Q) ∈ [−1, 1],
which in general depend on P and Q. In the remainder,
we drop P (and possibly Q) from ρP

q,q′(Q) when clear from
context. As a result, if a set of queries Q is recommended
to users who submit q, the change induced for the matrix
P is described by P′

q,· = Pq,· + ρP
q,·(Q) (so actually we have

that −Pq,q′ ≤ ρP
q,q′(Q) ≤ 1 − Pq,q′). Note that this defi-

nition provides a pretty general framework that can model
complex interactions, such as cases of negative dependence
in the transition probabilities to similar queries. Of course,
a perturbation of Pq,· affects Pq,t = τq. More precisely,
τ ′

q = P′
q,t = 1 −

P

q′∈V \{t} P′
q,q′ .

For the sake of exposition, in the rest of the paper we as-
sume a model in which transition probabilities associated to
recommendations depend on the set Q of recommendations
and P, but not on the order in which queries are recom-
mended. Furthermore, we restrict to scenarios in which a
query appears at most once in Q (i.e., Q is not a multiset).
In fact, our results extend to these more general settings as
well.

Properties of query-recommendation models. Obvi-
ously when the user is at query q, it does not pay off to
recommend q itself, so ρq,q(Q) = 0, if q ∈ Q. We also make
other assumptions about the properties of the recommenda-
tion model: (i) ρq,q′(Q) ≥ 0, for all Q and q, q′ 6= t, q′ ∈ Q,
that is, we expect an increase in the transition probabilities
of the queries being recommended.

We also assume that recommending a query does not af-
fect the transition probabilities for other queries (except pos-
sibly the termination node t). Namely, we state property (ii)
as follows: ρq,q′(Q) = 0 if q′ 6∈ Q, for all Q and q, q′ 6= t. If
properties (i) and (ii) hold, then we also have the following
property: (iii)

P

q′∈V ρq,q′(Q) ≤ τq for all Q and q, q′ 6= t

also holds, since the matrix P′ has to be row stochastic.
Thus, recommending queries for a query q reduces the prob-
ability of a session terminating at q.

Empirical observations. The properties we state in the
previous paragraphs are motivated by our findings and ex-
periments on real query-log data. Those experiments are
discussed in detail in Section 6.3. Our main finding is the
verification of properties (i) to (iii), that is, the fact that
adding recommendations to a query reduces the termination
probability associated to the query, without significantly af-
fecting other transition probabilities.

For example, we observe that, in the presence of rec-
ommendations, termination probabilities are reduced from
τq ≈ 0.90 to τ ′

q ≈ 0.84, while at the same time, we observe

that
P

q′ ρP
q,q′(Q) ≈ 0.06, thus supporting assumption ii)

above. Details are given in Section 6. In addition our ex-
perimental results suggest an even simpler model, in which
the values ρP

q,q′(Q) depend linearly on the values Pq,q′(Q).

4. PROBLEM STATEMENT
The general problem we are interested in is assisting users

to formulate queries by suggesting query reformulations of
potential interest and biasing the query graph navigation
towards queries of higher value. Henceforth, we assume
that we can provide at most k recommendations per query.
The restriction to k recommendations per query represents
screen real-state constraints.



4.1 Problem input
We assume we can estimate ρP

q,q′(Q); determining these
values itself an interesting but difficult statistical problem,
and outside of the scope of this paper. Supported by ex-
perimental observation, we will use an estimate based on a
linear function of the Pq,q′(Q)’s.

We also assume we can estimate w(q). Estimating this
quantity can be hard, e.g., when it corresponds to estimat-
ing CTR on ads, or even harder when it estimates user satis-
faction [9]. For our experiments we used click-through-rates
as a proxy, as we have observed consistently that the ma-
jority of clicked documents are relevant for user’s interests;
however, our framework is general and other functions can
be used.

4.2 Objective functions
As we mentioned in the introduction, we consider query-

recommendation as an optimization problem, for which we
next define plausible objective functions. As we mentioned
in Section 3.1, every node in the query graph has an asso-
ciated weight representing its intrinsic value. Depending on
the application of interest, we can define a utility function
U(·), which associates a utility to every user session, typi-
cally a function of the weights of nodes visited during a user
session on the query graph. Let path(q) be the (non neces-
sarily simple) path that the user follows in the query graph,
with qt being the last one (before terminating by visiting t).

Two natural choices for U(·) are

• U(path(q)) =
P

q′∈path(q) w(q′); and

• U(path(q)) = w(qt).

The first choice can capture scenarios such as maximizing
total user satisfaction through the entire session (by setting,
for example, w(·) to be the number of clicked results), maxi-
mizing revenue by displaying ads or minimizing user session
lengths (by setting the weights to −1). The second choice
can capture user satisfaction by setting, for example, w(·)
to 1 if the last session terminates with a user clicking to a
result.

We are now ready to formally define the optimization
problems that we consider in this paper.

Multi-step query recommendation. In the general prob-
lem, users start their navigation at an initial state according
to some distribution π0, whose i-th component we denote by
π0i. In the remainder, we sometimes need to consider the
special case in which π0 = eq for some q ∈ {1, . . . , n − 1},
with eq the q-th canonical column vector. Given the transi-
tion matrix P of the underlying query graph, perturbation
functions ρP

·,·(·), a utility function U(·) and a positive in-
teger k, we seek a strategy for recommending at most k
queries per node so as to maximize the expected utility for
a user starting at any query in the query graph, that is,
Pn−1

i=1 π0iE
P ′

[U(path(i))], where P′ is such that, for every
q, P′

q,· = Pq,· + ρq,·(Q(q)), with Q(q) the set of queries rec-
ommended at q, while the expectation is taken with respect
to the perturbed stochastic matrix P′.

Single-step query recommendation. A simpler version
of the problem is when the search engine can only affect the
user trajectory at the initial step, but not afterwards. This
case can correspond to users issuing a query as a starting
point for browsing.

More in detail, we focus on a particular query q. Our
goal in this case is to recommend at most k queries to
users visiting q, (i.e., add at most k links leaving q in the
query graph), so as to maximize the expected utility af-
ter the perturbation. Note that we still want to maximize
Pn−1

i=1 π0iE
P ′

[U(path(i))], but with the constraint that only
the q-th row of P is modified, i.e., Q(q′) = ∅, for q′ 6= q.

5. ALGORITHMS
We next address the problem of solving the multi-step and

the one-step query optimization problems. We first show
that both versions are NP-hard and we then look at heuris-
tics for solving both versions of the problem.

5.1 Solving the problem
Complexity. The query recommendation problem is NP-
hard in general. In fact, it is possible to prove that even
the single-step query recommendation problem is NP-hard.
This is stated in the following.

Theorem 5.1. Both the multi-step and the single-step rec-
ommendation problems are NP-hard.

The proof follows from the fact that we can encode a
maximum-coverage problem instance just in the function ρ.
The details are omitted due to space constraints and will
appear in an extended version of this paper.

Optimizing multi-step query recommendations. We
recall from Section 4.2 that our optimization objective is

maximizing
Pn−1

i=1 π0iE
P ′

[U(path(i))], π0 being the initial
distribution of starting queries. In fact, this can be a very
difficult task and many questions remain open for the mo-
ment. For example, we show in Subsection 5.2 that the
solution for the single-step case is independent of the ini-
tial distribution. It is not clear if this result carries over to
the multi-step case: the optimal solution might in principle
depend on the initial distribution and the set of recommen-
dations chosen at one node might in the optimal solution
depend on the choices performed at other nodes in complex
ways. In our quest for application realistic solutions, we
propose below a heuristic in which choices are performed
independently for every node of the query-flow graph. To
this purpose, first notice that, in the special case π0 = eq for
some q, we can write the optimization problem for random
walks starting at node q as follows:

max
P′

EP′

[U(path(q))] =

max
P′

0

@w(q) +
X

q′∈V \{t}

P′
q,q′ · EP′

[U(path(q′))]

1

A ,

or

max
P′

EP′

[U(path(q))] =

max
P′

0

@τ ′
qw(q) +

X

q′∈V \{t}

P′
q,q′ · EP′

[U(path(q′))]

1

A ,

according to which of the utility functions defined in Section
4.2 we consider. The first corresponds to the case that the
utility equals the sum of the weights in the path, while the
second to the case that the utility equals the weight of the



last node before termination. We focus on the first case as
the second one is similar. Instead of maximizing

max
P′

0

@w(q) +
X

q′∈V \{t}

P′
q,q′ · EP′

[U(path(q′))]

1

A ,

we perform a one-step approximation and we maximize the
expression

max
P′

0

@w(q) +
X

q′∈V \{t}

P′
q,q′ · EP[U(path(q′))]

1

A

= max
P′

q·

0

@w(q) +
X

q′∈V \{t}

P′
q,q′ · EP[U(path(q′))]

1

A ,

where the equality now follows since the EP[U(path(q′))]’s
do not depend on the perturbation. We call this the one-
step approximation because we assume that the system will
perform recommendations only in the current query q and
not in the subsequent user’s browsing session. Now we only
need to compute the expressions Vq′

.
= EP [U(path(q′))] and

write for each query q′:

Vq′ = w(q′) +
X

q′′∈V \{t}

Pq′,q′′ · Vq′′ .

This gives a set of n linear equation with n unknowns so we
can compute all the values Vq′ = EP [U(path(q′))] simul-
taneously. We can therefore cast the problem as trying to
maximize

max
P′

0

@w(q) +
X

q′∈V \{t}

P ′
q,q′ · Vq′

1

A ,

for known values Vq′ . This decomposition allows us to solve
a large number of scenarios.

5.2 Single-step query recommendations
In this section, we consider the single-step query recom-

mendation problem2. Given a query q, our goal is to choose
a set Q of at most k recommendations to propose to users
viewing q’s search engine results, so as to optimize some
utility function.

In the remainder of the paper, we label queries q1, . . . , qn−1

and we assume P’s i-th row corresponds to qi. Our goal

is to optimize EP′

[U(path(q))], where P′ is the perturbed
matrix, and for utility we use the second definition of Sec-
tion 4.2, where the utility is the weight of the last query
before termination. We assume properties (i)-(iii) described
in Section 3.2 hold, so that the perturbation only affects the
row of the initial matrix P corresponding to q. Note that P̃
has the following structure:

P =

„

P̃ Pn

01×n−1 1

«

,

where P̃ is sub-stochastic (elements are nonnegative and the
sum of the rows is at most 1) and Pn is an (n−1)×1 column
vector whose i-th component is the termination probability
at qi. We denote by π0 ∈ [0, 1]n−1 the initial distribution,

2All proofs of this subsection are omitted for the sake of
space and will appear in the full version of the paper.

that is, the i-th component of π0 gives the probability that
the random walk starts at qi (we assume that the probability
to start at the terminating state qn is 0 and we consider
the probability distribution over the rest of the states). We
further define π as the (n − 1)-dimensional column vector
whose i-th component gives the probability that qi is the
last query visited by the user in her random walk over the
query-flow graph. Note that we are interested in real queries,
so we omit the component of this vector corresponding to
the absorbing state of the Markov chain. Let ei be the i-th
canonical column vector. We denote by πl the above defined
probability vector when π0 = el.

Assume that we add recommendations to the j-th node qj

of the query graph. We let P̂ denote the perturbed version
of P̃ and P̂n be the perturbation of Pn. This means that
P̂in = Pin if i 6= j, while P̂jn = Pjn −

P

qs∈Q ρjs. First
we prove the following fact, which describes an important
property of optimal solutions.

Fact 5.2. Assume we add a set Q of recommendations at

qj, |Q| ≤ k, so as to maximize
Pn−1

i=1 π0iE
P′

[U(path(qi))],
where P′ denotes the perturbed matrix. Then, the optimal
solution is independent of π0.

The proof of Fact 5.2 shows that optimizing EP′

[U(path(π0))]

amounts to maximizing
Pn−1

s=1 [(I− P̂)−1P̂n]jsw(s). On the

other hand, given P̃, qj , the ρjl’s and the weights, this is
solely a function h(Q) of Q, the set of recommendations:

h(Q) =

n−1
X

s=1

[(I − P̂)−1P̂n]jsw(s).

We provide a simple greedy algorithm to maximize h(Q) and
we prove that it performs close to optimum in all cases of
practical interest.

Algorithm SSQR-Greedy

Require: query qj, ρjl (l = 1, . . . , n − 1), integer k

1: U = V - {t, qj}
2: Q = ∅
3: while |Q| < k AND (∃ l: EP[U(path(el))] > w(j))

do

4: i = arg maxl:ql∈U{ρjl(E
P[U(path(el))] − w(j))}

5: Q = Q ∪ {qi}
6: U = U - {qi}

Figure 1: Greedy algorithm for single-step query
recommendation.

The algorithm is given in Figure 8 and it requires the
computation of the expected utility achieved by a random
walk starting at ql, for l = 1, . . . , n − 1, computed with
respect to the unperturbed matrix P. These quantities can
be pre-computed once for all and require the computation of
(I − P̃)−1Pn. Denote by QALG and QOPT the algorithm’s
and the optimum’s choices for Q. Algorithm SSQR-Greedy

achieves a performance that is close to optimum in cases of
practical relevance, as shown by the following

Theorem 5.3. Let x = maxQ

P

ql∈Q

ρjl

Pjn
πl

j. Then:

h(QALG) ≥ (1 − x)h(QOPT ).

Note that, in practice, x should be small for most non-
pathological instances, (possibly, x << 1). In fact, it is



possible to prove that the generic x(Q) = 1
Pjn

P

ql∈Q ρjlπ
l
j

is, up to the factor 1/Pjn, the probability that a random
walk starting at qj follows one of the recommendations as a
first step and then proceeds for an arbitrary number of steps
along a possibly non simple path, terminating at qj itself.
On the other hand, Pjn can be large in practice, as shown
in Figure 2(a).

The case of no incoming links. Note that, when qj has
no incoming links in the unperturbed Markov chain, the so-
lution provided by Algorithm SSQR-Greedy is optimal. This
trivially follows by observing that, no matter which is the
set Q of recommendations chosen by the algorithm, we have
x(Q) = 0 in this case. This in turn is a consequence of the
considerations in the last paragraph above. In particular, in
this case a random walk starting at ql has zero probability of
terminating at qj . We already observed in Section 4.2 that
this case is of practical interest in the case of search done as
an initial step for browsing, for example.

6. EXPERIMENTS TO DETERMINE USER
BEHAVIOR

In this section we present the dataset we used and our
modeling approach. We mention again that our main goal
is to design a fairly accurate but simple model to use for our
optimization purposes.

6.1 Experimental framework
Dataset. In mid-2009, we carried out an experiment on
the search engine results page, for a small fraction of users.
In this experiment, we removed the query recommendations
(labeled “Also try ...” in the user interface) from the top of
the page. As a control group, we sampled a similar amount
of normal sessions from the same period of time.

We processed the search sessions to segment them into
search goals [10], which are sequences of queries correspond-
ing to an atomic information need, containing a median of
2 queries. Next, we aggregated information in a query-flow
graph, by considering for every pair of queries, all the ses-
sions in which those queries appear consecutively.

In the user-behavior characterization results below, we se-
lected queries q having frequency freq(q) ≥ 50 and having
at least 15 non-terminal transitions:

P

q′ 6=t freq(q, q′) ≥ 15.
We also discarded queries that generated spell suggestions,
to avoid confusing spell correction with query recommenda-
tion. Finally, we kept only the queries that matched these
conditions in both the experiment and the control group.

6.2 Impact of reformulations on the termina-
tion probability

The termination probability (the probability of stopping
a search session at a query) depends on a number of factors,
as it conflates both successful and unsuccessful queries. We
observe that in general the more frequent a query is, the
higher its termination probability, as shown in Figure 2(b).

With respect to the effect of query recommendations on
this probability, it is clear that recommendations reduce
the termination probability, as shown in Figure 2(a). For
this query sample, without query recommendations in most
cases the termination probability is between 0.8 and 1.0.
When query recommendations are shown, the termination
probability is between 0.6 and 1.0, with E[τq] ≈ 0.90 and
E[τ ′

q] ≈ 0.84.

(a) Drop in termination
probability

(b) Frequent queries tend to
have higher τq

Figure 2: Drop in termination probability with rec-
ommendations. τ ′

q can be approximated by a linear
function of τq

The relationship between τq and τ ′
q can be roughly ap-

proximated by a linear function, as shown in Figure 3(a):
τ ′

q ≈ 0.9τq. The linear model fits well this data, with Pear-
son’s correlation coefficient r = 0.82. In this and the follow-
ing plots, each point is a query and the size of its circle is
proportional to its frequency in the data.

Actually the drop in the termination probability observed
in Figure 2(a) can be explained almost completely by the
clicks on the query recommendations, as τ ′

q ≈ τq−0.8
P

q′∈Q ρq,q′

(r=0.95).
Finally, if we were to predict the termination probability

based on the behavior of users in the absence of recommen-
dations, we could state the model τ ′

q ≈ τq − 0.7
P

q′∈Q Pq,q′

(r=0.82); which basically arises from the correlation with
the termination probability. The plot looks very similar to
Figure 3(a) and is thus omitted.

We also gathered two sets of weights for the queries. The
first is a proxy of user’s satisfaction and is the click-through
rate of organic search results in the page returned by the
search engine when the user performs the query. The second
is a proxy for revenue for the search engine and it is the
click-through rate of advertising in the page returned by the
search engine when the user performs the query. These two
sets of weights will be the weights w(q) that we use in our
experiments.

6.3 Impact of recommendations on query tran-
sitions

With recommendations, we observe that 98.7% of the rec-
ommended queries at position 1 increase their transition
probability with respect to the control group. On the other
hand, the distribution of reformulations to queries that are
not recommended (q′ /∈ Q) remains basically equal. We
measured the Jensen-Shannon divergence between the prob-
ability distribution of the transitions to non-recommended
queries, and it is on average 0.03 with 95% of the query pairs
having a divergence of less than 0.08.

We are also interested in finding ρq,q′ given Pq,q′ . It turns
out that ρq,q′ depends on a number of factors, and sim-
ple models based only on termination probability do not
perform well. For instance, if we look at the sum of the
perturbations,

P

q′∈Q ρq,q′ ≈ 0.4 − 0.4τq + 0.4
P

q′∈Q Pq,q′

(r=0.51), shown in Figure 3(c).
A simple model is the following: ρq,q′ ≈ 0.2 − 0.2τq +

0.6Pq,q′ (r=0.41). Basically, the recommendation will be



(a) τ ′
q = f(τq) (b) τ ′

q = f(τq,
P

ρq,q′)

(c)
P

ρq,q′ = f(τq,
P

Pq,q′) (d) ρq,q′ vs Pq,q′

Figure 3: The drop in the termination probability
can be explained almost completely by the clicks in
the recommended queries

more clicked if the recommended query is done more fre-
quently by users. However we have to point out that this
does not hold deterministically, and for instance there are
some queries with Pq,q′ = 0 that have ρq,q′ > 0, as shown
in Figure 3(d).

We computed several lexical features for each query pair,
following [3], and found that if J(q, q′) is the Jaccard co-
efficient between the sets of character tri-grams of query
strings q and q′ (capturing basically if the queries are lexi-
cally related), then ρq,q′ ≈ 0.2−0.2τq +0.8Pq,q′ +0.1J(q, q′)
(r=0.50). Basically this model incorporates the fact that
people will click on suggested queries that are similar (lexi-
cally) to their original query.

6.4 Correlation of w(q′) with Pq,q′

Before attempting to solve the optimization problem, we
may first ask if users naturally select queries with high weight
on their own. Formally, for a fixed q, is P (q, q′) ∝ w(q′)?
It does not seem to be the case. If we measure the corre-
lation coefficient between these two values for a fixed query
q, we observe an average correlation of around 0.1. More
generally, even when we look at the relationship between
w(q′) and w(q) for pairs of reformulations done by users,
we observe that users are not consistent in reformulating to
either queries with higher or lower click-through rates than
the queries they are at currently.

7. EXPERIMENTS COMPARING RECOM-
MENDATION ALGORITHMS

We present below the results of experiments comparing
our heuristic with various other natural candidates.

7.1 Problem instances

Dataset We took the top 420 queries by frequency and then
followed all possible reformulations observed in the query-
log up to distance 5 (distance=1 are direct reformulations).

We used the two sets of weights described in Section 6.1.
In terms of utility function we consider both approaches of
Section 4.2. For the experiments where we use the set of
weights corresponding to the click-through rate of organic
search results, the utility equals the click-through rate of
the last page before termination – this gives an indication
of the user’s satisfaction during her search session. For the
experiments where we use the set of weights corresponding
to sponsored advertisements, the utility of the user’s walk
on the graph equals the sum of the weights of the queries
visited – this is a proxy of the total revenue gathered by
the search engine. For a more detailed description of these
objective functions refer to Section 4.2.

In the next two sections, we compare the performance of
our approach with other natural heuristics, by using histor-
ical results in the next section and then by performing a
user study. Our goal is two-fold. First we want to examine
whether simpler approaches can also optimize the expected
future utility as much as our approach optimizes. Second,
since we optimize not only over the next step but over the
entire session, we measure if we decrease the quality of the
immediate recommendations. It is clear that, in general,
our algorithms might not be the best possible with respect
to the quality of the next recommendation suggested, for
which other heuristics, explicitly designed to this purpose,
might prove more effective.

Interestingly, our experimental analysis shows that our
algorithms are significantly better than other heuristics with
respect to the optimization goals we pursue, at the same
time providing next-step recommendations whose quality is
comparable to that achieved by heuristics that are explicitly
designed to this purpose.

7.2 Comparison of our approach with other
heuristics

First we examine to what extent other natural heuristics
optimize the objective that we are trying to optimize, the
xpected future utility. We consider three different heuris-
tics. The first is to recommend the k queries that have the
highest weight. The second imitates a simple recommenda-
tion systems and it recommends the k queries that have the
highest recommendation probability, that is, the queries qℓ

with highest value ρjℓ, assuming that the current query is
query qj . Finally, the third heuristic combines the previ-
ous two and it recommends the k queries that maximize the
quantity ρjℓ ·w(ℓ), in other words the queries that maximize
the expected utility of the next query.

In Figure 4 we can see the comparison of the aforemen-
tioned three heuristics with our method when we perform
k recommendations (Figure 4(a) shows the case of k = 5,
while Figure 4(b) the case of k = 3). To create each plot
we consider each query and we compute the top-k recom-
mendations according to the various heuristics. For each
recommendation we compute the expected future value. In
fact, since this value is expensive to compute, we approxi-
mate it with the one-step heuristic of Section 5.1 (note that
this is also the quantity that our approach maximizes). Af-
ter computing these values we sum them for each query and
then we consider the distribution over all queries. The plots
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Figure 4: Average sum (over the top-k recommen-
dations) of the expected weight of the last query
before termination. Expected values approximated
using the 1-step heuristic. Weights correspond to
click-through rate of the organic search results.
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(b) Top-3 recommendations

Figure 5: Average sum (over the top-k recommen-
dations) of the expected sum of the weights of the
queries. Expected values approximated using the 1-
step heuristic. Weights correspond to click-through
rate of the sponsored advertisements.

in Figure 4 are the box-and-whisker diagrams of those dis-
tributions. Recall that for the organic results utility of a
path is the weight of the last query before termination, and
in this particular experiment, the click-through rate (of or-
ganic search results) on the resulted page after the users
performed the query.

By definition our heuristic performs better than the al-
ternatives, so what the plots are depicting is whether more
standard and “myopic” solutions suffice, or our method per-
forms much better. From the plots we see that the three
simple heuristics perform similarly, and indeed, much worse
than our proposed solution. The overall improvement is
about 45%.

In Figure 5 we see the corresponding plots for the adver-
tising scenario, namely when query weights correspond to
the click-through rates on ads on the corresponding result
pages, and when the utility is the sum of the weights of the
pages that the user visited. Again we see that other heuris-
tics cannot achieve the performance of ours, our heuristic
giving values that are from 57% to 87% higher than the
next best heuristic.

While in this paper we make the case that we should op-
timize query recommendations for the entire user session,
nevertheless we would ideally not present recommendations
to the user that appear significantly worse to the user, even
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Figure 6: Sum of the weights of the top-k recom-
mendations. Weights correspond to click-through
rate of the organic search results.
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Figure 7: Sum of the weights of the top-k recom-
mendations. Weights correspond to click-through
rate of the sponsored advertisements.

if they provide better future results. In the case that the
weight of a query is a measure of the user satisfaction (e.g.,
when the weight is the click-through rate of the correspond-
ing pages as in our first experimental scenario) we would
like the weight of the recommended queries to be large for
our heuristic as well. It is not hard for someone to construct
Markov chains where this can happen, and in fact, in gen-
eral the one-step heuristic will perform poorly under this
measure. In Figures 6 and 7 we see that this can happen in
practice as well: the weights of the queries recommended are
much lower than the best possible. To explore this matter
more, we perform a user study in the next section, to mea-
sure the extent to which optimizing over the entire future
reduces the quality of the immediate recommendations and
to examine to what extent a lower weight corresponds to a
much lower user satisfaction.

7.3 User study
To address the issues raised at the end of the previous

subsection, we conducted a user study to test if the rec-
ommended queries are acceptable as recommendations to
users. For this, we ran our approach and the heuristics and
compared the top-3 recommendations side-by-side. We then
paired systems at random and showed to an assessor: (i)
the original query, (ii) the top-3 recommendations gener-
ated by one system, and (iii) the top-3 recommendations
generated by the other system. The identity of the system
used for generating each recommendation was not present
in the interface. For each query (original, or recommended),



we asked a web search engine to retrieve the top-3 results,
which were also shown to provide some context about the
query and the recommendations.

We asked the panel of assessors (3 of the authors of this
paper) to answer: which system provides better recommen-
dations?. The options were (a) the first set is better, (b) the
second set is better, (c) both sets are similar. We collected
980 such assessments.

This assessment task was highly subjective and Cohen’s
κ statistics of the inter-assessor agreement (on a set of 50
queries for which their assessments overlapped) shows κ =
0.61 which can be interpreted as a substantial level of agree-
ment.

Considering the cases in which the assessors declared one
set of recommendations to be better, we observed that the
method based on ρw out-performed the method based on ρ
in about 59% of the cases in which they were paired, which
is significant at p = 0.03. For the other pairs of systems,
we did not observe a significant (p < 0.1) advantage of one
system over the other.

These results suggest that the recommendations gener-
ated by our method, are not perceived as being worse or
better by users, while still leading them through paths that
have significantly larger utility.

8. CONCLUSIONS
We have shown an approach to query recommendation

that is based on casting this problem in an optimization
framework, in which we perturb users’ query-reformulation
paths to maximize the expected value of some suitable util-
ity function defined over search sessions. We defined two
utility functions which, respectively, formalize the goals of
reaching a valuable destination or traversing many valuable
nodes. We have shown that this problem is in general NP-
hard, but that we can provide effective and efficient approx-
imation algorithms for it, with provable performance in sig-
nificant cases. Finally, we have implemented our approx-
imation heuristics and tested them on real test sets, also
carrying out a user study that confirms that our techniques
can be used to generate query recommendations that are
perceived similar in quality to what users would consider
more relevant to their search goals, but that at the same
time bias users’ browsing along reformulation paths that
achieve a much higher utility than without such assistance.

Both our modeling framework and our solution approach
are general and can be applied to various settings by modify-
ing the interpretation of weights, the exact definition of util-
ity, the transition probability matrix, and so on. And while
our initial motivation was the query reformulation problem,
we believe that it can be applied to other settings in which
users’ behavior can be modeled as a Markov process.

Two key aspects of our method require further develop-
ment: the way of assessing the utility of individual queries
and the model for estimating the response of the user in the
presence of query reformulations. The methods we have de-
scribed in this paper can benefit from future improvements
in these two areas. Another interesting question is the in-
corporation of diversity in the entire framework. On the
theoretical side, providing an approximation algorithm for
the general multi-step recommendation problem seems to be
the hardest open problem.
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APPENDIX

A. NP-COMPLETENESS
Theorem 5.1.

Proof. The proof follows from the fact that we can en-
code a problem instance just in the function ρ. For com-
pleteness we provide the details, by reducing the maximum
coverage problem to it. (In the maximum coverage problem
the input is a set of n elements, m sets where each set covers
a subset of the elements, and an integer k < m. The ob-
jective is to return k sets that cover the maximum number
of elements.) Given an instance of the maximum coverage
problem, we create a graph with m + 1 queries {q0, . . . , qm}
and a terminal state t. For all i we set Pij = 1 if j = t and
0 otherwise. Also we set w(q0) = 0 and w(qi) = 1, for i ≥ 1.
We assume that the user is initially at query q0 and we can
add k recommendations to each query.

To encode the maximum coverage problem to the ρ func-
tion we set ρqi,qj (Q) = 0 for all i ≥ 1 and all j, Q. For the
initial query q0 we set

ρq0,qj (Q) =
number of elements covered by the sets in Q

nm
.

If the recommendations from q0 is the set Q, then the total
expected utility from node q0 is

X

qj∈Q

ρq0,qj w(j)

since from any other query the set of recommendations does
not affect the expected value. This equals to

k
number of elements covered by the sets in Q

nm
.

Subject to the conditions that we make no more than k
recommendations, this quantity is maximized when we chose
the k queries corresponding to the sets that cover the most
elements.

B. SINGLE-STEP QUERY RECOMMENDA-
TIONS

In this section, we consider the single-step query recom-
mendation problem. Given a query q, our goal is to choose
a set Q of at most k recommendations to propose to users
viewing q’s screenshot, so as to optimize some utility func-
tion. We have already seen in Subsection 5.1 that the single-
step recommendation problem is NP-hard.

In the sequel, we label queries q1, . . . , qn−1 and we assume
P’s i-th row corresponds to qi. Our goal is to optimize

EP′

[U(path(q))], where P′ is the perturbed matrix, and for
utility we use the second definition of Section 4.2, where the
utility is the weight of the last query before termination.
We assume properties (i)-(iii) described in Section 3.2 hold,
so that the perturbation only affects the row of the initial
matrix P corresponding to q. From the definitions given in
Section 3.1, we also have that:

P =

„

P̃ Pn

01×n−1 1

«

,

where P̃ is sub-stochastic (elements are nonnegative and the
sum of the rows is at most 1) and Pn is an (n−1)×1 column
vector whose i-th component is the termination probability
at qi.

In the sequel, we denote by π0 ∈ [0, 1]n−1 the initial dis-
tribution, that is, the i-th component of π0 gives the prob-
ability that the random walk starts at qi (we assume that
the probability to start at the terminating state qn is 0 and
we consider the probability distribution over the rest of the
states). We define π(t) as the (n − 1)-dimensional column
vector whose i-th component gives the probability that qi

is the last query visited by the user and this event occurs
at step t. Note that we are interested in real queries, so
we omit the component of this vector corresponding to the
absorbing state of the Markov chain. Let ei be the i-th
canonical column vector. We denote by πl(t) the above de-
fined probability vector when π0 = el. We further denote
by π the overall distribution of the termination probability,
so that πi =

P∞
t=0 πi(t).

3

In the sequel, assume that we add recommendations to
the j-th node qj of the query graph. We let P̂ denote the

perturbed version of P̃ and P̂n be the perturbation of Pn.
This means that P̂in = Pin if i 6= j, while P̂jn = Pjn −
P

qs∈Q ρjs. First we prove the following fact.

Fact B.1. Assume we add a set Q of recommendations at

qj, |Q| ≤ k, so as to maximize
Pn−1

i=1 π0iE
P′

[U(path(qi))],
where

P′ =

„

P̂ P̂n

01×n−1 1

«

,

Then, the optimal solution is independent of π0.

Proof. Our first task is to derive an explixit expression
of the perturbed termination probability vector π̂(t) (π̂(t) is
defined similarly to π(t) with the difference that it depends
on matrix P′ instead of P). To this aim, we note that, for
every i, π̂i(t) is the sum of the probabilities of all walks on
the Markov chain that (i) bring from any of the possible ini-
tial nodes to qi in t steps and (ii) have a final transition from
qi to the absorbing state qn. Note that by this definition qn

is only traversed once, precisely in the final transition. As
a result, we have π̂(t)T = πT

0 P̂tP̂n. Furthermore, we can
express π̂(t) as π̂(t) = π(t) + π̃(t). π(t) and π̃(t) are such
that πi(t) gives the probability that the random walk ter-
minates at qi without ever traversing qj , while π̃i(t) gives
the probability that the random walk terminates at qi after
traversing qj at least once. We naturally set π =

P∞
t=0 π(t)

and we define π̃ analogously.
It is straightforward to see that π does not depend on

P̂j·, hence the effect of the perturbation is on π̃ alone. Now,
π̃(t) =

Pt

l=0 π̃(t, l) where, for every i = 1, . . . , n − 1, π̃i(t, l)
denotes the probability that (i) the session terminates at
qi and (ii) it traverses qj for the first time after l steps.

Let I denote the matrix obtained from the identity ma-
tric I by setting to 0 the entry in position (j, j) and let

3The probability of terminating the session at qi is the prob-
ability of terminating it at any of the possible infinite steps.
Note that the corresponding events are disjoint.



Ĩ = I − I. We then have: π̃(t, l) = πT
0 I(P̂I)l−1P̂ĨP̂t−lP̂n =

πT
0 (IP̂)lĨP̂t−lP̂n. Here, the first equality follows by consid-

ering that the generic contribution to π̃(t, l) comes from a
path that starts at any node but qj , first traverses qj after l
steps and then for t− l steps follows a random walk starting
at qj . As a result:

π̃ =
∞

X

t=0

π̃(t) =
∞

X

t=0

t
X

l=0

π̃(t, l) =
∞

X

t=0

t
X

l=0

πT
0 (IP̂)lĨP̂t−lP̂n

=
∞

X

l=0

πT
0 (IP̂)lĨ

∞
X

t=l

P̂t−lP̂n =
∞

X

l=0

πT
0 (IP̂)lĨ

∞
X

t=0

P̂tP̂n.

Now, note that IP̂ is the matrix obtained from P̂ by setting
to 0 its j-th row. Also, recall that P̂i· = P̃i·, whenever i 6= j.
As a result,

P∞
l=0 πT

0 (IP̂)lĨ = ceT
j , where c does not depend

on the perturbation (i.e., on P̂j·). Hence, for the expected
utility we have:

EP′

[U(path(π0))] =

n−1
X

s=1

πsw(s) + c

n−1
X

s=1

"

∞
X

t=0

P̂tP̂n

#

js

w(s)

=

n−1
X

s=1

πsw(s) + c

n−1
X

s=1

[(I − P̂)−1P̂n]jsw(s),

where the first equality follows from the observations above,
while the second follows since P̂ is sub-stochastic and its
Neumann series converges to (I−P̂)−1.4 At this point, note

that
Pn−1

s=1 [(I − P̂)−1P̂n]jsw(s) is the expected utility for
random walks starting at qj . Hence, the optimization can
be performed considering only these and the result does not
depend on π0.

The fact above shows that optimizing EP′

[U(path(π0))]

amounts to maximizing
Pn−1

s=1 [(I − P̂)−1P̂n]jsw(s). Note

that, given P̃, qj , the ρjl’s and the weights, this is solely a
function h(Q) of Q, the set of recommendations:

h(Q) =

n−1
X

s=1

[(I − P̂)−1P̂n]jsw(s).

We provide below a simple greedy algorithm to maximize
h(Q) and we prove that it performs close to optimum in all
cases of practical interest.

Algorithm SSQR-Greedy

Require: query qj, ρjl (l = 1, . . . , n − 1), integer k

1: U = V - {t, qj}
2: Q = ∅
3: while |Q| < k AND (∃ l: EP[U(path(el))] > w(j))

do

4: i = arg maxl:ql∈U{ρjl(E
P[U(path(el))] − w(j))}

5: Q = Q ∪ {qi}
6: U = U - {qi}

Figure 8: Greedy algorithm for single-step query
recommendation.

The algorithm is given in Figure 8 and it requires the
computation of the expected utility achieved by a random

4More precisely, the Neumann series of P̃, P̂ and IP̂ con-
verge, since the spectral radius of these matrices is strictly
less than 1. To see this, it is enough to remember that any
matrix norm is an upper bound to the spectral radius and
then consider the norm ‖ · ‖∞.

walk starting at ql, for l = 1, . . . , n − 1, computed with re-
spect to the unperturbed matrix P. These quantities can
be pre-computed once for all and require the computation
of (I − P̃)−1Pn. Algorithm SSQR-Greedy achieves a perfor-
mance that is close to optimum in cases of practical rele-
vance. In particular:

Theorem B.2. Let x = maxQ

P

ql∈Q

ρjl

Pjn
πl

j and α =
1

1−x
. Denote by QALG and QOPT the algorithm’s and the

optimum’s choices for Q. Then:

h(QALG) ≥
1

α
h(QOPT ).

Proof. To prove this result, we first note that P̂ = P̃ +
ejd

T , where di = ρji if qi ∈ Q, di = 0 otherwise. Applying
Sherman-Morrison formula [13, Section 3.8, page 124] we
have:

(I − P̂)−1 = (I − P̃)−1 +
(I − P̃)−1ejd

T (I − P̃)−1

1 − dT (I − P̃)−1ej

= (I − P̃)−1 +
[(I − P̃)−1]·j

P

ql∈Q ρjl[(I − P̃)−1]l·

1 −
P

ql∈Q ρjl[(I − P̃)−1]lj

As a consequence:

[(I − P̂)−1P̂n]j·

= [(I − P̃)−1]j·Pn +
[(I − P̃)−1]jj

P

ql∈Q ρjl[(I − P̃)−1]l·

1 −
P

ql∈Q ρjl[(I − P̃)−1]lj
Pn

−[(I − P̃)−1]jj

X

ql∈Q

ρjl · e
T
j

−
[(I − P̃)−1]jj

P

ql∈Q ρjl[(I − P̃)−1]lj

1 −
P

ql∈Q ρjl[(I − P̃)−1]lj

X

ql∈Q

ρjl · e
T
j ,

where the equality follows by recalling that P̃in = Pin for
i 6= j and P̂jn = Pjn−

P

ql∈Q ρjl and by rearranging terms.

We thus have:

h(Q) =

n−1
X

s=1

[(I − P̃)
−1

]jsPsnw(s)

+
[(I − P̃)−1]jj

P

ql∈Q ρjl[(I − P̃)−1]ls

1 −

P

ql∈Q ρjl[(I − P̃)−1]lj
Psnw(s)

−[(I − P̃)
−1

]jj

X

ql∈Q

ρjl · w(j)

−

[(I − P̃)−1]jj

P

ql∈Q ρjl[(I − P̃)−1]lj

1 −

P

ql∈Q ρjl[(I − P̃)−1]lj

X

ql∈Q

ρjl · w(j)

= E
P

[U(path(ej))] +
[(I − P̃)−1]jj

P

ql∈Q ρjlE
P[U(path(el))]

1 −

P

ql∈Q

ρjl
Pjn

πl
j

−[(I − P̃)
−1

]jj

X

ql∈Q

ρjl · w(j)

−

[(I − P̃)−1]jj

P

ql∈Q

ρjl
Pjn

πl
j

1 −

P

ql∈Q

ρjl
Pjn

πl
j

X

ql∈Q

ρjl · w(j).

Here, the first equality follows from simple algebraic ma-
nipulations. As to the second equality, the first term on the
right-hand side follows since, for every s, [(I − P̃)−1]jsPsn

is the probability of termination at query qs for a random
walk starting at qj . Analogous considerations hold for [(I−

P̃)−1]lsPsn (the probability of termination at qs for random

walks starting at ql). For the sum
P

ql∈Q ρjl[(I−P̃)−1]lj ap-

pearing in the denominators of the second and fourth terms,



note that [(I − P̃)−1]lj equals πl
j/Pjn, with πl

j the overall
probability that a random walk starting at ql terminates at
qj . We can thus write:

h(Q) = E
P

[U(path(ej))]

+
[(I − P̃)−1]jj

P

ql∈Q ρjlE
P[U(path(el))]

1 − x(Q)

−[(I − P̃)
−1

]jj

X

ql∈Q

ρjl · w(j) −
[(I − P̃)−1]jjx(Q)

1 − x(Q)

X

ql∈Q

ρjl · w(j)

= E
P

[U(path(ej))]

+
[(I − P̃)−1]jj

1 − x(Q)

X

ql∈Q

ρjl(E
P

[U(path(el))] − w(j)),

where we set x(Q) = 1
Pjn

P

ql∈Q ρjlπ
l
j . The second equality

follows by rearranging terms. To complete the proof, set

f(Q) = E
P

[U(path(ej))]

+[(I − P̃)
−1

]jj

X

ql∈Q

ρjl(E
P

[U(path(el))] − w(j)),

and note that Algorithm SSQR-Greedy maximizes f(Q),

since EP[U(path(ej))] and [(I − P̃)−1]jj only depend on

P̃ and not on the perturbation. Let x = maxQ x(Q) and
α = 1/(1 − x). We then have:

h(QALG) > f(QALG) ≥ f(QOPT ) ≥
1

α
h(QOPT ).

Here, the third inequality follows since h(Q) and f(Q) have
respectively the form a + b/(1 − x) and a + b, with a and
b non-negative in our case. Since 1 − x is strictly less than
1, it follows straightforwardly that their ratio is less than
1/(1 − x), thus proving the claim.

Note that, in practice, x should be small for most non-
pathological instances, (possibly, x << 1). This follows
since, considered a generic Q, x(Q) = 1

Pjn

P

ql∈Q ρjlπ
l
j is,

up to the factor 1/Pjn, the probability that a random walk
starting at qj follows one of the recommendations as a first
step and then proceeds for an arbitrary number of steps
along a possibly non simple path, terminating at qj itself.
On the other hand, Pjn is pretty large in practice, (0.5 or
larger).

The case of no incoming links. Note that, when qj has
no incoming links in the unperturbed Markov chain, the so-
lution provided by Algorithm SSQR-Greedy is optimal. This
trivially follows by observing that, no matter which is the
set Q of recommendations chosen by the algorithm, we have
x(Q) = 0 in this case. This in turn is a consequence of the
considerations in the last paragraph above. In particular, in
this case a random walk starting at ql has zero probability
of terminating at qj . We already observed in Section 4.2
that this case is of practical interest when recommendations
added at qj take the user to a different search engine.


