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ABSTRACT
Web search engines depend on the full-text inverted index data struc-
ture. Because the query processing performance is so dependent on
the size of the inverted index, a plethora of research has focused on
fast end effective techniques for compressing this structure. Recently,
several authors have proposed techniques for improving index com-
pression by optimizing the assignment of document identifiers to the
documents in the collection, leading to significant reduction in overall
index size.

In this paper, we propose improved techniques for document iden-
tifier assignment. Previous work includes simple and fast heuristics
such as sorting by URL, as well as more involved approaches based
on the Traveling Salesman Problem or on graph partitioning. These
techniques achieve good compression but do not scale to larger doc-
ument collections. We propose a new framework based on perform-
ing a Traveling Salesman computation on a reduced sparse graph ob-
tained through Locality Sensitive Hashing. This technique achieves
improved compression while scaling to tens of millions of documents.
Based on this framework, we describe a number of new algorithms,
and perform a detailed evaluation on three large data sets showing im-
provements in index size.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: Informa-
tion Search and Retrieval.

General Terms
Algorithms, Performance

Keywords
Inverted Index Compression, DocumentID ordering

1. INTRODUCTION
With document collections spanning billions of pages, current web

search engines must be able to efficiently and effectively search multi-
ple terabytes of data. Given the latency demands users typically place
on interactive applications, the engine must be able to provide a good
answer within a fraction of a second, while simultaneously serving
tens of thousands of such requests. To perform this task efficiently,
current web search engines use an inverted index, a widely used and
extensively studied data structure that supports fast retrieval of docu-
ments containing a given set of terms.

The scale of data involved has created on a critical dependence on
compression of the inverted index structure; even moderate improve-
ments in compressed size can translate in savings of many GB or TB of
disk space. More importantly, this reduced size translates into savings
in I/O transfers and increases in the hit rate of main-memory index
caches, offering an improvement in overall query processing through-
put. In many cases, only a small fraction of the inverted index is held
in main memory at a given time. As a result, query processing times
may be dominated by disk seeks and reads for inverted index data.
However, even if the entire index is placed in memory, improved com-
pression results in a reduction in the total system memory required.
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Overall, improved compression translates into improved query pro-
cessing rates on given hardware, an important concern given that a
large search engines could spend many millions of dollars to deploy
clusters for query processing. The direct influence index size exerts
on a search engine’s bottom line has inspired a plethora of research on
compression techniques, leading to substantial improvements in the
compression ratio and speed of search engines. See [25, 1, 19, 14, 26,
17, 24] for some recent work.

In this paper, we focus on a related but distinct approach for improv-
ing inverted index compression, the so-called Document Identifier As-
signment Problem (also sometimes referred to as Document Reorder-
ing). In a typical inverted index structure, documents are referenced
by a distinct integer identifier– a document identifier or docID. The
DocID Assignment Problem is concerned with reassigning docIDs to
documents in a way that maximizes the compressibility of the result-
ing inverted index. Prior work has shown that for many document col-
lections, compressed index size can be substantially reduced through
an improved assignment of docIDs, in some cases by more than a fac-
tor of 2 [23]. However, despite a number of recent publications on this
topic [7, 20, 22, 21, 5, 6, 4, 23], there are still many open challenges.

The underlying idea in producing a good docID assignment is to
place similar documents next to each other in the docID numbering;
this then results in highly clustered inverted lists, where a term occurs
in “streaks” of multiple consecutive documents, punctuated by long
gaps. Such clustered lists are known to be much more compressible
than lists produced by random or unoptimized document assignments.
Previous work has demonstrated the ability of solutions based on ap-
proximations to the Traveling Salesman Problem (TSP) to produce
docID assignments that are superior to the assignments given by many
other approaches [6]. However, the proposed TSP-based solutions are
limited to fairly small data sets; they operate on a dense graph with
O(n2) edges for n documents. Another solution based on graph par-
titioning, proposed in [7] and later evaluated in [22, 6], also perform
well in terms of compression, but is limited to even smaller data sets.
Conversely, it was shown in [21] that simply assigning docIDs to web
pages according to the alphabetical ordering of the URLs perform very
well, and offer almost unlimited scalability.

Our goal in this paper is to illustrate improved techniques for docID
assignments. In particular, we are looking for techniques that scale
to many millions of documents while achieving significantly better
compression than URL-sorting on different types of collections. We
make five main contributions to this end:

1. We present a TSP-based approach for docID assignment that
scales to tens of millions of documents while achieving signifi-
cantly better compression than the URL sorting heuristic given
in [21]. Our approach is based on the idea of computing a sparse
subgraph of the document similarity graph from the TSP-based
approach in [6] using Locality Sensitive Hashing [15, 13], only
running the actual TSP computation on this reduced graph.

2. We discuss and evaluate different edge weighting schemes for
the TSP computation resulting in improved compression. We
also propose an extension of the TSP-based approach that can
optimize the distribution of multi-gaps: gaps larger than 1 be-
tween term occurrences in an document ordering. While such
gaps are not considered by standard TSP-based approaches, they
have a significant impact on the size of the resulting index.



3. We study hybrid schemes that combine ideas from our approach
and the URL sorting heuristic in [21]. We show that selecting
the edges in our reduced graph using both LSH and URL sorting
results in improved compression while simultaneously reducing
computational cost versus the LSH-only approach.

4. We perform an extensive experimental evaluation of our ap-
proaches on several large data sets from TREC, Wikipedia, and
the Internet Archive. Our results show significant improvements
in compression over the URL sorting heuristic in [21], while
scaling to very large data sets.

5. We demonstrate improvements in the compressed size of the
frequency and position data stored in the index in addition to the
benefits for docID compression. Furthermore, we demonstrate
significant improvements in query processing for memory-resident
and disk-based indexes as a result of our techniques.

The remainder of this paper is organized as follows. Section 2 pro-
vides background and a brief survey of previous work. Section 3 de-
scribes our approach for building a reduced graph using Locally Sen-
sitive Hashing. Section 4 explores different edge weight functions,
while Section 5 shows how to optimize multi-gaps. Section 6 provides
experimental evaluation, while Sections 7 consider hybrid algorithms
and Section 8 provides the impact on query processing. Finally, we
present concluding remarks and ideas for future work in Section 9.

2. BACKGROUND AND PRIOR WORK
In this section, we first provide background on inverted indexes and

IR query processing, and discuss index compression techniques. We
go on to discuss prior work on the DocID Assignment Problem in 2.3.

2.1 Inverted Indexes and Query Processing
Let D = {d1, . . . , d|D|} be a set of |D| documents in a document

collection, and let T = {t1, . . . , t|T ||ti ∈ D} be the set of terms
present in the collection. An inverted index data structure I is essen-
tially a particularly useful, optimized instantiation of a term/document
matrix M where each term corresponds to a row and each document
to a column. Here, Mi,j represents the association between term i and
document j, often as a frequency, a TF-IDF score, or as a simple bi-
nary indicator, for all terms ti ∈ T and documents dj ∈ D. Clearly,
this matrix is very sparse, as most documents only contain a small
subset of the possible terms. Conversely, most terms only occur in a
small subset of documents. An inverted index exploits this by storing
M in sparse format – since most entries are 0, it is preferable to just
store the non-zero entries. More precisely, the non-zero entries in a
row corresponding to a term ti are stored as a sequence of column IDs
(i.e., document IDs), plus the value of the entries (except in the binary
case, where these values do not have to be stored). This sequence is
also called the inverted list or posting list for term ti, denoted li.

Search engines typically support keyword queries, thus returning
documents associated with a small set of search terms supplied by
a user. Computationally, this translates to finding the intersection or
union of the relevant rows of M, i.e., the inverted lists of the search
terms, and then evaluating an appropriate ranking function in order to
sort the result from most to least relevant. In many cases, each inverted
list li contains the list of documents containing t and the associated
frequency values, i.e., how often a document contains the term.

Inverted lists are usually stored in highly compressed form, using
appropriate techniques for encoding integer values, given that smaller
integers tend to result in better compression. To decrease the values
that need be encoded, inverted lists are typically gap-encoded, i.e.,
instead of storing the list of raw docIDs of the documents containing
the term, we store the list of gaps between successive docIDs in the
list, called d-gaps.

Query processing in a state-of-the-art search engine involves nu-
merous distinct processes such as query parsing, query rewriting, and
the computation of complex ranking functions that may use hundreds
of features. However, at the lower layer, all such systems rely on

extremely fast access to inverted lists to achieve the required query
throughput. For each query, the engine typically needs to traverse the
inverted lists corresponding to the query terms in order to identify a
limited set of promising documents that can then be more fully scored
in a subsequent phase. The challenge in this initial filtering phase is
that for large collections, the inverted lists for many commonly queried
terms are very long. For example, for the TREC GOV2 collection of
25.2 million web pages used below, on average each query involves
lists with several million postings. This clearly motivates the interest
in improved compression techniques for inverted lists.

2.2 Inverted Index Compression Techniques
The fundamental goal of inverted index compression is to compress

a sequence of integers, be that either a sequence of d-gaps obtained
by taking the difference between consecutive docIDs, or a sequence
of frequency values. In addition, we may deduct 1 from each d-gap
and frequency, so that the integers to be compressed are non-negative
but do include 0 values. We now sketch some known integer compres-
sion techniques that we use in this paper, in particular Gamma Cod-
ing (Gamma) [25], PForDelta (PFD) [14, 26], and binary Interpolative
Coding (IPC) [17]. We provide brief outlines of these methods to keep
the paper self-contained; for more details, please see the references.

Gamma Coding This technique represents a value n ≥ 1 by a
unary code for 1 + ⌊log(n)⌋ followed by a binary code for the lower
⌊log(n)⌋ bits of n. Gamma coding performs well for very small num-
bers, but is not appropriate for larger numbers.

PForDelta: This is a compression method recently proposed in [14,
26] that supports extremely fast decompression while also achieving
a small compressed size. PForDelta (PFD) first determines a value b
such that most of the values to be encoded (say, 90%) are less than 2b

and thus fit into a fixed bit field of b bits each. The remaining values,
called exceptions, are coded separately. If we apply PFD to blocks
containing some multiple of 32 values, then decompression involves
extracting groups of 32 b-bit values, and finally patching the result
by decoding a smaller number of exceptions. This process can be
implemented extremely efficiently by providing, for each value of b,
an optimized method for extracting 32 b-bit values from b memory
words, with decompression speeds of more than a billion integers per
second on a single core of a modern CPU.

PFD can be modified and tuned in various ways by changing the
policies for choosing b and the encoding of the exceptions. In this
paper we use a modified version of PFD called OPT-PFD, proposed in
[23], that performs extremely well for the types of inverted lists arising
after optimizing the docID assignment.

Interpolative Coding: This is a coding technique proposed in [17]
that is ideal for clustered or bursty term occurrences. The goal of the
document reordering approach is to create more clustered, and thus
more compressible, term occurrences. Interpolative Coding (IPC) has
been shown to perform very well in this case [5, 7, 20, 21, 22].

IPC differs from the other methods in an important way: It directly
compresses docIDs, and not docID gaps. Given a set of docIDs di <
di+1 < . . . < dj where l < di and dj < r for some bounding values l
and r known to the decoder, we first encode dm where m = (i+j)/2,
then recursively compress the docIDs di, . . . , dm−1 using l and dm as
bounding values, and then recursively compress dm+1, . . . , dj using
dm and r as bounding values. Thus, we compress the docID in the
center, and then recursively the left and right half of the sequence. To
encode dm, observe that dm > l+m− i (since there are m− i values
di, . . . dm−1 between it and l) and dm < r − (j − m) (since there
are j − m values dm+1, . . . dj between it and r). Thus, it suffices to
encode an integer in the range [0, x] where x = r − l − j + i − 2
that is then added to l+m− i+ 1 during decoding; this can be done
trivially in ⌈log2(x+1)⌉ bits, since the decoder knows the value of x.

In areas of an inverted list where there are many documents that
contain the term, the value x will be much smaller than r − l. As a
special case, if we have to encode k docIDs larger than l and less than
r where k = r−l−1, then nothing needs to be stored at all as we know



that all docIDs properly between l and r contain the term. This means
IPC can use less than one bit per value for dense term occurrences.
(This is true for OPT-PFD, but not for Gamma Coding.)

2.3 Prior Work on DocID Assignment
The compressed size of an inverted list, and thus the entire inverted

index, is a function of the d-gaps being compressed, which itself de-
pends on how we assign docIDs to documents (or columns to docu-
ments in the matrix). Common integer compression algorithms require
fewer bits to represent a smaller integer than a larger one, but the num-
ber of bits required is typically less than linear in the value (except for,
e.g., unary codes). This means that if we assign docIDs to documents
such that we get many small d-gaps, and a few proportionally larger
d-gaps, the resulting inverted list will be more compressible than an-
other list with the same average value but more uniform gaps (e.g., an
exponential distribution). This is the basic insight that has motivated
all the recent work on optimizing docID assignment [7, 20, 22, 21, 5,
6, 4]. Note that this work is related in large part to the more general
topic of sparse matrix compression [16], with parallel lines of work
often existing between the two fields.

More formally, the DocID Assignment Problem seeks a permuta-
tion of docIDs that minimizes total compressed index size. This per-
mutation Π is a bijection that maps each docID dj into a unique inte-
ger assignment Π(dj) ∈ [1, |D|]. Let l̄Πi be the d-gaps associated with
term ti after permutation Π. Under a specific encoding scheme, s, the
“cost” (size) of compressing list l̄Πi is denoted by Costs(l̄

Π
i ), and the

total compressed index cost is

Costs(IΠ) =
∑
l̄i

Costs(l̄
Π
i ),

Clearly, examining all possible Π would result in an exponential num-
ber of evaluations. Thus, we need more tractable ways to either com-
pute or approximate such permutations.

A common assumption in prior work is that docIDs should be as-
signed such that similar documents (i.e., documents that share a lot of
terms) are close to each other. Thus, with the exception of [4], prior
work has focused on efficiently maximizing the similarity of close-by
documents in the docID assignment. These techniques can be divided
into three classes: (i) top-down approaches that partition the collection
into clusters of similar documents and then assign consecutive docIDs
to documents in the same cluster, (ii) bottom-up approaches that as-
sign consecutive docIDs to very similar pairs of documents and then
connect these pairs into longer paths, and (iii) the heuristic in [21]
based on sorting by URL.

Bottom-Up: These approaches typically create a dense graph G =
(D,E) where D is the set of documents, and E is a set of edges
each representing the connection between two documents di and dj
in D. Each edge (i, j) is typically assigned some weight representing
the degree of similarity between di and dj , e.g., the number of terms
in the intersection of the documents as used in [20, 6]. The edges
of this graph are then traversed such that the total path similarity is
maximized.

In [20], Shieh et al proposed computing a Maximum Spanning Tree
on this graph, that is, a tree with maximum total edge weight. They
then propose traversing this tree in a depth-first manner, and assign-
ing docIDs to documents in the order they are encountered. Another
approach in [20] attempts to find a tour of G such that the sum of
all edge weights traversed is maximized. This is of course equivalent
to the Maximum Traveling Salesman Problem (henceforth just called
TSP). While this is a known NP-Complete problem, it also occurs fre-
quently in practice and many effective heuristics have been proposed.
In [20], a simple greedy nearest neighbors (GNN) approach is used,
where an initial starting node is chosen, from which a tour is grown by
adding one edge at a time in a way that greedily maximizes the current
total weight of the tour. While this heuristic may seem simplistic, it
significantly outperformed the spanning tree approach above, and was
also slightly faster.

Blanco and Barreiro [6] further reduce the computational effort through
SVD for dimensionality reduction, however, even in this case the time
is still quadratic in the number of documents. Overall, TSP-based
techniques seem to provide the best performance amongst bottom-up
approaches. However, these techniques are currently limited to at most
a few hundred thousand documents.

Top-Down: Among these approaches, an algorithm by Blandford
and Blelloch in [7] has been shown to consistently outperform oth-
ers in this class, in fact performing better than the sorting-based and
Bottom-Up approaches as shown in [21, 6]. However, the algorithm is
even less efficient than the TSP approaches, and limited to fairly small
data sets.

Sorting: In this approach, proposed by Silvestri in [21], we sim-
ply sort the collection of web pages by their URLs, and then assign
docIDs according to this ordering. This is the simplest and fastest ap-
proach, and also performs very well in terms of compressed size on
many web data sets. In fact, it appears to obtain a smaller size than
all other scalable approaches, with the exception of the TSP approach
and the top-down algorithm in [7], both of which do not scale to the
data sizes considered in [21]. Of course, the sorting-based approach is
only applicable to certain types of collections, in particular web data
sets where URL similarity is a strong indicator of document similarity.
This is clearly not the case for many other textual collections such as
the Reuters or WSJ corpus or, as well shall see, pages from Wikipedia.

In summary, we currently have a highly scalable approach based
on sorting that achieves decent compression on certain data sets, and
approaches that achieve slightly better compression but do not scale
to millions of documents. Our goal in the next few sections is to im-
prove the TSP-based approach such that it scales to tens of millions of
pages while getting compression that is significantly better than that
for sorting.

3. SCALING TSP USING HASHING
In this section, we describe our framework for scaling the TSP-

based approach for doc-ID reordering studied in [20, 6] to much larger
corpora. The main ingredient in this framework is Locality Sensitive
Hashing [15], a technique commonly used for clustering of large docu-
ment collections for applications such as near-duplicate detection [13]
and document compression [18]. We start with a discussion and out-
line of the framework, and then provide more details in Subsection 3.2.

3.1 Basic Idea and Discussion
While bottom-up, TSP-based approaches seem to offer the most

compressible doc-ID ordering amongst all comparable methods, to
achieve this level of compressibility requires significant computational
effort. Even though the GNN heuristic simplifies the known NP-
Hard TSP problem, approximating a solution in quadratic time, given
the millions to billions of documents present in a typical search en-
gine, GNN has difficulty scaling. A solution was proposed in [6] in-
volves a dimensionality reduction through singular value decomposi-
tion (SVD). While it offers a substantial improvement in run time, the
complexity of this method is still hindered by a quadratic dependency
on the size of the corpus, and thus does not scale to typical index sizes.

In our approach, we avoid this computational bottleneck by first
creating a sparse graph, weeding out the vast majority of the n2 edges
used in prior approaches (n = |D|). We then run a GNN approxima-
tion to the TSP on this sparse graph, thereby avoiding examining all
pairs of nodes. Our goal is to carefully select about k ·n edges (where
k << n) from G in such a way that this sparse graph is able to pro-
duce a TSP tour similar in quality to the TSP tour obtainable on a full
graph. Specifically, we select for each node those k out of n incoming
edges that have the highest weight, i.e, edges that point at the k nearest
neighbors, as these are the most promising edges for the TSP. How-
ever, this leaves us with the problem of finding the k nearest neighbors
of each node without looking at all pairs of nodes. Fortunately, for the
types of similarity metrics we are interested in (e.g., Jaccard similar-
ity), there are highly efficient techniques [15, 13] for finding the k



nearest neighbors of all nodes in time O(n · polylog(n)), much faster
than Θ(n2).

The idea of accelerating a graph computation by working on a suit-
ably constructed sparse graph is well known in the algorithms com-
munity. The most closely related application is in the context of com-
pressing a collection of similar files, as described in [18], where find-
ing an optimal compression scheme reduces to finding a Maximum
Branching (essentially a directed form of a Maximum Spanning Tree)
in a directed graph. To speed up this computation, [18] also builds a
sparse k-nearest neighbor graph using the techniques from [15, 13],
and then runs the Maximum Branching computation on this sparse
graph. In fact, for the Maximum Branching problem it has been shown
[2] that the solution on the sparse graph approximates that on the com-
plete graph within a factor of k/(k + 1). Note that this is not true for
the case of Maximal TSP; in fact, one can show that the solution on
the sparse subgraph can be arbitrarily away from the optimum. (We
omit a formal proof due to space constraints.) However, we will see
that in practice this approach works quite well.

3.2 Details
We now provide more details on our framework, which can be di-

vided into four phases as follows.

(1) Min-Hashing: We scan over the document collection, and se-
lect from each document s random terms (here we use s = 100)
using the Min-Hash sampling technique [9] as described in [13].
In particular, the i-th sample element is obtained by hashing all
terms in the document using a hash function hi, and selecting
the term that hashes to the minimum value.

(2) Selecting Nearest Neighbor Candidates: The goal of this phase
is to select for each node k′ > k other nodes that are likely
to contain the k nearest neighbors using the Locality Sensitive
Hashing approach in [15, 13]. We compute for each document
t superhashes (here t = 80), where the j-th superhash of each
document is computed by selecting l indexes i1, . . . , il at ran-
dom from {1, . . . , s}, concatenating the terms selected from the
document as the i1-th, i2-th, to il-th samples in the previous
phase, and hashing the concatenation to a 32-bit integer using
MD5 or a similar function. It is important that the same ran-
domly selected indexes i1, . . . , il are used to select the j-th su-
perhash of every documents. This results in t files F1 to Ft such
that Fj contains the the j-th superhash of all documents.

The crucial point, analyzed in detail in [13], is that if two docu-
ments share the same j-th superhash for some j, their similarity
is likely to be above some threshold θ that depends on our choice
of s and l. Conversely, if two documents have similarity above
θ, and if t is chosen large enough, then it is likely that their
j-th superhashes are identical for some j ∈ {1, . . . , t}. Thus,
by sorting each file Fj and looking for identical values, we can
identify pairs of documents that are likely to be similar.

However, for any fixed threshold θ, we may get some nodes
with a large number of neighbors with similarity above θ, and
some nodes with few or no such neighbors. In order to se-
lect about k′ nearest neighbors for each node, we iterate this
entire phase several times, starting with a very high similarity
threshold θ and then in each iteration removing nodes that al-
ready have enough neighbors and lowering the threshold until
all nodes have enough neighbors. At the end of this phase, we
have a long list of candidate nearest neighbor pairs.

(3) Filtering: In this phase, we check all the candidate pairs from
the previous phase to select the actual k neighbors that we retain
for each node. This is done by computing the similarity of each
pair using all s samples from the first phase, and selecting the k
candidates with highest similarity.

(4) TSP Computation: We perform a TSP computation on the
sparse subgraph determined in the previous phase, using an ap-

Figure 1: Architecture for LSH-based Dimensionality Reduction
for TSP-Based Doc-ID Assignment Algorithms

propriate TSP heuristic (for instance GNN) when no outgoing
edge is available, we “restart”, mimicking the start heuristic ex-
plored in [20], selecting the remaining node with greatest total
remaining similarity in the sparse subgraph. Note that this ap-
proximation to G, G′ may not even be connected. The ordering
determined by this tour is output and then used to compress the
inverted index.

This architecture is illustrated in figure 1. We emphasize again
that the hashing techniques in phases (1) and (2) are described and
analyzed in more detail in [13], and that we reimplemented these
phases based on that description. While the nearest neighbor candi-
dates are selected based on the Jaccard similarity between documents,
it is sometimes beneficial to apply other similarity metrics during the
filtering phase, e.g., to try to maximize set intersection rather than Jac-
card similarity along the TSP tour. This will be discussed in detail in
the next section.

A few comments on efficiency. The first phase requires scanning
over and parsing the entire collection, though this could be overlapped
with the parsing for index building. Hashing every term s = 100 times
is somewhat inefficient, but can be avoided with clever optimizations.
The second and third phases require repeated scanning of samples,
superhashes, and resulting candidate pairs; the data sizes involved are
smaller than the collection but still of significant size (about 5 to 20
GB each as opposed to the 500 GB uncompressed size for the TREC
GOV2 data set). However, all steps in these phases scale essentially
linearly with collection size (with the caveat that parameters for k, t,
and l are adjusted slightly as the collection grows). Moreover, they can
be easily and highly efficiently implemented using mapReduce [12] or
various I/O-efficient computing paradigms.

While the final phase, actual computation of the TSP path, is also
the fastest in our setting, this is the only phase that has not been imple-
mented in an I/O efficient paradigm, requiring the entire sparse graph
to reside in main memory. The min-hashing techniques outlined above
provide sufficient compression of this graph such that even the 25 mil-
lion documents of the TREC GOV2 data set can easily reside in a
few GB of main memory. While this data set represents vastly larger
set than is evaluated in previous work [20, 6], it’s size is insignifi-
cant in comparison to corpora commonly seen in commercial search
engines– data sizes that prevent in-memory computation using even
the most powerful servers. While the TSP is very well-studied– liter-
ally hundreds of proposed solution schemes exist [10], we were un-
able to find approximation algorithms designed for external-memory
or mapReduce environments. To extend the applicability to the largest
document collections, a current frontier and algorithmic challenge is
exploring novel TSP algorithms implemented in mapReduce and I/O-
efficient computation.

In summary, in this section we have shown how to implement the
TSP-based approach to the doc-ID assignment problem in an efficient
and highly scalable manner, using the well-known hashing techniques
in [15, 13]. In the next sections, we show how to refine this approach



to optimize the resulting index compression on real data sets and with
real index compression technology.

4. CHOOSING EDGE WEIGHTS IN TSP
The TSP approach to document reordering relies on suitable edges

weights based on document similarity to find an assignment of docIDs
that achieves good compression. However, it is not obvious what is
the best measure of document similarity for this case. Previous work
has sometimes used the Jaccard measure (the ratio of intersection to
the union of the two documents) and sometimes used the absolute size
of the intersection to determine the edge weight in the resulting TSP
problem. We now discuss this issue in more detail and suggest addi-
tional weight functions.

Intersection size: This measure was previously used in [20, 6], and
has a simple and meaningful interpretation in the context of TSP-based
reordering: choosing an edge of weight w in the TSP tour assigns con-
secutive docIDs for two documents with w terms in common, thereby
leading to w 1-gaps in the resulting inverted index structure. Formally,
the maximum TSP tour in a graph with edge weights given by raw in-
tersection size results in an inverted index structure with the largest
possible number of 1-gaps.

As we show later, using intersection size indeed results in indexes
with large numbers of 1-gaps. However, improved compression does
not just depend solely on the number of 1-gaps, as we discuss further
below.

Jaccard measure: This measure does not have any natural interpre-
tation in terms of gaps, but was previously used in [22, 6]. The Jaccard
measure also has two other attractive features in the context of TSP.
First, it gives higher weights to documents of similar size. For exam-
ple, if a small document is properly contained in another larger docu-
ment, then their Jaccard similarity is very small while their intersection
is quite large. While this is not a problem in an optimal solution of the
(NP-Complete) TSP problem, many greedy heuristics for TSP appear
to suffer by naively choosing edges between documents of very differ-
ent size. Use of the Jaccard measure discourages use of such edges.
Second, the LSH technique from [13] used in our framework works
naturally with the Jaccard measure, while scalable nearest-neighbor
techniques for other similarity measures are more complicated to im-
plement [15].

Log-Jaccard measure: To explore the space between intersection
size and Jaccard, we propose a hybrid measure where the intersection
is divided by the logarithm of the size of the union, thus discouraging
edges between documents of widely different size.

Term-weighted intersection: As mentioned before, the resulting
compressed index size does not just depend on the number of 1-gaps.
In particular, it could be argued that not all 1-gaps are equal: Making
a 1000-gap into a 1-gap is more beneficial than making a 2-gap into a
1-gap. This argument is a bit misleading as there is no one-to-one cor-
respondence between gaps before and after reordering. Assuming that
docIDs are initially assigned at random, and any two terms t1 and t2 in
the collection, with associated ft1 and ft2 , the number of postings in
the corresponding inverted lists. Prior to reordering, the average gaps
are approximately n/ft1 in the list for t1 and about n/ft2 in the list
for t2 (where n is the number of documents), with a geometric distri-
bution around the averages. Thus, if ft1 < ft2 then it could be argued
that creating a 1-gap in the list for t1 provides more benefit compared
to the case of random assignment than creating a gap in the list for t2.

This argument leads to a weighted intersection measure where each
term t is weighted in the intersection proportional to log(n/ft). This
weight could also be interpreted as the savings obtained from gamma
coding a 1-gap rather than an (n/ft)-gap.

Implementation of different measures: As mentioned, our LSH-
based implementation works naturally with the Jaccard measure. To
implement the various other similarity measures, we first use the Jaccard-
based LSH method to select the k′ candidates for the nearest neigh-
bors, and then use the filtering phase to rank the candidates according
to the actual similarity measure of interest. If k′ is chosen sufficiently

larger than k, then this seems to perform quite well.

5. MULTI­GAP OPTIMIZATIONS
As discussed, compressed index size does not just depend on the

number of 1-gaps. This fact motivated the weighted intersection mea-
sure presented in the previous section. We note however that any mea-
sure that focuses on 1-gaps, even if suitably weighted, fails to account
for the impact of other types of small gaps on index size. A method
that increases the number of 1-gaps as well as 2- and 3-gaps may pro-
vide a much improved compression compared to a method that solely
optimized the number of 1-gaps. Thus, a better approach to document
reordering would try to improve the overall distribution of gaps, giving
credit for creating 1-gaps as well as other small gaps.

However, this multi-gap notion collides with a basic assumption of
the TSP-based approach: benefit can be modeled solely by a weighted
edge. A direct TSP formulation can only model 1-gaps! To model
larger gaps we have to change the underlying problem formulation so
that it considers interactions between documents that are 2, 3, or more
positions apart on the TSP tour.

Luckily, the greedy TSP algorithm that utilized in this work can
be adjusted to take larger gaps into account. Recall that in this al-
gorithm, we grow a TSP tour by selecting a starting point and then
greedily moving to the best neighbor, and from there to a neighbors
of that neighbor, and so on. Now assume that we have already chosen
a sequence of nodes (sets of terms) d1, d2, . . . , di−1 and now have to
decide which node to choose as di. For a particular candidate node d,
the number of 1-gaps created by choosing d is |d ∩ di−1|, while the
number of 2-gaps is |(d∩ di−2)− di−1|. More generally, the number
of created j-gaps is the number of terms in the intersection of d and
di−j that do not occur in any of the documents di−j+1 to di−1. Thus,
we should select the next document on the tour by looking not just
at the edge weight, but also at the nodes preceding the last node we
selected.

To implement this efficiently, we need two additional data struc-
tures during the TSP algorithm. We add for each node a compact but
sufficiently large sample of its terms. These samples are kept in main
memory during the TSP. We found that using a sample of about 10%
of the terms, selected by choosing all terms that hash to a value (say)
7 mod 10 for some hash function (such as MD5), works well. This
results in a few dozen terms per document which can be compressed
to about one byte per term; on the other hand, it is not necessary any-
more to store the edge weights in memory as part of the graph as these
are now computed online. The second structure is a dictionary that
contains for each term that is sampled the index of the last selected
document that contained the term. Initially, all entries are set to 0, and
when a term t occurs in a newly selected node di during the greedy
algorithm, we update its entry to i.

Using these structures, the modified algorithm works as follows:
Having already selected d1 to di−1, we select di by iterating over all
unvisited neighbors of di−1, and for each neighbor we iterate over
all terms in its sample. For each term, we look at the dictionary to
determine the length of the gap that would be created for this term, and
compute a suitable weighted total benefit of choosing this document.
We then greedily select the neighbor giving the most benefit. We note
that this algorithm relies on a basic approach that grows a tour one
edge at a time, and could not be easily added to just any algorithm
for TSP. Also, note that the filtering step still selects the k nearest
neighbors based on a pairwise measure, and we are limited to selecting
di from among these neighbors.

This leaves us with the problem of modeling the benefit of different
gaps. One approach would be to assign a benefit of 1 + log(gavg/j)
to any j-gap with j < gavg for a term t, where gavg = n/ft is the
average gap in the randomly ordered case as used in the previous sec-
tion. Thus, a positive benefit is assigned for making a gap smaller than
the average gap in the random ordering case, and no benefit is given
for any larger gaps. However, this misses an important observation:
Reordering of docIDs does not usually result in a reduction in the av-



GOV2 Ireland Wiki
# of documents 25,205,179 10,000,000 2,401,798

# of distinct words 36,759,149 18,579,966 19,586,472
# of postings 6,797 M 2,560 M 787 M

Table 1: Basic statistics of our data sets.

erage d-gap of an inverted list.1 Rather, the goal of reordering is to
skew the gap distribution to get many gaps significantly smaller, and a
few gaps much larger, than the average.

Thus, getting a gap above the average n/ft is actually good, since
for every gap above the average, other gaps have to become even
smaller! This means that a candidate document should get benefit
for containing terms that have recently occurred in another document,
and also for not containing terms that have not recently occurred. Or
alternatively, we give negative benefit for containing terms that have
not recently occurred. This leads us to define the benefit of a j-gap for
a term t as 1+ log(gavg/j) for j < gavg and −α · (1+ log(j/gavg))
otherwise, say for α = 0.5.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our scalable TSP-

based methods. Note that additional hybrid methods that combine
TSP- and sort-based approaches are described and evaluated in Sec-
tion 7. Throughout this section, we focus on total index size due to
docIDs. The impact on the sizes of frequency values and positions
will be discussed in later sections.

6.1 Experimental Setup
The reductions in index size achievable through reordering depend

on the properties of the document collection, both in absolute (collec-
tions with many similar documents give more gains) and relative terms
(sorting-based methods do not work well if URLs or other names are
not indicative of content). In our experiments, we use three data sets
that are substantially different from each other, in particular:

• GOV2: The TREC GOV2 collection of 25.2 million pages crawled
from the gov domain used in some of the TREC competition
tracks.

• Ireland: This is a random sample of 10 million pages taken
from a crawl of about 100 million pages in the Irish (ie) web
domain provided to us by the Internet Archive.

• Wiki: This is a snapshot of the English version of Wikipedia,
taken on January 8, 2008, of about 2.4 million wikipedia arti-
cles. (These are the actual articles, not including other pages
such as discussion, history, or disambiguation pages.)

We note here that the GOV2 collection is very dense in the sense that
the gov domain was crawled almost to exhaustion. Thus, for any
pair of similar pages there is a good chance both pages are in the set,
and as shown in [23] reductions of about a factor of 2 in index size
are achievable for this set. The Ireland data set is a new collection
not previously used; by sampling from a larger domain we get a less
dense set of pages. The Wiki data set is different from the other two
in that the pages are much more uniform in type and style, and more
similar to other non-web corpora (e.g., Reuters or WSJ collections).
We also expect less duplication, and less benefit from reordering by
URL sorting as URLs are probably less meaningful in this case.

Table 1 summarizes the basic statistics of the data sets: the number
of documents, number of distinct words, and total number of postings
(in millions). In the basic version of these data sets, we did not perform
near-duplicate detection to remove pages with different URLs that are
almost or completely identical. However, we show the impact of near-
duplicates on results in one of our experiments further below.
1In fact, if we also count the gap between the last docID in the list and
the end of the collection as a d-gap, then the average d-gap does not
change under any reordering. If we do not count this final gap, then
the average does not change by much for all except very short lists.

IPC OPT-PFD Gamma % of 1 gaps
GOV2

RANDOM 6516 6661 8088 7.00%
SORT 2821 3105 3593 59.00%

TSP-jacc 2908 3197 3475 67.90%
TSP-inter 2824 3135 3415 68.20%
Ireland

RANDOM 2467 2502 3820 8.00%
SORT 690 746 1020 77.00%

TSP-jacc 617 620 953 83.80%
TSP-inter 610 614 947 84.10%

Wiki
RANDOM 697 724 1226 6.00%

SORT 653 714 1116 13.00%
TSP-jacc 594 664 1006 28.00%
TSP-inter 565 663 984 28.00%

Table 2: Index size in MB and percentage of 1-gaps in the index,
for the three data sets and four different orderings.

IPC OPT-PFD Gamma
GOV2

RANDOM 7.67 7.84 9.52
SORT 3.32 3.66 4.23

TSP-jacc 3.42 3.76 4.09
TSP-inter 3.32 3.68 4.02
Ireland

RANDOM 7.71 7.82 11.94
SORT 2.16 2.33 3.19

TSP-jacc 1.92 1.93 2.98
TSP-inter 1.90 1.91 2.96

Wiki
RANDOM 7.08 7.35 12.45

SORT 6.63 7.25 11.34
TSP-jacc 6.03 6.75 10.22
TSP-inter 5.74 6.74 9.82

Table 3: Compression in bits per document ID for the three data
sets and four document orderings.

6.2 Comparison of Basic Methods
We start by comparing some baseline methods: a random order-

ing of docIDs (RANDOM), an ordering according to sorting by URL
(SORT), and two methods, TSP-jacc and TSP-inter, based on our TSP
approach. In both methods we use our implementation of LSH to
determine 400 out-going candidate edges for each node, and then fil-
ter these down to 300 out-going edges per node. These values seem
to work well in practice; thorough investigation into appropriate tun-
ing of these and other parameters is beyond the scope of this work.
We then run a greedy Max-TSP algorithm on this graph, where TSP-
jacc uses the Jaccard measure between two documents as edge weight,
while TSP-inter uses the raw size of the intersection between the two
documents.

Tables 2 and 3 present the absolute size of the docID portion of the
inverted index, and the number of bits per docID, respectively, for the
three data sets. We see that on all data sets, using the raw intersec-
tion size outperforms use of the Jaccard measure. On the Wiki data
set, sorting only gives a minor improvement over random ordering,
while the TSP methods achieve more significant gains, resulting in a
size reduction of up to 19%. For Ireland, sorting does OK, but TSP-
based methods do much better. On the other hand, for the GOV2 data
set, SORT gets a similar size reduction as TSP-inter (about the same
for IPC and OPT-PFD, and less than TSP-inter for Gamma coding).
We also see that IPC and OPT-PFD substantially and consistently out-
perform Gamma coding, with IPC slightly outperforming OPT-PFD.
(But note that OPT-PFD has a much higher decompression speed than
either IPC or Gamma [23].)

Table 2 also shows the number of 1-gaps (i.e., cases where two con-



Figure 2: Compression in bits per docID on Wiki data as we vary
the number of neighbors.

RANDOM SORT TSP-jacc TSP-inter
IPC + dups 6516 2821 2908 2824
IPC - dups 4360 2747 2804 2760

OPT-PFD + dups 6661 3105 3197 3135
OPT-PFD - dups 4360 3031 3141 3059
Gamma + dups 8088 3593 3475 3415
Gamma - dups 6211 3148 3022 3002

Table 4: Index sizes in MB for GOV2 with and without near-
duplicate.

secutive documents in the ordering share a term) for the different or-
dering methods. TSP-size achieves a significantly higher number of
1-gaps than the other methods. This is not surprising since the optimal
TSP on the complete graph would in fact maximize the total number of
1-gaps. (We believe our simple greedy TSP on the reduced graph is a
reasonable approximation.) However, as we see for the case of GOV2,
this does not directly imply better compression. While TSP-size has
many more 1-gaps than SORT, the resulting compression is about the
same. This confirms our conjecture in the previous section, that to
minimize size we have to look at more than 1-gaps, and in particular
at longer gaps.

We now examine how the number of neighbors in the reduced graph
impacts performance. In Figure 2, we plot the resulting compression
in bits per docID for Wiki as we increase the number of neighbors. For
all three compression schemes (IPC, OPT-PFD, Gamma) we see that
compression improves with the number of neighbors (as expected), but
improvement becomes less significant beyond about 200 to 300 neigh-
bors. In the following, unless stated otherwise, we use 300 neighbors
per node, as in our basic experiments above. We note here that a larger
number of neighbors increases the time for the TSP-based methods as
well as the amount of memory needed during the greedy TSP itself;
we explore these issues further below.

Next, we consider the impact of near-duplicates (near-dups) on com-
pression. To do this, we used our LSH implementation to detect all
near-dups in the three data sets, defined here as pairs of documents
with a Jaccard score (ratio of intersection and union) of more than
0.95. (Note that for very short documents, one might argue that this
threshold is too strict as it requires two documents to be identical.
However, such documents contribute only a small part of the postings
in the index.) We found that Wiki has less than 0.2% near-dups, while
Ireland and GOV2 have 26% and 33% near-dups. Even for the case
of GOV2, with more than 8.3 million near-dups out of 25.2 million
documents, the benefits of reordering are not just due to near-dups:
Removing near-dups from the index under a random ordering results
in a size reduction of about 30%, while subsequent reordering of the
set without near-dups results in an additional 37% reduction (for IPC,
relative to a random ordering without duplicates).

Another interesting observation is that for the reordering methods,
the size of the index with and without near-dups is very similar – this
implies that use of reordering methods effectively neutralizes the im-

IPC OPT-PFD Gamma
GOV2
SORT 3.32 3.66 4.23

TSP-inter 3.32 3.68 4.02
TSP-log-ft 3.36 3.73 4.09

TSP-log-jacc 3.30 3.68 4.04
TSP-gaps 3.18 3.53 3.96
Ireland
SORT 2.16 2.33 3.19

TSP-inter 1.90 1.91 2.96
TSP-log-ft 1.91 1.94 2.99

TSP-log-jacc 1.89 1.91 2.96
TSP-gaps 1.87 1.89 2.91

Wiki
SORT 6.63 7.25 11.34

TSP-inter 5.74 6.74 9.82
TSP-log-ft 6.09 6.68 10.10

TSP-log-jacc 5.63 6.31 9.12
TSP-gaps 5.36 6.02 8.83

Table 5: Compressed size for advanced methods in bits per docID.

pact of near-dups on index size, thereby allowing us to keep near-
dups during indexing without index size penalty and then deal with
them during query processing (which might sometimes be preferable).
Closer inspection of the statistics for near-dups also showed that they
are highly skewed and that a significant fraction of the total near-dups
in GOV2 and Ireland is due to a small number of documents being
near-duplicated many times (rather than due to many documents hav-
ing one or two near-copies each). We suspect that this is due to the
crawler being unable to figure out that (almost) the same content is
returned by a site under many different URLs.

6.3 Advanced TSP Methods
We now evaluate our various refinements of the basic TSP method.

In Table 5 we compare the number of bits per docID of the SORT and
TSP-inter methods from above with three additional TSP-based meth-
ods described in earlier sections: (i) TSP-log-jacc, which uses as edge
weight the size of the intersection divided by the logarithm of the size
of the union, (ii) TSP-log-ft, which weighs each term in the intersec-
tion of two documents by log(N/ft) (thus giving higher weights to
1-gaps created in short lists), and (iii) TSP-gaps, which considers not
just 1-gaps but also larger gaps as described in Subsection 5.

The results are shown in Table 5, where we show the number of
bits per docID under IPC, PFD, and Gamma coding. We observe that
TSP-log-ft does not seem to offer any improvement over using raw in-
tersection, in fact, often performing worse. TSP-log-jacc gives decent
improvements on Wiki, moderate improvements on GOV2, and only
minuscule improvements on Ireland. However, TSP-gaps outperforms
all other methods, and achieves improvements, e.g., for IPC, ranging
from 2% on Ireland (which may be hard to further improve as it is al-
ready less than two bits per docID) to about 8% on Wiki (compared to
TSP-inter). Thus, as conjectured, it is important to model longer gaps,
not just 1-gaps, to achieve the best possible compression.

Recall that TSP-gaps differs from the other methods in that it can-
not be modeled as a strict Max-TSP problem; the total benefit is not
simply a sum of precomputed edge weights but a more complicated
expression along the chosen path. However, as discussed in the pre-
vious section, we can “graft” this method on top of our simple greedy
TSP method that grows a path one edge at a time, by adding suitable
data structures and in each step some computation for updating the
benefit. A natural question is how much better we could do by us-
ing better heuristics for the TSP problem, instead of the simple greedy
heuristic used in this and previous work. However, TSP-gaps makes it
more difficult to apply other heuristics, as we are restricted to heuris-
tics that grow (one or several) long paths one edge at a time.

To test the potential for additional improvements, we experimented
with local search strategies that select the next edge to be added to the



IPC OPT-PFD Gamma
GOV2

TSP-gaps 3.18 3.53 3.96
TSP-gaps-(5) 3.12 3.46 3.90

Ireland
TSP-gaps 1.87 1.89 2.91

TSP-gaps-(5) 1.85 1.87 2.87
Wiki

TSP-gaps 5.36 6.02 8.83
TSP-gaps-(5) 5.26 5.95 8.83

TSP-gaps-(5,5) 5.25 5.93 8.81

Table 6: Compression for extended neighborhood search in bits
per docID.

generating min-hashes 2 hour and 15 minutes
generating super-hashes 3 hours and 30 minutes

neighbor finding (7 iterations) 6 hours and 40 minutes
TSP-jacc 10 minutes
TSP-inter 10 minutes
TSP-gaps 1 hour and 30 minutes

TSP-gaps-(5) 10 hours

Table 7: Time for each step in our TSP-based framework, for
GOV2 with 300 neighbors per node.

path by performing a limited search of the neighborhood of the current
endpoint. That is, for a depth-d method, we check not just all outgoing
edges to select the best one, but for the top-k1 out-going edges, we
explore edges at depth 2, and for the top-k2 resulting paths of length
2 we explore one more level, and so on until we have paths of length
d. We then add the first edge of the best path to our existing path,
and repeat. Thus, a depth-d method is defined by d − 1 parameters
k1 to kd−1, plus a discount factor α that is applied to benefits due
to edges further away from the current endpoint, and some threshold
value for further pruning of paths (e.g., we might consider only paths
with a value at least 80% of the current best path). There are obviously
other heuristics one can apply, so this is just a first exploration of the
potential for improvements. We note that there is obviously a trade-off
with computation time; in a graph with n out-going edges per node,
we have to compute the benefit of up to (1+k1+ . . . kd−1) ·n instead
of n edges.

The results are presented in Table 6, where we look at the benefit
of a simple depth-2 search (with k1 = 5) over TSP-gaps. We see that
the benefits are very limited, with the best improvement of only 2%
in index size on the GOV2 and Wiki data set. While deeper searching
strategies were explored, the observed benefit was very small.

6.4 Efficiency Issues
We now discuss the efficiency of the various methods. We note

here that sorting by URL, although not applicable to all data sets, is of
course highly efficient as it does not require any access to the text in
the documents. While it would be impossible for any method that ex-
ploits the content of documents to run in time comparable to SORT, it
is important that a method achieve efficiency that is comparable to that
of building a full-text index, and scalability to large data sets. All of
our run were performed on a single AMD Opteron 2.3Ghz processor
on a machine with 64GB of memory and SATA disks. For all experi-
ments at most 8 GB were used except for the TSP computation in the
case of TSP-gaps where at most 16 GB were used.

Some sample results are shown in Table 7 for the GOV2 collection
of 25.2 million pages, our largest data set. In the first step, we cre-
ate 100 min-hashes per document, while in the second step, 80 32-bit
super-hashes are created from the min-hashes for each document and
for each iteration in the subsequent step (i.e., 560 superhashes per doc-
ument for the seven iterations). We create a separate file for each of

the 560 super-hashes and then sort each super-hash file using an I/O-
efficient merge sort. In the third step, for each node we generate up
to 400 candidate nearest-neighbor edges for each node, by performing
seven iterations with different threshold values for the LSH computa-
tion (using the super-hashes previously created according to the cho-
sen thresholds). Each iteration involves a scan over the corresponding
80 super-hash files, then excluding nodes with more than400 candi-
date edges from subsequent iterations. At the end, the 400 candidates
are re-ranked based on the real weight function (i.e., Jaccard, raw in-
tersection, or log-Jaccard) using the min-hashes, and the top 300 edges
for each node are kept. Note that to avoid duplicated candidate edges,
we assume that all candidate edges fit in main memory; otherwise we
split the nodes into several subsets and perform a superhash scan for
each subset. (To use less than 8 GB, we split the nodes into two sub-
sets; otherwise the time for the third step would drop by a factor of 2
while using more memory.)

Overall, we note that producing the min-hashes and super-hashes,
and then finding and filtering nearest neighbor edges, takes time roughly
comparable to that of building a full-text index on such a data set.
(The presented running times are reasonably but not completely op-
timized, so some improvements could be obtained with careful code
optimization and tuning of parameters such as the number of neigh-
bors or iterations.) Moreover, we point out that these three steps can
be very efficiently and easily ported to a mapReduce environment, or
executed in an I/O-efficient manner on a single machine, thus allowing
us to scale to much larger data sets.

The fourth step is the actual greedy TSP approximation. Our cur-
rent implementation requires the entire graph reside in main memory–
a solution that is inherently non-parrallelizable. We are presently ex-
perimenting with new TSP algorithms leveraging mapReduce and I/O
efficient techniques to allow arbitrarily large data sets to be processed.
Initial experiments are promising and scalable TSP algorithms remain
a direction for future research.

As we see, the TSP computation is very fast (around 10 minutes) for
precomputed edge weights (e.g., TSP-jacc, TSP-inter, TSP-log-jacc),
and somewhat slower (1.5 hours) for the multi-gap approach. TSP-
gaps also requires more memory to store extra min-hashes (a 10%
sample of each document) to compute online the benefits of larger
gaps. Once we add an additional search of the neighborhood, the run-
ning time quickly increases to about 10 hours even for k1 = 5. Thus,
it may be more realistic to avoid this cost and just use TSP-gaps. Over-
all, for our current GNN, both running time and memory requirements
for this step scale roughly linearly with the number of nodes and num-
ber of edges per node.

7. HYBRID ALGORITHMS
In the previous section, we demonstrated that a TSP-based approach

provides significant improvements over the sort-based approach on the
Wiki and Ireland data sets and more modest improvements on GOV2,
while allowing for a reasonably efficient and scalable implementation.
Of course, the sorting-based approach still has advantages in terms of
run time. Therefore, it would be interesting to combine the benefits
of the two approaches. In this section, we explore possible hybrid
algorithms that use sorting as well as TSP to get better compression
and faster computation of the reordering.

We start out with a simple extension of the sort-based approach,
called SORT+SIZE, where we combine sorting by URL with use of
document size. Intuitively, sorting brings similar documents closer to-
gether, but probably does not work that well on the local level since
very often several groups of similar pages (but different from each
other) are mixed in the same site or subdirectory. One simple heuristic
to tease such groups apart is to use document size, i.e., the number of
words in a document, as an additional feature. In particular, we ex-
perimented with the following simple heuristic: We first sort by URL,
then in each web site, we split documents into a number of classes ac-
cording to size (usually 5 classes), and then in each class we sort again
by URL. (Thus, we first have all the largest pages in the site, then all



Figure 3: Performance of hybrid using both LSH and sort edges
on GOV2 under IPC with 300 edges, for varying percentages of
LSH edges.

IPC OPT-PFD Gamma
SORT 3.32 3.66 4.23

SORT+SIZE 3.23 3.58 4.17
TSP-gaps 3.18 3.53 3.96

TSP-gaps-(5) 3.12 3.46 3.90
Hybrid-50lsh-250sort 2.96 3.24 3.59
Hybrid-150lsh-150sort 2.92 3.22 3.57

Hybrid-150lsh-150sort+size 2.92 3.22 3.58
Hybrid-50lsh-50sort 3.02 3.31 3.66

Table 8: Compression in bits per docID for hybrid methods on
GOV2.

the moderately large pages, and so on.) As we will show, this simple
heuristic already gives interesting improvements in certain cases. It
also motivates the search for other heuristics that are only based on
simple features such as URL and document size; see for comparison
the recent work in [3] on how to detect near-duplicates based only on
URLs without using page content. We note that [8] recently and inde-
pendently proposed to sort all documents by size only; this achieves
measurable benefits but does not perform as well as sorting.

We also consider hybrids between sorting and TSP-based methods.
A simple approach is to first sort by URL, then create for each node
edges to its, say, 100 closest neighbors in this ordering, and run a
TSP algorithm on the resulting graph to determine the final ordering.
Thus, sorting is used to select edges, and then TSP locally reorders the
nodes. We can also combine such sort edges with edges determined
via LSH. In the following, we experiment with these heuristic.

In Figure 3, we look at how to best combine LSH edges and sort
edges. Given 300 neighbors, we vary the number of sort edges from
0 to 300, and choose the remaining edges using the LSH method. As
we see, this approach achieves significant improvements over our best
previous method, decreasing index size by more than 10% in some
case over TSP-gaps. We also see that using a roughly equal number
of edges from both sets performs best. However, even choosing just
50 LSH edges comes close to optimum. Additionally, using only sort
edges does not perform well at all. We note here that decreasing the
number of LSH edges to 50 will significantly reduce the times for the
LSH computation (min-hashing, super-hashing, and neighbor finding)
reported in the previous section.

In Table 8 we present some selected results for the hybrid meth-
ods. We see that SORT+SIZE is better than just URL sorting, but not
as good as TSP-gaps. Note that while using 50 LSH edges and 250
sort edges is close to the best result for 300 neighbors, even using just
50 LSH edges and 50 sort edges does better than the best TSP-gaps
method with 300 neighbors. This is important because using fewer
total edges improves both machine time and memory consumption for
the TSP computation, while using fewer LSH edges improves the ef-
ficiency of the various LSH steps. Thus, in practice using 50 sort

RANDOM SORT TSP-gaps Hybrid
docIDs (IPC) 6516 2821 2703 2480
freqs (IPC) 1831 1238 1191 1151
total (IPC) 8347 4059 3894 3631

docIDs (PFD) 6661 3105 3051 2735
freqs (PFD) 2098 1442 1421 1378
total (PFD) 8759 4547 4472 4113

Table 9: Index size(MB) including frequency values for GOV2.

RANDOM SORT Hybrid
position (PFD) 3495 2834 2709
position (IPC) 3154 2737 2638

Table 10: Position index size(MB) for a 2-million subset of GOV2.

edges and 50 LSH edges may be a very good choice. However, using
sort+size edges instead of sort edges in the hybrid gives no benefits.

8. IMPACT ON QUERY PROCESSING
In preceding sections, we focused on minimizing the total size of

docID component of the inverted index. One purpose of minimizing
index size is to improve query processing speed, as a smaller index
requires less data to be transferred between disk and memory and be-
tween memory and CPU. In this section, we provide measurements
of the impact of reordering on query processing, using GOV2 and
100, 000 queries from the TREC Efficiency TASK and Wiki data and
5, 000 selected queries from AOL which are related to wikipedia.

We start with some numbers for index size including frequency val-
ues in the index, that is, the number of occurrences of a term in each
document. We apply the Most Likely Next (MLN) transformation to
frequency values before compression, as proposed in [23]. As we see
in Table 9 for the case of GOV2, the methods with the best docID
compression also give the best compression for frequency.

Then, we look at the impact of our technique on position compres-
sion. In our implementation we treat all documents in the collection
as one consecutive ”big page” and index the position of each term in-
side this ”big page” as proposed in [11]. Table 10 gives the result
for a 2-million subset from GOV2 which have consecutive alphabetic
URLs. From Table 10 we can see under a better docID assignment the
position compression is also improved.

Next, we look at the amount of index data per query, that is, the to-
tal sizes of the inverted lists associated with the query terms of a typ-
ical query. This puts more weight on the most commonly used query
terms, and is a measure for the amount of data per query that has to be
transferred from disk to main memory in a disk-resident index. As we
see from Table 11, a better reordering significantly reduces the amount
of index data required per query. In fact, the improvement per query is
larger than the improvement in total index size, since more frequently
accessed inverted lists appear to benefit more from reordering.

State-of-the-art IR query processors cache parts of the inverted in-
dex in main memory in order to reduce disk accesses and thus speed
up processing. We now look at how disk transfers are reduced by using
a better document ordering. It is important to realize that the reduction
in disk accesses is not linear in either the total or per-query index size,
but usually much larger since a higher percentage of the smaller index
will fit into cache, thus in turn increasing the cache hit rate. In Fig-
ure 4 we see that both TSP-gaps and the hybrid method achieve fairly
significant improvements over the sort-based ordering for a range of
cache sizes from 0 to 640 MB, resulting in up to 24% reduction in
disk transfers.

SORT TSP-gaps Hybrid
size/query 1.116 1.076 0.98

Table 11: Size of inverted lists per query for docID in MB, for
GOV2 using IPC.



Figure 4: Amount of index data in MB per query that has to be
fetched from disk, for cache sizes ranging from 0 to 640 MB.

query processing time(ms/query) decoded postings(k/query)
Random 0.274 91264

Sort 0.256 81920
TSP-gaps 0.192 60416

Table 12: Query processing performance on Wikipedia

Finally, it was shown in [23] that reordering also significantly re-
duces the CPU costs of intersecting inverted lists in main memory, as
it results in larger skips within the lists. As we see from Table 12, a
better reordering can reduce the amount of time on query processing
by up to 25% compared with sorting.

We note that all our algorithms here only explicitly try to optimize
docID compression, and not frequency and position compression or
query processing. Optimizing directly for these measure is an open
problem for future research.

9. DISCUSSION AND CONCLUSIONS
In this paper, we proposed and evaluated new algorithms for do-

cID assignment that attempt to minimize index size. In particular,
we described a framework for scaling the TSP-based approach shown
to perform well in previous work, but limited by scalability issues.
Our improvements utilize Locality Sensitive Hashing (LSH), and al-
low TSP-based techniques to consider far larger data sets. Within this
approach, we experimented with different weight functions, search
heuristics, and hybrids, and provide empirical evidence that the TSP
approach can significantly outperform sorting by URL, the best previ-
ously known approach that scales to such large data sets.

Overall, the main lessons from this work are that the TSP approach
can be applied to sets of tens of millions of pages,that the TSP-gaps
approach in particular appears to give a reasonable balance between
computational cost and index size, and that in some cases selecting
candidates edges using both sorting and LSH results in additional im-
provements over TSP-gaps. There are several open questions raised in
this paper that remain directions for future research. Amongst these
are the development of novel TSP approximation techniques that could
be implemented using mapReduce or I/O efficient computation. Addi-
tionally, a deeper exploration of parameter settings and different data
sets is required to develop good rules of thumb for deciding what pa-
rameter settings and reordering techniques a practitioner should ex-
plore. Additionally, it would be interesting to look at other reordering
heuristics that only use meta data such as URLs, mime type, and size,
motivated by work in [3]. Since document reordering is known to lead
to more skips in the inverted lists during query processing [23], one
could try to directly optimize the docID ordering for this objective,
leading to faster query processing, or optimizing frequency or posi-

tion compression. Finally, a major limitation of document reordering
techniques is that they are often not applicable in the presence of early
termination techniques for query processing that assume a particular
ordering of the index structures. It would be interesting to explore
trade-offs between and possible combinations of early termination and
document reordering techniques.
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