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Abstract

This manual is an early draft of the ASSIST user manual, it might therefore contain some
imprecisions. Moreover, the ASSIST Grid-aware programming environment is a product under
continuous evolution. This manual purposedly describes a proper subset (more stable features,
actually) of the version 1.3. Please regularly check the ASSIST web-site for updates, which
are already ongoing (http://www.di.unipi.it/groups/architetture/). The ASSIST programming
environment as been developed at Computer Science department of University of Pisa, Italy with
the support of several national projects (especially Grid.it). It is an open source product under
GPL license. Any comment is welcome.
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Chapter 1

Introduction

ASSIST (A Software development System based on Integrated Skeleton Technology) is a parallel
programming environment provided with a coordination language, namely ASSIST-CL, for the
encoding of distributed and high performance applications on a wide range of target architectures
including massively parallel cluster/networks of workstations.

The main goals of the environments are:

• providing performance portability, reusing of software, integration of standard and language
interoperability

• flexibility and possibility to exploit all the feasibility of the structured parallel programming
paradigm

• allowing the usage of homogeneous and distributed platforms

• defining an programming environment open to new constructs and mechanisms

The structure is modular and allows both to exploit the sequential code written in common
languages such as C, C++ and FORTRAN, and to write new applications using one of these
host languages. This document describes the environment and provides a preliminary guide for
first time programmers.

1.1 ASSIST-CL keywords

ASSIST-CL provides the following fundamental constructs:

• sequential module

• parallel module (parmod)

• graph connecting two or more modules (generic)

• stream establishing the connections, i.e. the program graph

• proc, in which the user encapsulates the code to be executed

ASSIST allows to organize parallel and sequential modules in a graph programming structure
in which data flow from the root to the peripheral vertexes. Flowing of data is regulated by a
data-flow semantics, i.e. each node of the graph “consumes” a data flowing through it’s input
edges as soon as they are available as input. The graph is described by expressing (combination
of) high level constructs building the application structure. Thus, ASSIST provides construct
for expressing a sequential function, a parallel activity, a non deterministic choice between two
or more data-flow input on a node level and so on. The basic building blocks of this program
construction are pieces of sequential code representing the “pure” computation, that can be
written in several programming language: C, C++, FORTRAN.
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In the sequel, we will formalize all these intuitive ideas by means of the following concepts:

• the concept of module: a module is the entity representing a node of the application graph,
and it can be identified by a name; the edges through which data flow are represented by
connections between modules; such connections are expressed in terms of input/output
parameters defined on the module interface

• an edge is represented by a stream, i.e. a (possibly) infinite set of values flowing from a
source to a destination. A stream is the programming entity joining two (or more) modules,
i.e. two (or more) nodes of the graph.

• the graphs one can expressed are not only DAG. Inner loops can be written keeping safety
and reliability of the program.

• the parmod is a special kind of module that will allow us to structure, describe and
implement the parallel behavior of the application. is a special kind of parallel

This tutorial is organized as follows: Chapter 2 provides the basic notions about the language
and the compilation steps needed to run an ASSIST application; Chapter 3 details how to
implement a sequential module; Chapter 4 provides the description of the parmod structure and
give some sample application; Chapter 5 provides a complete overview of the syntax related to
the implementation of a parmod.
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Chapter 2

ASSIST-CL basics

2.1 An overview of the ASSIST program structure

An ASSIST program is represented by a graph whose vertexes, called modules, are connected
by arcs, called streams. Each module has its own control flow and implements a sequential or
a parallel program accepting and processing data from one or more input streams and sending
data to one or more output streams. Streams are statically typed.

Figure 2.1 depicts an example of ASSIST program whose graph is composed by four modules
M1, M2, M3 and M4, each of which could have a parallel or a sequential behavior. M1 is
the “root” vertex that sends tasks to M2, M3, and M4 through the streams s1, s2, and s3,
respectively. These streams can be managed either independently or collectively by M1. In the
same way, M4 can receive either non-deterministically or according to a defined policy from its
input streams s3, s4, and s5.

M1

M2

M3

M4
s1

s2

s4

s5

M1 output stream M4 input stream

s3

Figure 2.1: A typical ASSIST graph

The definition of an ASSIST program consists of two main steps: the definition of the graph
of modules, and the definition of all the modules. Those definitions should be included in a single
file, which may include other files via a suitable “include” statement.

The graph of modules is defined in a single block identified by the generic main keywords.
This block includes the definition of all streams appearing in the application, and the protototypes
of all application modules. The wiring among modules is defined by occurences of stream names
in modules prototypes.

Modules are defined as blocks identified by a name and by a list of optional formal parameters.
These parameters are variables representing input or output streams.
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generic main(){
// definition of streams

stream long s1;
stream long s2;
stream float s3;
stream float s4;
stream float s5;

// prototypes if modules and wiring

M1 (output_stream s1, s2, s3);
M2 (input_stream s1 output_stream s4);
M3 (input_stream s2 output_stream s5);
M4 (input_stream s4, s3, s5);

}

// definition of modules

M1 (output_stream long a, long b, float c) {
// module body

}

M2 (input_stream long a output_stream float b) {
// module body

}

M3 (input_stream long x output_stream float y) {
// module body

}

M4 (input_stream float first, float second, float third) {
// module body

}

The module body resemble a function definition in the C++ language. As we shall see in
Chapter 3 and 4, an ASSIST module can exhibit either a sequential or parallel control flow. A
flow of control is defined by a sequential procedure, called proc, which can be programmed in
one of the sequential guest languages supported by ASSIST, such as C, C++, and Fortran. The
sequential module is the simplest ASSIST module. It just calls a proc. Let us exemplify the
concept by means of the classic “Hello world!” example.

2.1.1 Hello world!

We implement the classical “Hello World!” example by means of a module called helloworld.
The (sequential) module just calls a standard C++ function called print helloworld. The
$c++ and c++$ modifiers are used to denote the definition of a C++ proc; the inc<"filename">
statement is used to include header files in the proc definition and the path<"absolute path">
statment declares where they are located on the filesystem.

generic main(){
//no streams, just a single module

helloworld();
}

helloworld(){
print_helloworld();

}
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proc print_helloworld()
path<"/usr/include/c++/4.1.1">
inc<"iostream">
$c++{
std::cerr << "Hello World!" << std::endl;

}c++$

Environment settings In order to compile and run the application, check that your envi-
ronment has been correctly defined. Particularly, check that paths and variables defined in
your /.ast rc.sh file are coherent with your system configuration and remember to include
the loading of the needed settings in your shell configuration profile.

Compilation Let us suppose the code has been saved in the file HelloWorld.ast. In order to
execute such code, run the ASSIST-CL compiler. In your working directory type

user@localhost:~ > astCC -c HelloWorld.ast

for compiling the HelloWorld.ast application. The compiler will store the file representing the
executable code ast.out.xml in the ASSIST binary target directory specified in the ASSIST
configuration file (∼/.ast rc) and represented by the compiledir tag.

Execution In order to run the application, you need to invoke the ASSIST loader, which will
load the binary of the application on the target platforms (specified in the $LOADER ROOT
xml
cluster.xml file). The ASSIST loader works in three successive steps: i) the set of target
platform is defined, ii) the binary code is deployed onto the target platforms, iii) the binary
code is launched onto the target platforms. The loadEx.sh script, in the $LOADER ROOT
comandi directory, calls all the steps in sequence and it can be lauched by typing

user@localhost:~ > loadEx.sh $LOADER_HOST $LOADER_PORT
/shared/ASSIST/tmp/assist_compiledir/bin/ast.out.xml noLibTransfer

/usr/java/jdk1.5.0_12/bin/java it.unipi.di.gam.LoadExecuteDriver q1 12700
/shared/ASSIST/tmp/assist_compiledir/bin/ast.out.xml noLibTransfer
Class LoadExecute Driver args.length: 4
Identifying the option: noLibTransfer
Connected with server q1/192.168.0.1:12700
Result CaricaCluster :
SUCCESS
Connected with server q1/192.168.0.1:12700
Result Load :
SUCCESS
libHandle -> 5
Connected with server q1/192.168.0.1:12700
Result Exec :
SUCCESS
runHandle -> 5

$LOADER HOST is the name of machine where the ASSIST loader is running (on port $LOADER PORT),
and ast.out.xml is the XML file generated by the compiler. The NoLibTransfer option avoids
the deployment of common libraries, which is usually a not required step in a cluster enviroment.
The advanced usage of the ASSIST loader is described in the ASSIST loader manual.

VirtuaLinux Feature 1 The VirtuaLinux distribution comes with a pre-configured and
pre-installed version of ASSIST v1.3. In VirtuaLinux the standard binary target directory
is /shared/ASSIST/tmp/assist compiledir/, and all nodes of the VirtuaLinux cluster
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are target platforms, which are listed in /usr/local/astCC1 3/Loader/xml/cluster.xml.
The $LOADER HOST and $LOADER PORT are pre-defined with the following values:
$LOADER HOST = “first node of the cluster” and $LOADER PORT = 12700. The ASSIST
loader manual can be found in /usr/local/astCC1 3/Loader folder.

2.2 Type system

ASSIST supports C, C++ and Fortran languages even if all the examples given in this tutorial will
be coded by using the C++ programming language. In order to provide compatibility between
ASSIST-CL syntax and C, C++ and Fortran ones, the ASSIST type system is described as a set
of mappings between ASSIST types and C, C++, Fortran types and the list of such mappings
is given in Table 2.1. Indeed, in order to cope with high-performance specific needs, the type
system is extended with some structured types (i.e. defined by the typedef directive in the
C, C++ syntax) that are provided with ASSIST-CL without corresponding definition in the
native language: fcomplex and dcomplex representing complex values and ref t representing
references to external objects.

ASSIST C C++ Fortran

octet unsigned char unsigned char integer*1
char char char character
bool -- bool logical
short short short integer*2
long int int integer
long long long long long long integer*8
float float float real*4
double double double real*8
fcomplex fcomplex fcomplex complex*8
dcomplex dcomplex dcomplex complex*16
ref t ref t ref t --
-

Table 2.1: ASSIST type system in comparison with C, C++ and Fortran types.

2.2.1 Basic and composite types

Table 2.1 lists ASSIST basic types and their corresponding C, C++ and Fortran types. New
composite types can be declared by means of the typedef specifier, as in the C language. In
particular, structures and arrays can be recursively used to define new types. As an example a
myType t type can be defined as follows:

typedef struct {
long a;
char b;

} myType_t;

2.2.2 Macros

A macro can be defined by using the define keyword. As an example teh following line defines
N as the value 10 according to the C language syntax:

define N 10

All occurrences of the macro N will be replaced by the ASSIST pre-processor with the value “10”.
The ASSIST pre-processor is compliant with the C pre-processor.
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2.2.3 Array variables

An array variable can be declared following the C syntax:

long A[N][N];

defines a bi-dimensional array A composed of N ×N longs.

2.2.4 Stream variables

A stream represents a one-way channel between ASSIST modules. Informally, a stream is an
unbounded ordered list of values of the same type. The declaration of a stream includes its name
and the type of the stream items. Legal types for streams are ASSIST-CL basic types or new
types defined by the user, as seen in the previous section. In the following example two streams
are declared:

stream long streamLong1;
stream myType_t streamMyType1;

The stream named streamLong1 carries values of type long; stream streamMyType1 carries
values of type myType t.

Streams of arrays may be directly declared without introducing a new type name. Note that
in this case ASSIST requires a slightly different syntax, with respect to the C standard which is
normally used to declare ASSIST types. As an example:

stream long [N][M] matrixStreamNM;

declares a stream which items are bi-dimensional arrays N ×M whose elements are long values.
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Chapter 3

The sequential module

A sequential module is a wrap that enables standard sequential functions to inter-operate via
streams. A sequential module is activated by the presence of at least one item in all input
streams. At the activation time, the module’s proc is instatiated with the stream items. Once
the proc has been evaluated, the module may write one or more items in each output stream,
and iteratively waits for a new set of items from the input streams. The sequential module
terminates when all partners attached to its input streams terminate. In the case the module
has no input streams, it is activated just once.

3.1 Sequential module interface

A sequential module is defined by an interface and a body. The interface declaration needs a
name for the sequential module, and all input and output streams as formal parameters. The
body is specified between brackets.

myFirstSeqModule(input_stream <list of parameters>

output_stream <list of parameters> )
{
// declarations and body of this module

}

In the example above, we can see the declaration of a sequential module interface, in which the
name of the module (myFirstSeqModule) and input and output streams are specified. Note
that the list of input streams follows the keyword input stream and the streams are listed by
specifying their type and identifier. The same rule applies on the list of output streams introduced
by the keyword output stream.
As instance, in the following interface declaration

myFirstSeqModule(input_stream long n, double d
output_stream long A[N][N], float f, long long ll)

{
// declarations and body of this module

}

myFirstSeqModule is a module taking as input two input streams of type long and double
respectively, and three output streams of type long A[N][N], float and long long respectively.
Note that the list of output streams follows the list of input streams and no comma separates
them (while the elements of each list are comma-separated, instead).

11



3.2 Including Existing Headers and Code

In order to use existing code and declarations already available in different source files (e.g. a
C++ class declaration in an header file), their paths and names have to be included in the
module definition in the following way:

myFirstSecModule(){
path<"/home/user/src/">
inc<"iostream","myobject.hpp">

// body of this module

}

The path directive indicates the path in the file system where to search for include files; the
inc directive indicates the names of the files to include.

3.3 The body of a sequential module: the proc construct

A sequential module can be implemented as a list of calls to proc (see also Sec. A.1 to learn
about the implementation of pure sequential modules). A proc is a kind of procedure wrapping
sequential code in any of the host language supported. The host language is declared by using
the modifier $ coupled together with the language specification string outside the function body.

A proc may have input parameters (whose list is tagged by the in keyword), output param-
eters (whose list is tagged by the out keyword) and an output stream identifier tabbed by the
output stream keyword. Thus,

proc (in opt input param list, out opt out param list, output stream
opt output stream id)

Input parameters are optional but is extremely important to take into account that for each
input value belonging to the input list

• only a single value or a list of independent values are produced at a time (the ones listed
in the opt input param list), or

• a stream of values are produced, thus instancing the opt output stream id.

Fig.3.1 summarizes the behavior of a sequential module: assuming that it provides an input
parameter a, it can produce both an output parameter b and a stream of values c0, c1, . . . , ck−1.
Thus, for each value of a, depending on the proc code, just one value for b and/or a list of values
flowing through the output stream c are produced. With respect to having a single output value
as the result of a proc execution, the mechanism that allows to produce the stream of values
c0, c1, . . . , ck−1 while the proc keeps running is the assist out routine (see Sec. 3.4). The role
of this routine is to instance a single, new value onto the output stream without waiting for the
termination of the proc.

Let us take into account a producer-consumer example as depicted in Fig.3.2. This graph
can be implemented in the following way.

// -*- C++ -*-

#define NUM1 10
#define NUM2 15

generic main()
{
stream long A;
stream long B;
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proc Myproc(in a out b outputstream c){
    for i=0 to k{
        ...
        assist_out(c);
    }
    b = ... ;

a

ck-1,...,c0

b

component

Figure 3.1: A component whose internal behaviour is coded by a proc.

genera(output_stream A, B) raccogli(output_stream A, B)
A

B

Figure 3.2: A graph implementing a producer-consumer paradigm

genera (output_stream A, B);
raccogli (input_stream A, B);

}

genera(output_stream long A, long B) {
pGenera(out A,B);

}

proc pGenera(out long A, long B)
inc<"iostream">
$c++{
std::cerr << "Sending value A: " << NUM1 << " B:" << NUM2 <<std::endl;
A = NUM1;
B = NUM2;
std::cerr << "Here you have some other computation" <<std::endl;

}c++$

raccogli(input_stream long A, long B) {
pRaccogli(in A,B);

}

proc pRaccogli(in long A, long B)
inc<"iostream">
$c++{

std::cerr << "Receiving A: " << A << "B: " << B << std::endl;

}c++$
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The producer is implemented by the module genera and provides two output streams, A and B,
whose single values are produced by the proc pGenera (actually, here pGenera simply implements
an assignment to the output value to be produced, A and B and a printing directive). The
consumer is implemented by the module raccogli and it receives input values through the
input stream A and B (the ones produced by module genera) and consumes such values by
invoking the proc pRaccogli. Note that if genera and raccogli are declared and implemented
in a different location, they can be linked by specifying the inc and path directives described in
3.2.
Each receiving module activates its proc as soon as a task is available onto the input stream.
Thus, the execution of the example will generate the output

Sending value A:10 and B: 15
Here you will have some other computation

Received value A:10 and B:15

If we slightly change the code of pgenera by commenting the assignment of B (thus, neglecting
the module genera to send a value onto the output stream B), the output provided by the
execution will be

Sending value A:10 and B: 15
Here you will have some other computation

Received value A:10 and B:-1077514208

e.g. the only availability of a task on the input stream A suffices to activate the proc pRaccogli
(we will see in Chapter 4 how such behavior can be pragmatically changed).
In case a module provides no input streams (i.e. no input values), each proc is activated at the
module launching time and it stay running until the module terminates.
An input stream value can be given as argument to multiple proc, while each output stream
should appear in at least one of the proc output parameters. As an example, the following
code is ill-formed and during its compilation an error will be raised because of the non-sense of
declaring an output stream flowing out two different proc:

p1(is_n, out_l1);
p2(is_n, out_l1);

3.4 The assist out command

As mentioned above, the correct use of the sequential module semantics requires that the sending
of a result onto the output stream have to be completed after its evaluation has been completed.
Nevertheless, this means that just one result will be passed on each output stream. However,
it is possible to sequentially submit multiple data items on an output stream during a single
activation. In ASSIST this can be done using the assist out command.

// -*- C++ -*-

#define ITERATIONS 10

generic main()
{
stream long lout;

seqModuleMultipleSend(output_stream lout);
raccogli(input_stream lout);

}
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seqModuleMultipleSend(output_stream long lout){
multipleSend(output_stream lout);

}

proc multipleSend(output_stream long plout)
inc<"iostream">
$c++{
int i;
for (i=0;i<ITERATIONS;i++){
assist_out(plout,i);
std::cerr << "SENT value i:"<< i << std::endl;

}
}c++$

raccogli(input_stream long A){
pRaccogli(in A);

}

proc pRaccogli(in long A)
inc <"iostream">
$c++{
std::cerr<<" Received value A:"<< A << std::endl;

}c++$

The example above represents a variant of the producer-consumer case with just one stream con-
necting the two modules. The producer, represented by the genera module, sends INTERACTIONS
long values on the output stream named lout in each single activation. For each value produced,
the assist out primitive allows to send the current value i on the output stream plout.

As it can be seen from the following example, the assist out command allows to design
more complex application patterns. Let us take into account the producer-consumer schema
given in the previous section provided that the producer sends to the consumer two streams of
values for each activation of the pGenera proc. pGenera does not receive input values but, for
each activation, produces two streams of long values, named A and B. Such values are generated
inside the body of the for construct (syntactically represented by tmpA and tmpB), and they are
sent to the corresponding output stream through the assist out command each. In fact, the
activation of a proc stops when the expected output value as been produced: in order to keep in
running the proc (calling the instructions that follow such value generation), we need to adopt
the assist out directive, after which the execution proceeds with the successive instructions.

// -*- C++ -*-

#define NUM1 10
#define NUM2 15
#define TIMES 100

generic main()
{
stream long A;
stream long B;

genera (output_stream A, B);
raccogli (input_stream A, B);

}
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genera(output_stream long A, long B) {
pGenera(output_stream A,B);

}

proc pGenera(output_stream long A, long B)
inc<"iostream">
$c++{
for (unsigned int i=0; i< TIMES ; i++) {
long tmpA;
long tmpB;

tmpA = NUM1;
tmpB = NUM2;
std::cerr<<"Task "<<i<<"sent A:"<<tmpA<<" B:"<<tmpB<<std::endl;

assist_out(A,tmpA);
assist_out(B,tmpB);

}
}c++$

raccogli(input_stream long A, long B) {
pRaccogli(in A,B);

}

proc pRaccogli(in long A, long B)
inc<"iostream">
$c++{

std::cerr << "Value Received A: " << A << "B: " << B << std::endl;

}c++$

Note that this implementation presents a drawback: in the pRaccogli proc, it is not possible
to count how many times the pair (a,b) has been received because of each activation depends on
just one pair. The only way to overcome this lack, is to use a static variable inside the C++
code.

As a last example, we will show how to write a producer-consumer application in which each
task of the stream is of type DataType, a C++ struct encapsulating two long values and a
counter of the tasks of the stream.

// -*- C++ -*-

#define NUM1 10
#define NUM2 15
#define TIMES 100

typedef struct {
long A;
long B;
long msgId;

} DataType;

generic main()
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{
stream DataType A;

genera (output_stream A);
raccogli (input_stream A);

}

genera(output_stream DataType A) {
pGenera(output_stream A);

}

proc pGenera(output_stream DataType msg)
inc<"iostream">
$c++{
for (unsigned int i=0; i< TIMES ; i++) {
DataType elemento;
elemento.A = NUM1;
elemento.B = NUM2;
elemento.msgId = i;
std::cerr << "Task " << i << "sent A: " << element.A << " B:" << element.B <<std::endl;
assist_out(msg,elemento);

}
}c++$

raccogli(input_stream DataType A) {
pRaccogli(in A);

}

proc pRaccogli(in DataType data)
inc<"iostream">
$c++{

if (data.msgId==99) {
std::cerr << "All tasks received " << std::endl;

}
}c++$

The procpGenera produces TIMES tasks to be sent onto the stream; each task is a DataType
type element and is ”tagged” by its own task identifier msgId. Each task is sent onto the stream
through the assist out command and received by the pRaccogli proc that simply counts how
many data items has been received (it simply checks if the current message carries 99 as task
identifier). Such pattern can be easily applied each time a pipeline computation is involved:
pGenera produces task for the pipeline, pRaccogli eventually represents the last stage of the
pipeline and in the middle of these stages, an application could have a number of intermediate
stages that send and receive tasks on their streams.

3.5 Generic graphs

Let us suppose we want to implement the graph depicted in Fig.3.3. Trivially, the graph repre-
sents the evaluation of the expression

f(x) = (x ∗ 10)× 2 + (x ∗ 10)2

Each operator is represented by a node and the arch of the graph represents the dependencies
among arithmetic expressions.
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Figure 3.3: A more complex graph of sequential modules

The graph represents some of the most typical programming situations and we will show how
to encode them:

• a sequential module (Produce) producing a stream of values and connected to (three)
different modules (Power, Time, Add) through a common stream (A); e.g. the same input
stream can be consumed by several receivers;

• two sibling (Time and Power) working independently, the one with respect to the other, on
common inputs;

• a (sub)graph that could be provided with a double root: Time and Power are both roots
of a (sub)graph representing the expression y × 2 + y2

• a sequential module connected to three different and unrelated input streams

All these situations are interchangeable, they could appear on the same node or in different nodes
of the graph.

// -*- C++ -*-
#define N 10

generic main(){
stream long A;
stream long B;
stream long C;

// declaration of the root

producer(output_stream A);

// first of two siblings

multiplier(input_stream A output_stream B);

// second of two siblings

power(input_stream A output_stream C);

// this module receives from two sources

add(input_stream B, C);
}
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producer(output_stream long A){
p_producer(output_stream A);

}

proc p_producer(output_stream long A)
inc<"iostream", "stdlib.h","sys/types.h","sys">
$c++{
int i;
int v;
for ( i=0 ; i < N ; i++){
v = (rand()%9)*10;
std::cerr<<"Sending value:"<<v<<std::endl;
assist_out(A,v);

}
}c++$

multiplier(input_stream long A output_stream long B){
p_mult(in A out B);

}

proc p_mult(in long A out long B)
$c++{
B = A*2;

}c++$

power(input_stream long A output_stream long B){
p_power(in A out B);

}

proc p_power(in long A out long B)
$c++{
B = A*A;

}c++$

add(input_stream long B, long C){
p_add(in B,C);

}

proc p_sum(in long B, long C)
inc <"iostream">
$c++{
long val = C+B;
std::cerr<<"Receiving value:"<< val << std::endl;

}c++$

Note that, in order to use the C function rand() in the proc p producer, we have included
the standard library stdlib.h through the inc directive.

3.6 Reading from and writing a file

Reading and writing operations from a file system source could be easily done by using the
primitives of the host programming language. In the example below, a version of the proc
p producer is given, in which the values to which applying the function f(x) are read from the
source file /tmp/contentfile.
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proc p_producer(output_stream long A)
inc<"iostream", "stdlib.h">

$c++{
int i;
int v;
FILE *fd;

fd = fopen("/tmp/contentfile","r+");

if (fd==NULL){
std::cerr<<"Error in opening file"<<std::endl;
exit(0);
}else{

while (!feof(fd)){
val = getw(fd);
std::cerr<<"Reading value:"<<val<<std::endl;
assist_out(A,val);

}
fclose(fd);

}
}c++$

Note that a file name could also be passed to a proc as the string value of the proc ś input
stream.
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Chapter 4

The parallel module

An ASSIST program is represented by a graph of generic structure, whose nodes are sequential or
parallel modules and edges are stream of data. A parallel module or parmod is the main parallel
construct in ASSIST-CL because it allows to explicitly express a parallel behaviour inside a
single module or inside a single node via compositions of sequential and/or parallel modules.
Compositions are mainly expressed in the data-flow and/or in the not-deterministic style.

The chapter is organized as follows: in Section 4.1 we will give an introduction of the structure
of a parmod ; in Section 4.2 the parmod interface will be presented together with a first overview
of the sections to be implemented for programming it; in Sections 4.3-4.6 we present some classic
parallel applications exploiting the main parmod features. However, a full, detailed description
of such features will be given in Chapter 5.

4.1 Structure of the parmod

A parmod external interface is similar to a sequential module interface: it exposes input streams
and output streams and they are used to interact with the external environment.
ASSIST provides keywords for programming the development and assembly mechanisms at the
language level, for accessing the tasks non deterministically arriving from the stream and to
collect the results. Moreover, synchronization mechanisms for managing shared tasks inside
parallel modules are also provided.

Figure 4.1: parmod: virtual processors on row i execute the program Pi.

From a high abstraction level, a parmod is represented by a set of virtual processors (in the
following, VPs), i.e. the units of parallelism of a parmod. The logic at the basis of such set is that
VPs execute in parallel, possibly different, programs and they are programmed similarly to a
sequential module, i.e. as a list of calls to procs. Moreover, some specific ASSIST-CL constructs
are provided in order to specialize the module behavior.
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An example of parmod with nine virtual processors is shown in Figure 4.1, where if two of
them are on the same row, then they execute the same program (for example in the first row
they execute the program P1). Virtual processors can communicate together by means of state
sharing, as we will see in the subsequent paragraphs. Thus, a parmod can have a state that can
be replicated or partitioned among the virtual processors and receives/sends data through the
input/output streams provided by the external interface.

Operationally, the parmod behaves differently from a sequential module since

• it can activate himself even if not all its input streams received a token;

• it can receive/send data items on input/output streams even if internally there is still an
active computation.

These characteristics will depend upon the “configuration” the programmer gives to the parmod.

4.2 The parmod interface

A parmod is declared by specifying its name and its input and output streams exactly as if it
was a sequential module. Look at the following example

generic main(){

parmod myFirstParmod (input_stream <list of input streams>
output_stream <list of output streams>) {

/* Definitions section */
/* Input section */
/* Virtual processor section */
/* Output section */

}
}

The parmod’s body include four main programming sections:

• in the definition section a topology must be specified, and attributes and control variables
needed to the program can be declared;

• in the input section the parmod’s behaviour regarding the input streams and the elements
distribution is specified;

• in the virtual processors section the virtual processors can be programmed;

• in the output section the programmer specifies the parmod’s behaviour with respect to both
the reception of results from VPs and the sending of them to the output streams.

In the following we examine in detail each of the above sections in three specific classes of
problems:

• an embarrassingly stream-parallel application (a farm skeleton)

• an embarrassingly data-parallel application (a map skeleton)

• a data-parallel application with stencil (i.e. with functional dependencies between tasks
and/or data overlapping between virtual processors).

• the fourth example will highlight the not-deterministic reception of input tasks

The examples proposed in the next sections will give a first perspective of how to program a
parmod, whereas Chapter 5 will focus on all the syntactic options and details about these four
main sections.
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4.3 Stream parallel application

A classic stream parallel application is the one evaluating the Mandelbrot set of a squared space
of N points. The computation of the color to be assigned to a point of the space is independent
for each point with respect to the others, thus the problem can be described through a farm
skeleton, i.e. by the following graph application:

generic main()
{
stream dcomplex[N] A; // the set of pixel coordinates

stream T_col[N] C; // the range of colors

generate (output_stream A); // generates a stream of pixels

mandelbrot (input_stream A output_stream C); // evaluates mandelbrot

collect (input_stream C); // collects the image colors

}

where T col represents the association between a pixel a color and it’s a structured user defined
type defined as follows:

typedef struct {
dcomplex pos; // the pixel coordinates

long col; // the color of the pixel

} T_col;

The module mandelbrot encapsulates the parallel behavior of the application, while generate
and collect are sequential modules producing and consuming the stream values, respectively,
as already discussed in Chapter 3. Since these last two modules do not offer particular new
challenges (see Section 3.3 for details), we will focus here only on the parmod code.

// -*- C++ -*-
#define N 10000 #define MAXITER 4096

// other code....

parmod mandelbrot (input_stream dcomplex A[N] output_stream T_col C[N])
{
topology none Pv;

do input_section {
guard1: on , , A {
distribution A on_demand to Pv;

}
} while (true)

virtual_processors {
mandel (in guard1 out C) {
VP {
Fmandel (in A out C);

}
}

}
output_section {
collects C from ANY Pv;

}
}
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proc Fmandel (in dcomplex pos[N] out T_col sol[N])
inc<"iostream">
$c++{
for (int n=0; n<N; n++) {
dcomplex z=0, c=pos[n];
long i=0;
while (i<MAXITER) {
z=z*z-c;
if (abs(z)>2) break;
i++;

}
sol[n].pos = c;
sol[n].col = i;

}
}c++$

The parmod takes a stream A of dcomplex arrays as input and produces a stream of T col array
as output B, so that for each element xi ∈ A, ci ∈ T col represents the color associated to xi.

The topology

topology none Pv;

The topology section defines the set of virtual processors onto which the elaboration will be
eventually distributed. A topology of type none defines a set of anonymous virtual processors,
all executing the same parallel elaboration.

Input section In the input section the behavior of the parmod with respect to the reception
of the input values will be explicited. If the parmod has multiple input streams from which items
can be received, a set of guards will allow the non deterministic reception of input items from all
the streams.

do input_section {
guard1: on , , A {
distribution A on_demand to Pv;

}
} while (true)

The guards are listed in the input section{...} block and the expression

guard1: on, , A{}

states that the guard guard1 is activated (thus his body is executed) as soon as a new item is
available onto the input stream A; the keyword on assigns the same priority of all the guards of
the list. Eventually, a boolean condition on the guard can follow the priority keyword, otherwise
a blank parameter can be given as the boolean value true.

The distribution strategy The body of a guard, is responsible for the distribution of the
incoming items to the virtual processors. The keyword distribution introduces a strategy
as, for example, the assignment on-demand of each incoming task to a virtual processor. The
assignment anonymous and is defined by the run-time system aiming at keeping a good load-
balancing.
The input section can be enclosed in a (possibly infinite) loop in order to keep running its
activation after each item arrival.
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Virtual processors section In this section the actual elaboration of the virtual processors is
explicited.

virtual_processors {
mandel (in guard1 out C) {

VP {
Fmandel (in A out C);

}
}

}

In this context, mandel(in guard1 out C){} represents the parallel elaboration of the applica-
tion. The execution depends on the activation of the guard in the input section (i.e. on the
availability of an input item).

The body of the parallel elaboration specify the function applied by each anonymous virtual
processor. In our example, all the virtual processors apply the function Fmandel on their assigned
tasks. In other words, the construct VP{...} specifies that all the VP of this parmod will execute
the function (the proc) included in the body of the construct that takes a value A as input and
produces a value C as output.

Output section The output section is represented by the construct output section{...}
and it explicits how to collect the results provided by the virtual processor.

output_section {
collects C from ANY Pv;

}

Here, the collection strategy is introduced by the keyword collects followed by the result iden-
tifier appearing in the parallel elaboration signature and the keyword from ANY. Such keyword
specifies that the output section waits non-deterministically for the first result sent from any
virtual processor belonging to Pv.
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4.4 Data parallel application

We will take an application multiplying two squared matrices as an example of data parallel
computation. The application can be coded by the following graph application:

generic main()
{
stream long[N][M] Matrix1;
stream long[M][L] Matrix2;
stream long[N][L] Matrix_ris;

generate (output_stream Matrix1);
generate (output_stream Matrix2);
matrixmult (input_stream Matrix1, Matrix2 output_stream Matrix_ris);
end (input_stream Matrix_ris);

}

where generate represents the sequential module that generates the two matrices by assigning
to each position randomly generated values, as follows:

generate(output_stream long Matrix1[N][M]) {
fgen1(output_stream Matrix1);

}
proc fgen1(output_stream long Matrix1[N][M])
inc<"iostream">
$c++{
long a[N][M];
for (int i=0;i<N;i++)
for (int j=0;j<M;j++)
a[i][j] = ... // generation of the value

assist_out(Matrix1, a);
}c++$

while end trivially prints the resulting matrix as follows:

fine(input_stream long Matrix_ris[N][L])
inc<"iostream">
$c++{
int ok = 0;
for (int i=0;i<N;i++)
for (int j=0;j<M;j++)
std::cerr << Matrix_ris[i][j] << std::endl;

}c++$

Let’s analyze in detail the matrixmult module representing the parmod showed below:

parmod prodotto_matrici (input_stream long Matrix1[N][M], long Matrix2[M][L]
output_stream long Matrix_ris[N][L]) {

topology array [i:N][j:L] Pv;

attribute long A[N][M] scatter A[*ia][*ja] onto Pv[ia][ja];
attribute long B[M][L] scatter B[*ib][*jb] onto Pv[ib][jb];
attribute long C[N][L] scatter C[*ic][*jc] onto Pv[ic][jc];

stream long ris;
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do input_section {
guard1: on , , Matrix1 && Matrix2 {
distribution Matrix1[*i0][*j0] scatter to Pv[i0][j0];
distribution Matrix2[*i1][*j1] scatter to Pv[i1][j1];

}
} while (true)

virtual_processors {
elab1 (in guard1 out ris) {
VP i, j {
UserSet(in Matrix1[i][j], Matrix2[i][j] out A[i][j], B[i][j]);
sync;
f_mul (in A[i][], B[][j] out C[i][j]);
sync;
assist_out(ris, C[i][j]);

}
}

}

output_section {
collects ris from ALL Pv[i][j] {
int elem;
int Matrix_ris_[N][L];
AST_FOR_EACH(elem) {
Matrix_ris_[i][j]=elem;

}
assist_out(Matrix_ris, Matrix_ris_);

}<>;
}

}

The parmod takes two streams as input, each providing one of the two matrices, respectively and
produces a third stream flushing the tasks belonging to the result matrix, as output value.
In this implementation, the evaluation of the multiplication proceeds as soon as both Matrix1
and Matrix2 are completely available as input to the parmod Ṫhus, each element of the output
matrix Matrix ris can be computed in parallel as the Cartesian product between the i−th row
of Matrix1 and the j−th row of Matrix2.

The topology

topology array [i:N][j:L] Pv;

The topology section defines the number of virtual processors onto which the elaboration will be
eventually distributed. This implementation uses N ×L virtual processors, one for each element
ci,j we expect in the result matrix.
The topology type array allows to define N ×L virtual processors as if they were elements of an
array Pv. Thus, in the scope of the parmod each virtual processor will be indexed by Pv[i,j],
provided that i ∈ [1, N ] and j ∈ [1, L].

Mapping of attributes Once we have given a topology to logically organize the set of virtual
processors, we could need to partition one or more global variables that will collectively used by
the virtual processors.

attribute long A[N][M] scatter A[*ia][*ja] onto Pv[ia][ja];
attribute long B[M][L] scatter B[*ib][*jb] onto Pv[ib][jb];
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attribute long C[N][L] scatter C[*ic][*jc] onto Pv[ic][jc];
stream long ris;

The attributes represented by A, B, and C are bi-dimensional arrays of specific sizes, shared
between all the virtual processors. The expression scatter A[*ia][*ja] onto Pv[ia][ja]
means that ∀i0,j0 A[i0][j0] is mapped onto the virtual processor Pv[i0][j0]. In other words,
Pv[i0][j0] can access the whole matrix that becomes part of the parmod state.

Input section In the input section the behavior of the parmod with respect to the reception
of the input values will be explicited.

do input_section {
guard1: on , , Matrix1 && Matrix2 {
distribution Matrix1[*i0][*j0] scatter to Pv[i0][j0];
distribution Matrix2[*i1][*j1] scatter to Pv[i1][j1];

}
} while (true)

The guards are listed in the input section{...} block and the expression

guard1: on, , Matrix1 && Matrix2{...}

states that the guard guard1 (the only one needed) is activated (thus his body executed) as soon
as a new item is available onto both the input stream Matrix1 and the input stream Matrix2.
The keyword on assigns a default priority to this guard and the blank parameter is equivalent
to expressing a condition on the guard that always evaluates true.

The input section can be enclosed in a (possibly infinite) loop in order to keep running its
activation after each item arrival.

The distribution strategy The body of a guard is responsible for the distribution of the
incoming items to the virtual processors.

distribution Matrix1[*i0][*j0] scatter to Pv[i0][j0];
distribution Matrix2[*i1][*j1] scatter to Pv[i1][j1];

The keyword distribution introduces a strategy corresponding, to the mapping of all the
elements of the matrices to all the virtual processors, as specified by the free and fresh variables
i0 and j0

Virtual processors section In this section the actual elaboration of the virtual processors is
explicited.

virtual_processors {
elab1 (in guard1 out ris) {
VP i, j {
UserSet(in Matrix1[i][j], Matrix2[i][j] out A[i][j], B[i][j]);
sync;
f_mul (in A[i][], B[][j] out C[i][j]);
sync;
assist_out(ris, C[i][j]);

}
}

}

where f mul and UserSet are trivially defined as follows:

proc f_mul(in long A[M], long B[M] out long C)
inc<"iostream">
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$c++{
// computes the actual cartesian product

register long r=0;
for (register int k=0; k<M; ++k)
r += A[k]*B[k];

C = r;
}c++$

proc UserSet(in long A, long B out long C, long D)
$c++{
C = A;
D = B;

}c++$

The proc f mul evaluates the Cartesian product between a row of Matrix1 and a column of
Matrix2, while UserSet simply copies two values. Indeed, the virtual processors section defines
a parallel evaluation named elab1 that will be activated as soon as guard1 is ready. The
expression VP i, j stands for ∀i, j, while the keyword sync imposes that each virtual processor
will execute f mul on the parmod state updated by the execution of UserSet1. Thus, the body
of the parallel evaluation specify that all the virtual processors, compute the same block of
operations, i.e.:

• they create a local copy of the values in position (i, j)

• they wait for the updates

• they execute the proc f mul taking as input a row and a column and producing a long
value as result

• they wait for the updates

• they produce the final result, i.e. the value in position (i, j)

Output section The output section collects all the results computed by the virtual processors
activated by the guard, and builds the N × L resulting matrix.

output_section {
collects ris from ALL Pv[i][j] {
int elem;
int Matrix_ris_[N][L];

AST_FOR_EACH(elem) {
Matrix_ris_[i][j]=elem;

}
assist_out(Matrix_ris, Matrix_ris_); }<>; } }

The collecting strategy is introduced by the collects keyword and is specified by the from ALL
construct. This construct states that the output section waits for a new result ris from all virtual
processors and the body is executed as soon as an incoming value is available on Pv[i][j]. In
particular, the AST FOR EACH construct states that such incoming element (renamed elem in the
scope of the current block),will be assigned to the resulting matrix in position (i, j).
Finally, the assist out command allows to produce the output stream for the parmod Ȧt the
end, the body of the collects statement could be followed by a sequence of control variable
updates to enclosed between the angled brackets <>.

1The construct sync is not strictly a barrier among the virtual processor, rather a synchronization on the
partitioned state
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4.5 Data parallel with stencil

In this section we will detail how to implement the well known Floyd-Warshall algorithm for the
evaluation of the shortest path for traversing a graph. The algorithm can be represented by the
following piece of code:

for h to N do
for i to N do
for j to N do
A_{i,j} = max(A_{i,h},A_{h,j})

As it can be seen, for each cycle the element in position (i, j) depends on the elements in position
(i, h) and (h, j), creating strict dependencies between positions and among iterations as well.
The problem can be easily represented by the following graph application:

// -*- C++ -*-
#define N 5
#define MAX_ITER 10
generic main() {
stream long[N][N] A;
stream long[N][N] B;
generate (output_stream A);
elab (input_stream A output_stream B);
print (input_stream B);

}

The module elab encapsulates the parallel behavior of the application, while generate and print
are sequential modules producing and consuming the stream values, respectively, as already
discussed in Chapter 3. Since these last two modules do not offer particular new challenges, we
will focus here only on the parmod code.

parmod elab (input_stream long A[N][N] output_stream long B[N][N]) {
topology array [i:N][j:N] Pv;
attribute long S[N][N] scatter S[*u0][*v0] onto Pv[u0][v0];
stream long ris;

do input_section {
guard1: on , , A {
distribution A[*u][*w] scatter to S[u][w];

}
} while (true)

virtual_processors {
elab (in guard1 out ris) {
VP i,j {
for (h=0; h<N; h++) {
Felab (in S[i][h], S[h][j], S[i][j] out S[i][j]);

};
assist_out (ris, S[i][j]);

}
}

}

output_section {
collects ris from ALL Pv[i][j] {
long el;
long B_[N][N];
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AST_FOR_EACH(el) {
B_[i][j] = el;

}
assist_out (B, B_);

}<>;
}

}

proc Felab (in long a, long b, long s out long S)
inc<"iostream">
$c++{
long t = a+b;

if (t < s)
S = t;

else
S = s;

}c++$

The parmod takes an stream as input providing N × N matrices and produces a stream of
resulting matrices.

The topology

topology array [i:N][j:N] Pv;

The topology section defines the number of virtual processors onto which the elaboration will be
eventually distributed. This implementation uses N ×N virtual processors, one for each element
ci,j we expect in the result matrix.
The topology type array allows to define N×N virtual processors as if they were elements of an
array Pv. Thus, in the scope of the parmod each virtual processor will be indexed by Pv[i,j],
provided that i ∈ [1, N ] and j ∈ [1, L].

The mapping of attributes Once we have given a topology to logically organize the set of
virtual processors, we could need to partition one or more global variables that will collectively
used by the virtual processors.

attribute long S[N][N] scatter S[*u0][*v0] onto Pv[u0][v0];
stream long ris;

The attribute represented by S is a bi-dimensional array, shared between all the virtual pro-
cessors. The expression scatter S[*u0][*v0] onto Pv[u0][v0] means that ∀u0,v0 S[u0][v0]
is mapped onto the virtual processor Pv[u0][v0]. In other words, Pv[u0][v0] can access the
whole matrix that becomes part of the parmod state.

Input section In the input section the behavior of the parmod with respect to the reception
of the input values will be explicited.

do input_section {
guard1: on , , A {
distribution A[*u][*w] scatter to S[u][w];

}
} while (true)

As seen in the previous example, the input section hosts only one guard, namely guard1, that
will activated on the basis of a given default priority as soon as an element is available on the
input stream A.
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The distribution strategy The body of a guard is responsible for the distribution of the
incoming items to the virtual processors and, as we have seen in Section 4.4, the following
distribution construct

distribution A[*u][*w] scatter to S[u][w];

states that the matrix is fully distributed onto all the virtual processors.

Virtual processors section In this section the actual elaboration of the virtual processors is
explicited.

virtual_processors {
elab (in guard1 out ris) {
VP i,j {
for (h=0; h<N; h++) {
Felab (in S[i][h], S[h][j], S[i][j] out S[i][j]);

};
assist_out (ris, S[i][j]);

}
}
}

where Felab is a proc defined as follows:

proc Felab (in long a, long b, long s out long S)
inc<"iostream">
$c++{
long t = a+b;
if (t < s) S = t;
else S = s;

}c++$

The virtual processors section defines a parallel evaluation named elab that will be activated
as soon as guard1 is ready. The body of the parallel evaluation specify that all the virtual
processors (VP i, j stands for ∀i, j), compute the same block of operations.
Such block includes the ASSIST-CL for construct through which the ASSIST run-time keeps
the shared state (i.e. the attribute S) consistent at each iteration of the loop. Alternatively,
ASSIST-CL offers a while construct for writing loops: in this case, the body of the VP block
appears as follows:

do{
Felab (in S[i][h], S[h][j], S[i][j] out S[i][j]);
h = h +1 ;

}while (h<N)

Output section In this case, the output section is quite similar to the one already seen in
Section 4.4: it collects the results waiting for the computation of all the virtual processors
activated by the guard, and builds the N ×N resulting matrix.

output_section {
collects ris from ALL Pv[i][j] {
long el;
long B_[N][N];
AST_FOR_EACH(el) {
B_[i][j] = el;

}
assist_out (B, B_);
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}<>;
}

}
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4.6 Parmod with multiple guards

In this section we will explain how ASSIST-CL allows to program a not-deterministic activation
of a set of guard inside a parmod module.

Let us suppose we want to encode a parmod depicted in Fig. 4.2 The virtual processors

PM

str_a

str_a

str_a

str_out1

str_out2

Figure 4.2: A parmod with multiple guards

belonging to the parmod PM execute a data-flow elaboration on the input data provided by the
streams str a and str b. Not-deterministically, the parmod can also receive inputs from the
stream str c.

A possibly implementation of the section in charge to receive the input values is proposed
below:

parmod PM(input_stream long str_a[N][N], long str_b, long str_c[N]
output_stream long str_out1[N][N], long str_out2) {

topology array [i:N][j:N] Pv;
attribute long S[N][N] scatter S[*i0][*j0] onto Pv[i0][j0];
attribute bool lg_str;
attribute long p1, p2;

init{
lg_str = false;
p1 =1 ;
p2 = 0;

}

input_section {
guard1: p1 , , str_a && str_b {
distribution str_a[*j] scatter to Pv;
distribution b broadcast to Pv;
operation{
lg_str = true;

}
}
guard2: p2 , lg_str , str_c {
long max;
distribution A2[*k] scatter to S[k];

}
}

// other section of the parmod

The parmod takes three parameters as input (one providing bi-dimensional matrices, one provided
long values and one providing a uni-dimensional array) and produces two streams as output
str out1 and str out2.

34



The topology

topology array [i:N][j:N] Pv;

This type of topology allows to define N ×N processors.

The mapping of attributes

attribute long S[N][N] scatter S[*i0][*j0] onto Pv[i0][j0];
attribute bool lg_str replicated; // control variable

attribute long p1, p2 replicated; // values of priorities

The attribute represented by S is a bi-dimensional array scattered onto the virtual processors as
already seen in the previous example. The attributes lg str, p1 and p2 are replicated on each
virtual processor, as declared by the keyword replicated.

Initialization of control variables The construct init{...} allows to execute some initial-
ization operations as, for instance, the one related to the control variables. In our case, the
replicated attributes are initialized.

Input section The guards are listed in the input section{...} block.

input_section {
guard1: p1 , , str_a && str_b {
distribution str_a[*i][*j] scatter to Pv;
distribution str_b broadcast to Pv;
operation{
lg_str = true;

}
}
guard2: p2 , lg_str , str_c {
{
proc_f(in str_c out max)

}
distribution max broadcast to Pv

}
}

As already seen in the previous example, the activation of a guard depends on:

1. the availability of at least one task on the input stream (or on the conjunction/disjunction
of two or more of them)

2. a value of priority, given by a variable or a constant positive value.

3. a boolean expression, typically concerning the evaluation of one or more control variables

If two guards are ready (1 and 3 are true), the guard with highest priority is executed; otherwise
one of the ready guards is selected by the run-time system on the basis of a policy unknown to
the programmer.

The distribution strategy The body of a guard, is responsible for the distribution of the
incoming items to the virtual processors. The keyword distribution introduces a strategy as,
for example, the broadcast of the value str b to all the virtual processor of Pv. Moreover, the
construct

operation{
lg_str = true;

}
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can be used to update the control variable lg str before leaving the guard block.
An alternative behavior is given by the body of guard2 where a proc is simply invoked and

the result of such elaboration is distributed onto the virtual processors.
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Chapter 5

Assist-CL details

In this chapter we will detail the ASSIST-CL syntax, extending and completing the overview
given in the previous chapter with respect to the coding of the parmod.

We recall that the structure of an ASSIST-CL program can be sketched as followed:

generic main(){

// declaration of global variables

// declaration of sequential modules

// declaration of proc

parmod parmod_name(input_stream <list of input stream>
output_stream <list of output stream>){

// Definition section

// Input section

// Virtual processors section

// Output section

}
}

5.1 Definition section

In this section we have to define the topology of the virtual processors and the guards. We can
also define attributes and other items. We see each one of them in details.

5.1.1 Topologies of the virtual processors

We can have three different types of topologies of virtual processors:

1. one: defines a parmod with just one virtual processor and is used to implement a sequential
module with nondeterministic behaviour upon receptions on the input streams.

2. none: defines a parmod with anonymous virtual processors.

3. array: generates a naming for the virtual processors that can addressed using a numeric
index.

Clearly, we will choose a topology depending on what kind of parallel algorithm we want to
implement. In a subsequent section we will show how to implement classical skeletons and the
associated topology needed. The topology influences the type of state we can define in a parmod
and Tab. 5.1 summarizes such mapping. Moreover, section 5.1.2 gives more insights on the
definition and kind of the state of a parmod.

37



Topology Characteristics of the parmod’s state allowed
one state of the VP (trivial)
none replicated state
array replicated and partitioned state

Table 5.1: Features of the parmod’s state allowed for the three topologies of the virtual processors

The topology of the virtual processors is specified by the keyword topology followed by its
type, as shown in the following example:

generic main(){

parmod myFirstParmod (input_stream <list of input streams>
output_stream <list of output streams>) {

// Definition section

topology array [i:N][j:N] myVPs;
// Input section

// Virtual processors section

// Output section

}
}

In this case we are using two indexes, i and j, to name a virtual processor; so, taking the
parmod in Fig. 4.1 as an example, we can write something like: myVPs[0][1] to name the VP
in “position” (i, j). We can also have:

topology none otherVPs;

to define an anonymous virtual processor and

topology one Pv;

to define a singleton virtual processor, i.e. a nondeterministic sequential module.
In the following, we will see that the name we give to the set of the virtual processors (Pv in the
latter example) is also used to address the virtual processors in the distribution and collection
operations performed by the input and output section, respectively.

5.1.2 Attributes

Attributes are variables in the scope of the input section and to the virtual processors. They are
used to define a state to the parmod, surviving its activations. There are three types of attributes:

• replicated: each virtual processor has its own copy of the attribute and it is the only one
that can read and write it. In fact, there isn’t a shared state. An example of definition of
a replicated attribute is the following one, in which the boolean variable diff representes
a replicated attribute:

generic main(){
parmod parmodWithReplicatedAtt (...) {

// Definition section

topology none myVP;
attribute bool diff replicated;

// other sections

}
}
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• partitioned: attributes of this type are meant to be spreaded over the virtual processors
according to their naming and are introduced by the keyword scatter. The access to
partitioned attributes is ruled by the Owner-Compute rule stating that, since an attribute’s
element has an owner, that owner is the only one that can read and write it; other non-
owner virtual processors can just read that element. As we saw in the topology description,
we can define partitioned attributes only if the parmod has the array topology. An example
of the definition of a partitioned attribute is the following one:

parmod parmodWithScatteredAtt (...) {
// Definition section

topology array [i:N][j:N] Pv; attribute long S[N][N] scatter
S[*i0][*j0] onto Pv[i0][j0];

// other sections

}

In this example the attribute S is a bidimensional N × N array that is scattered onto
the virtual processors according to an isomorphism: the processor named Pv[i][j] is the
owner of S[i][j]. The variables *i0 and *j0 that appear in the code are free and must
be fresh. Clearly there is a mapping between the free variables and the variables used in
the indexing of the Pv (see Sec. A.5 for details about a correct usage of indexes)

Finally, notice that the name we give to the set of virtual processors (i.e. Pv) is used to
address them in the definition of the attributes.

• attributes in topology one: this is a special case relative to the one topology. Clearly,
there is not need of a replicated or partitioned attribute because we have just one virtual
processor but attributes of can be declared and used as well resulting in a variable of
common use.

parmod parmodOneWithAtt (...) {
// Definition section

topology one Pv;
attribute long S onto Pv;

// other sections

}

5.1.3 Control variables

Control variables represent values are shared between the input and ouput sections in order to
implement some kind of control on the reception and sending of data items from and to the
external world. Another use of these variables consists in expressing an implicit loop on the
streams. They’re declared exactly as an attribute (without the replicated or partitioned
properties) and we will see how to implement these behaviours in details once we’ve introduced
the input section.

5.1.4 Internal streams

Internal streams are used to allow an explicit communication between the virtual processors and
the output section. They are introduced by the keyword stream and are defined as we can see
in this example:

parmod myFirstInternalStream (...) {
topology none Pv;
stream long result;
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// other code...

}

Internal streams are introduced in order to solve some implementation problems: suppose that
we are dealing with the implementation of a function but the type of the returned value isn’t
the one you’d like to get. For example, the function returns a long but you want your parmod
to send a collection of the returned values as a bidimensional array (namely long S[N][N]). We
can avoid this problem by defining an internal stream of type stream long result that carries
the value returned by the function (invoked multiple times) to the output section that collects a
bunch of them and sends the collected results on an output stream. We will see an example of
this implementation in a following section.

5.2 Input section

In this section we will show how to program the different behavior of items reception from the
input streams, the distribution of the items to the virtual processors and the refreshing of the
control variables at each activation. The input section is declared as:

generic main(){

parmod myFirstParmod (...) {
topology none Pv;
// Input section

init{
// initializations

}

input_section {
// actions....

}
// other sections

}
}

In the next subparagraphs we describe all the items that can be specified in the input section.

5.2.1 Initialization

When the parmod starts we need to initialize control and state variables. This is done using
the init statement, as we saw above for the initialization of the control variable count. The
expression braced by the init is evaluated when the parmod starts its execution. Below we show
an example of the initialization of a replicated attribute and a control variable:

parmod parmodInitializationExample (...) {
topology array [i:N] my_vp;
attribute bool diff replicated;
init {
VP i {
init_false(out diff);

}
}
// other sections

}

proc init_false(out bool b)
$c++{
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b = false;
}c++$

In this example the replicated variable diff is initialized to false in all the virtual processors.
Notice that the init statement isn’t inserted into the input section statement but, conceptually,
it belongs to the initialization phase. Notice also that in the init statement the virtual processors
are addressed by means of the keyword VP and not by the name we’ve introduced (i.e. my vp)
because the latter name is used just for distribution and collection of data items in the input
and output section.

5.2.2 Guards

Suppose that a parmod has multiple input streams and that it has received a new data item from
a subset of them; suppose also that we want to receive from just one of them in a nondeterministic
fashion. The nondeterminism can be programmed by a proper definition of the guards in the
input section. A guard is defined by a unique identifier (in the scope of each parmod) and from
the following optional parameters:

• priority: if two guards are activated we choose the one with the highest value of this field.
If we don’t need an explicit priority we’ll use the on keyword.

• condition: a guard is activated only if this expression is evaluated to true.

• expression on the streams: a guard can be related to an input stream; in this case the guard
is activated if the condition on the input stream (given by this expression) is evaluated
to true. The expression A, where A is the name of an input stream, in this context is
semantically equivalent to: “if a new value has been received from A”.

The following example shows how options work together:

1 parmod myFirstGuards(input_stream long A[N][N],
2 long long B[M][M]) {
3 topology none Pv;
4 attribute bool matrix_ready;
5 input_section {
6 guard1: on, !matrix_ready, A {
7 // body of the guard

8 }
9 guard2: on, matrix_ready, B {

10 // body of the guard

11 }
12 }
13 // other sections

14 }

The guard named guard1 (line 6) is activated when the variable matrix ready is evaluated to
false1 and a new data has been received from the input stream named A. Otherwise we receive
from the input stream named B, evaluating the guard named guard2 (line 9). In this example
the priority option isn’t used.
In the case we don’t have or want a control variable we can write:

parmod mySecondGuards(input_stream long A[N][N],
long long B[M][M]) {

topology none Pv;
input_section {
guard1: on, , A {

1the ! negates the subsequent expression, as in the C++ style.

41



// body of the guard...
}
guard2: on, , B {
// body of the guard...

}
}
// other sections

}

and, as obvious, we choose the first incoming data on A or B in a nondeterministic fashion.
On the other hand, two control variables can be evaluated as a conjunction of values: as an

example, if in line 6 appears

guard1: on, !matrix ready, A & B

then guard1 will be evaluated when matrix ready is evaluated to false and a new data value
has been received from the input stream A and from the input stream B.

5.2.3 Mapping strategies

As we saw in the previous subsections when a new data item is received on an input stream we
have to map it to the virtual processors in order to make some computation. In the input section
we define the distribution policy, that can be:

• scatter: the data item is scattered among the virtual processors according to the scatter
rule specified, i.e. it is partitioned and sent to the virtual processors.

• broadcast: the data item is sent to all the virtual processors.

• on demand: the data item is sent to the first free virtual processor, where a virtual processor
is free if it isn’t performing any computation.

• scheduled: a virtual processor is directly addressed according to the rule specified. If the
virtual processor isn’t free, the distribution (and all the input section) is blocked2.

Below, we show some examples of distribution policies:

• scatter isomorph on one attribute:

1 parmod isomorphAttScatter(input_stream long A[N][N]) {
2 topology array [i:N][j:N] myVP;
3 attribute long S[N][N];
4 input_section {
5 guard1: on, , A {
6 distribution A[*u][*w] scatter to S[u][w];
7 }
8 }
9 // other sections

10 }

In this example the new data received on the input stream named A is scattered to the
attribute named S (line 6). After the distribution we’ll have: ∀i, j.S[i][j] = A[i][j].

• scatter isomorph on the virtual processors:

1 parmod isomorphVPScatter(input_stream long A[N][N]) {
2 topology array [i:N][j:N] myVP;
3 input_section {

2For this kind of distribution there’re some constraints: see the topology examples section to for a list of them.
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4 guard1: on, , A {
5 distribution A[*u][*w] scatter to myVP[u][w];
6 }
7 }
8 // other sections

9 }

In this example the new data received on the input stream named A is scattered to the
virtual processors (line 5); Clearly the virtual processors section will have to deal with the
reception of the corresponding element of the array.

• scatter by rows:

1 parmod scatterByRow(input_stream long A[N][N]) {
2 topology array [i:N] myVPs;
3 input_section {
4 guard1: on, , A {
5 distribution A[*k0][] scatter to myVP[k0];
6 }
7 }
8 // other sections

9 }

In this case the bidimensional array received is scattered by rows on the virtual processors,
i.e. the i-th row is all given to the i-th virtual processor. Notice that the dimension of the
bidimensional array (i.e. N) and the number of virtual processors must be equal (lines 1
and 2): otherwise we’d have a run time error.

• broadcast:

1 parmod broadcastExample(input_stream long value) {
2 topology none myVPs;
3 input_section {
4 guard1: on, , value {
5 distribution value broadcast to myVPs;
6 }
7 }
8 // other sections

9 }

Here the value received is sent to all the virtual processors (line 5).

• on demand: if the computations performed by the virtual processors are independent we
can choose to implement a reservation protocol; so a virtual processor requests the input
section for a new input data, processes it (eventually sends results to the output section)
and then returns to request again for a new data. This is done automatically in ASSIST
as we can see in the next example:

parmod onDemandExample(input_stream double value) {
topology none myVPs;
input_section {

guard1: on, , value {
distribution value on_demand to myVPs;

}
}
// other sections

}
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• constant scheduled: let’s see an example:

parmod constantScheduled(input_stream double A, ...) {
topology array VPs;
input_section {
guard1: on, , A {
distribution A scheduled to VPs[3];

}
}
// other sections

}

Whenever the guard named guard1 is activated (by the reception on the input stream
named A) the new value is sent to the virtual processor indexed with 3. If it is not ready,
the input section is blocked.

5.2.4 Updating the control variables

Control variables can be refreshed inside the operation statement that will be executed after
the activation of a guard. For example:

1 parmod operationUsageExample(input_stream double A[N], ...) {
2 topology array VPs;
3 attribute bool matrixReady;
4 input_section {
5 guard1: on, , A {
6 // body of the guard

7 }
8 operation {
9 matrixReady = true;

10 }<use matrixReady>;
11 // other guards

12 }
13 // other sections

14 }

As we can see from this example the operation statement must be tagged by the use directive
(line 10) in order to inform the ASSIST-CL compiler which control variables are used in the
statement. Moreover the operation statement is coded in C++ and must terminate in order to
allow a correct behaviour.
Now we’re ready to see some more examples regarding the scheduled distribution without constant
addressing:

• variable scheduled:

1 typedef struct {
2 ....
3 int idx;
4 } myStruct;
5

6 parmod variableScheduled(input_stream myStruct A, ...) {
7 topology array [i:N] VPs;
8 attribute long round;
9 input_section {

10 guard1: on, , A {
11 distribution A scheduled to VPs[*destination];
12 }
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13 operation {
14 destination = (A.idx+round)%7;
15 }<use round>;
16 }
17 // other sections

18 }

In this example the virtual processor addressed at each distribution varies according to the
rule at line 14: in fact the sender of the variable A can control (by means of the idx field)
the addressing of the virtual processors.

• scheduled in the none topology: also if the virtual processors in the none topology haven’t
an explicit naming we can, for example, address one of them in the subsequent way:

parmod constantScheduled(input_stream myStruct A, ...) {
topology none VPs;
attribute long round;
input_section {

guard1: on, , A {
distribution A scheduled to index;

}
operation {
index = (A.idx+round)%7;

}<use round>;
}
// other sections

}

Finally recall that, when we described the control variables, we told that there is a way of
expressing an implicit cycle of the reception upon the input streams. Now we can see an example:

1 parmod cycledInputSection(input_stream double A[N], ...) {
2 topology none Pv;
3 attribute long count;
4 init {
5 count = 0;
6 }
7

8 do input_section {
9 guard1: on, , A {

10 distribution A on_demand to Pv;
11 }
12

13 operation {
14 count++;
15 }<use count>;
16 } while (count < 10)
17 // other sections

18 }

The reception and distribution of the data items received upon the stream named A is performed
until the variable count reaches the value of 10 or the input stream is closed by the sender. This
behaviour introduce us to the next subparagraph.
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5.2.5 Termination condition

Finally let’s see how a parmod can terminate without errors. The implicit way is determined by
the closing of all the input streams; for example:

1 parmod implicitTermination(input_stream double A[N], ...) {
2 topology none Pv;
3 attribute long count;
4 init {
5 count = 0;
6 }
7

8 do input_section {
9 guard1: on, , A {

10 distribution A on_demand to Pv;
11 }
12 }while (true)
13 // other sections

14 }

The parmod will terminate when the input stream A is closed by the sender. If more than one
guard control the activation, the parmod terminates when all the associated streams has been
closed.
A parmod can be terminated also explicitly by using conditions on the control variables. In
the example in Section 5.2.4 the parmod terminates when the input stream A is closed or when
the count variable reach the value 10. In the second case, if the input stream A still contains
data items, we’ve a run time error; so the programmer has to deal with this kinds of events by
coordinating conditions on control variables and communications over streams.

5.3 Virtual processors section

In this section we’ve to define the behaviour of the virtual processors. This behaviour can be
implemented by a call (or a list of calls) to proc and can differ depending on the naming of the
virtual processors. The virtual processors section is declared as:

parmod myFirstVPSection(input_stream double A[N], ...) {
topology none Pv;
input_section {

// body of the input section

}

virtual_processors {
// VPs behaviour

}
// other sections

}

From an implementation point of view, in the virtual processors section we define the mapping
of the input streams to the proc used to perform the computation. For example:

1 parmod myFirstVPImplementation(input_stream long A[N][N], ...) {
2 topology array [i:N][j:N] Pv;
3 attribute long S[N][N];
4 do input_section {
5 guard1: on, , A {
6 distribution A[*u][*w] scatter to S[u][w];
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7 }
8 } while(true)
9

10 virtual_processors {
11 compute1(in guard1 out result) {
12 VP i,j {
13 // VP behaviour

14 }
15 }
16 }
17 // other sections

18 }

The name compute1 (line 11) is a variable chosen by the programmer; important are the dec-
larations that follow that name: in guard1 means that this computation is activated by the
activation of the guard named guard1. So when the parmod receives a new value on the input
stream named A the computation named compute1 is activated. Also, in the compute1 statement
the variable A, i.e. the value received on the input stream, is visible. The keyword VP (line
12) is used to address virtual processors: in the previous example it had to be followed by two
indexes (i.e. i and j) because we’ve chosen an array topology. The following example shows how
different virtual processors can be addresses depending on their indexes:

1 proc proc_border(in long i, long j out long result) {
2 // compute on the border elements

3 }
4

5 proc proc_internal(in long i, long j out long result) {
6 // compute on the inner elements

7 }
8

9 parmod mySecondVPImplementation(input_stream long A[N][N], ...) {
10 topology array [i:N][j:N] Pv;
11 attribute long S[N][N];
12 do input_section {
13 guard1: on, , A {
14 distribution A[*u][*w] scatter to S[u][w];
15 }
16 } while(true)
17

18 virtual_processors {
19 compute2(in guard1 out result) {
20 VP i = 0..0, j = 0..N-1 {
21 proc\_border(in i,j out S[i][j]);
22 }
23 VP i = N-1..N-1, j = 0..N-1 {
24 proc_border(in i,j out S[i][j]);
25 }
26 VP i = 1..N-2, j = 0..0 {
27 proc_border(in i,j out S[i][j]);
28 }
29 VP i = 1..N-2, j = N-1..N-1 {
30 proc_border(in i,j out S[i][j]);
31 }
32 VP i = 1..N-2, j = 1..N-2 {
33 proc_internal(in i,j out S[i][j]);
34 }

47



35 }
36 }
37 // other sections

38 }

In this example virtual processors are disposed in a bidimensional array topology: those on the
four borders of the array will execute the proc named proc border (lines 20-31); the others will
execute the proc internal (lines 32-34). Still in the array topology, if we want to address all
the virtual processors, it is sufficient to write:

parmod myFirstVPSection(input_stream double A[N], ...) {
topology array [i:N][j:N] Pv;
input_section {
// boby of the input section

}

virtual_processors {
VP i,j {
matrixCompute(in S[i][j] output_stream result);

}
}
// other sections

}

Now, clearly, matrixCompute is the name of a proc defined somewhere in the code.
The addressing is simpler w.r.t the previous one, when we’ve a none or a one topology:

parmod VPAddressing(input_stream double A[N], ...) {
topology none Pv;
input_section {
// boby of the input section

}
virtual_processors {
VP {

// VPs behaviours

}
}
// other sections

}

Finally we introduce, as for the input section, the iteration control; ASSIST-CL provides two
construct: for and while. An example of usage of the for command is:

1 parmod myFirstForConstructor(input_stream double A[N], ...) {
2 topology array [i:N][j:N] Pvs;
3 attribute long S[N][N];
4 stream long result;
5 input_section {
6 // boby of the input section

7 }
8

9 virtual_processors {
10 VP i,j {
11 for (h = 0; h < N; h++) {
12 Felab(in S[i][h], S[h][i], S[i][j] out S[i][j]);
13 };
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14 assist_out(result, S[i][j]);
15 }
16 }
17 // other sections

18 }

The ASSIST run-time keeps the shared state (i.e. the attribute S) consistent at each iteration of
the loop (lines 11-13). This is done in order to allow all the virtual processors to read a consistent
value for their neighbours elements.
We can write the same code by using the while command:

1 parmod myFirstForConstructor(input_stream double A[N], ...) {
2 topology array [i:N][j:N] Pvs;
3 attribute long S[N][N];
4 stream long result;
5 input_section {
6 // boby of the input section

7 }
8

9 virtual_processors {
10 VP i,j {
11 do {
12 Felab(in S[i][h], S[h][i], S[i][j] out S[i][j]);
13 h = h +1;
14 }while(h<N);
15 assist_out(result, S[i][j]);
16 }
17 }
18 // other sections

19 }

Here we use the classical reduce function (line 13) to test a convergence condition on the
diff value computed by all the results of the evaluation of the compute proc in each virtual
processor. The associative operator used in the reducing operation is, here, the or operator (as
in C defined by the symbol ||).

5.4 Output section

In this section we implement the collection of the results from the virtual processors. The section
is declared as:

parmod myFirstOutputSection(input_stream double A[N], ...) {
topology array [i:N][j:N] Pvs;
input_section {...}

virtual_processors {...}

output_section {
// boby of the output section

}
}

There are two kinds of policies for the collection of the result values:

• ANY: the output section waits for the first result sent from any virtual processor (in a
nondeterministic fashion).
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• ALL: the output section waits for a new result from all the virtual processors.

Also, in the output section we can insert some code that represents a kind of final computation
on the results collected. As example:

1 parmod outputSectionImplemented(input_stream double A[N], ...) {
2 topology array [i:N][j:N] Pvs;
3 stream long result;
4 input_section {
5 // boby of the input section

6 }
7

8 virtual_processors {
9 // boby of the section

10 }
11

12 output_section {
13 collects result from ALL Pvs[i][j] {
14 int el;
15 int B_[N][N];
16 AST_FOR_EACH(el) {
17 B_[i][j] = el;
18 }
19 assist_out(B, B_);
20 }<>
21 }
22 }

In this example we wait for all results returned by the virtual processors and, by means of the
construct AST FOR EACH (line 16), we iterate a command (the assignment at line 17) on
each result returned. Clearly the value received upon the internal stream, named result, is bound
to the parameter el of the AST FOR EACH construct. Notice that the collects statement is
coded in C++, so we’d have to pay attention to stack overflows, as usual in C++ (eventually, by
using dynamic memory allocation). Moreover, if we don’t use control variables inside the collects
statement we will leave empty the <> directive. We can also avoid specific computations in the
output section as shown in the following example:

1 parmod outputSectionANY(... output_stream long C) {
2 topology none Pvs;
3 input_section {
4 // boby of the input section

5 }
6

7 virtual_processors {
8 elab(... output_stream long C)
9 // boby of the section

10 }
11

12 output_section {
13 collects C from ANY Pvs;
14 }
15 }

In this example each value sent by any virtual processor is collected and sent directly to the
output stream (line 13).

Appendix
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Appendix A

Appendix

A.1 Pure sequential module

There are two ways to code the body of a module expressing a sequential behavior: the first
modality is described in Sec. 3.3 and we will described in this section how to implement a so
called pure sequential module. Such a method consists in directly inserting the host language
code inside the module definition.
The body is specified between brackets and the brackets are labeled by the modifier $ coupled
with the host language specification string. The body may be written in any of the host language
supported (currently, C, C++ and FORTRAN).

1 generic main(){
2

3 directlyImplSeqMod(input_stream long lin, char cin
4 output_stream long lout, char cout)
5 $c{
6 lout = lin + 1;
7 cout = cin;
8 }c$
9 }

As instance, the directlyImplSeqMod is a pure sequential module implementing a C function.
At the end of the evaluation of the expression between the brackets, the results are implicitly
sent onto all the output streams. So, the example above operationally corresponds to: at each
activation, wait for a new data on lin and cin streams; evaluate the two expressions at the lines
4 and 5; send the new values of lout and cout on the output streams.

A.2 Assist Preprocessor Substitution

Be careful with the usage of macros within sequential code and strings. For instance, if we declare
a string like

char s[50] = ‘‘this is just a N test’’;

and we print it to the screen, the result will be:

this is just a 10 test;

A.3 ASSIST Preprocessor and Language Markers

When looking for language end markers like }c++$, }c$ the ASSIST preprocessor is not aware
of the sequential sintax, and also looks within strings (see Sec. A.2). Thus
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1. unbalanced open/closed parenthesis will not be checked and will produce errors in the
sequential compilation step (this is coherent with ASSIST assumption);

2. a language marker within a string will be recognized (this is a bug), and ASSIST compila-
tion will fail, trying to parse the remaining sequential code as ASSIST-CL code.

A.4 Input parameters to C code

For implementation reasons, parameter passed to c code $c{ . . . }c$ have to be used as pointer
within the code; e.g. a stream B of long will be assigned to a long variable Y this way : Y = *B;

The same happens for more complex types like arrays.

A.5 Isomorphism between indexes

The ASSIST run-time only allows to distribute Pv in a prefix isomorphism (line 4) and that’s
why we could write

scatter S[*i0][*j0] onto Pv[i0][j0];

or

scatter S[*i0][*j0] onto Pv[i0][];

but not

scatter S[*i0][*j0] onto Pv[j0][i0] (line 4)
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