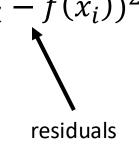
Regression

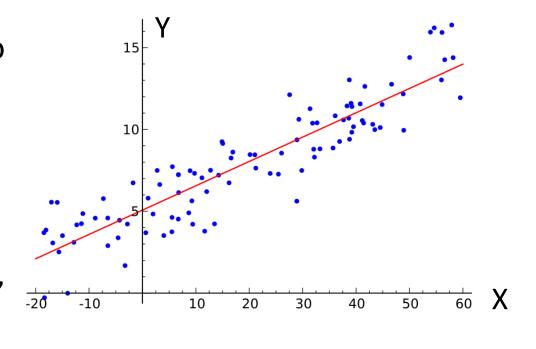
Regression

- Given a dataset containing N observations X_i , Y_i i = 1, 2, ..., N
- Regression is the task of learning a target function f that maps each input attribute set X into an output Y that is continuous.
- The goal is to find the target function that can fit the input data with minimum error.
- The error function can be expressed as
 - Absolute Error = $\sum_{i} |y_i f(x_i)|$
 - Squared Error = $\sum_{i} (y_i f(x_i))^2$



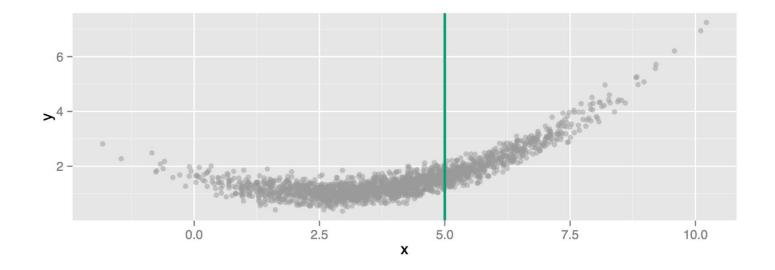
Linear Regression

- **Linear regression** is a linear approach to modeling the relationship between a *dependent variable Y* and one or more *independent* (explanatory) variables *X*.
- The case of *one* explanatory variable is called **simple linear regression**.
- For more than one explanatory variable, the process is called multiple linear regression.
- For multiple correlated dependent variables, the process is called multivariate linear regression.



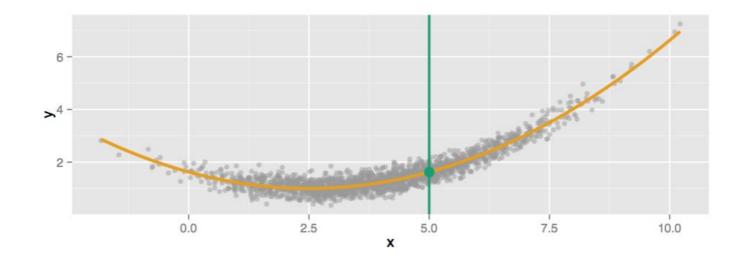
What does it mean to predict Y?

- Look at X = 5. There are many different Y values at X = 5.
- When we say predict Y at X = 5, we are really asking:
- What is the expected value (average) of Y at X = 5?



What does it mean to predict Y?

- Formally, the *regression function* is given by E(Y|X=x). This is the expected value of Y at X=x.
- The ideal or optimal predictor of Y based on X is thus
 - $f(X) = E(Y \mid X=x)$



Simple Linear Regression

```
Dependent Independent Variable Variable Linear Model: f(x)=\omega_1 x + \omega_0, Slope Intercept (bias)
```

- In general, such a relationship may not hold exactly for the largely unobserved population
- We call the unobserved deviations from Y the errors.
- The goal is to find estimated values for the parameters (w_1, w_0) which would provide the "best" fit for the data points.

Least Square Method

• A standard approach for doing this is to apply the **method of least squares** which attempts to find the parameters *m*, *b* that minimizes the sum of squared error.

SSE =
$$\sum_{i} (y_i - f(x_i))^2 = \sum_{i} (y_i - w_1 x_i - w_0)^2$$

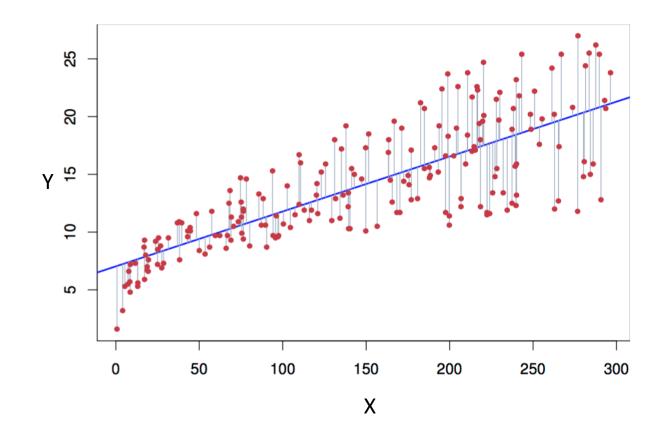
- known as the residual sum of squares.
- That starting from random w_0 and w_1 , it changes them by setting their values as the corresponding **partial derivatives** of the equation above, **until convergence is reached**.

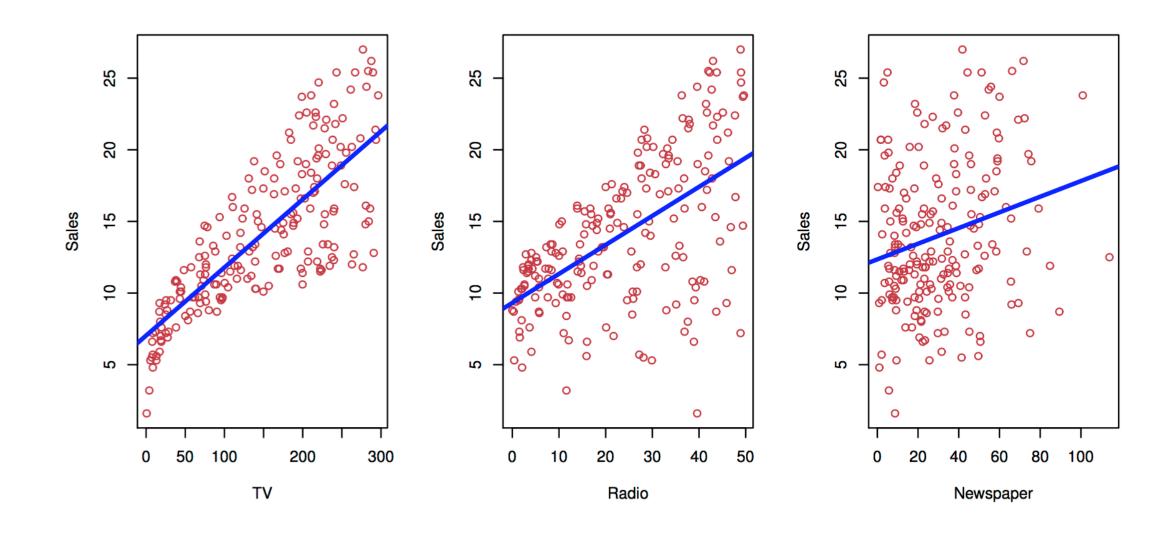
$$\frac{\partial E}{\partial \omega_0} = -2 \sum_{i=1}^N [y_i - \omega_1 x_i - \omega_0] = 0$$

$$\frac{\partial E}{\partial \omega_1} = -2 \sum_{i=1}^N [y_i - \omega_1 x_i - \omega_0] x_i = 0$$

Least Square Method

- Blue line shows the least square fit. Lines from red points to the regression line illustrate the residuals.
- For any other choice of slope w_1 or intercept w_0 the SSE between that line and the observed data would be larger than the SSE of the blue line.





Multiple Linear Regression

In case we have m variables $X=x_1, x_2, ..., x_m$ the prediction model is

$$y = w_0 + \sum_{i=[1,...,m]} w_i x_i$$

if we extend X to X=1, x_1 , x_2 , ..., x_m the prediction model may be expressed as

$$y = \sum_{i=[0,...,m]} w_i x_i$$

The optimum parameter is defined as such that minimizes:

$$\sum_{j=[0,...,N]} (y_i - \sum_{i=[0,...,m]} w_i x_i)^2$$

Alternative Fitting Methods

- However, they can be fitted in other ways, such as by minimizing a penalized version of the least squares cost function as in ridge regression (L2-norm penalty) and lasso (L1-norm penalty).
- **Tikhonov** regularization, also known as *ridge regression*, is a method of regularization of ill-posed problems particularly useful to mitigate the multicollinearity, which commonly occurs in models with large numbers of parameters.
- Lasso (least absolute shrinkage and selection operator) performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the statistical model it produces.

Alternative Fitting Methods

- However, they can be fitted in other ways, such as by minimizing a penalized version of the least squares cost function
 - ridge regression (L2-norm penalty)

$$\sum_{j=[0,...,N]} (y_i - \sum_{i=[0,...,m]} w_i x_i)^2 + \lambda \sum_{i=[0,...,m]} w_i^2$$

Constraint

penalty

$$\sum_{i=[0,\dots,m]} w_i^2 \le c$$

- λ term regularizes the coefficients such that if the coefficients take large values the optimization function is penalized.
- lasso (L1-norm penalty)

$$\sum_{j=[0,...,N]} (y_i - \sum_{i=[0,...,m]} w_i x_i)^2 + \lambda \sum_{i=[0,...,m]} |w_i|$$

Evaluating Regression

• Coefficient of determination R²

• is the proportion of the variance in the dependent variable that is predictable from the independent variable(s)

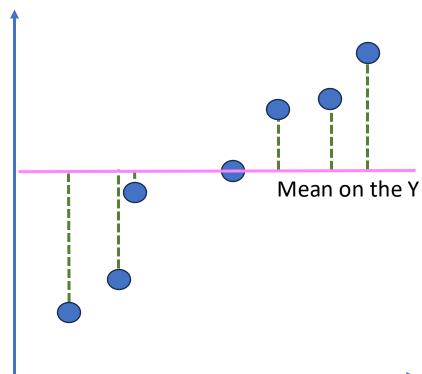
$$R^{2} = \frac{SSM}{SST} = \frac{\sum_{i} [f(x_{i}) - \overline{y}]^{2}}{\sum_{i} [y_{i} - \overline{y}]^{2}} \qquad \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

Mean Squared/Absolute Error MSE/MAE

 a risk metric corresponding to the expected value of the squared (quadratic)/absolute error or loss

$$ext{MSE}(y,\hat{y}) = rac{1}{n_{ ext{samples}}} \sum_{i=0}^{n_{ ext{samples}}-1} (y_i - \hat{y}_i)^2 \quad ext{MAE}(y,\hat{y}) = rac{1}{n_{ ext{samples}}} \sum_{i=0}^{n_{ ext{samples}}-1} \lvert y_i - \hat{y}_i
vert_i$$

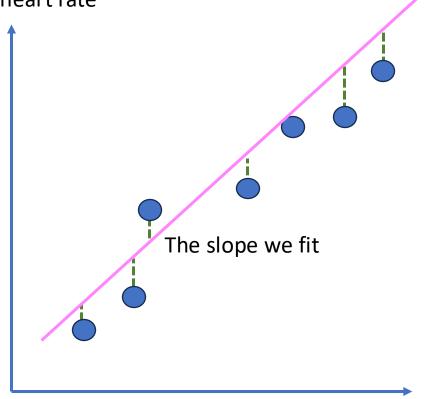
Patient heart rate



Patient weight

Let's assume the Sum of Squared errors here is: 100

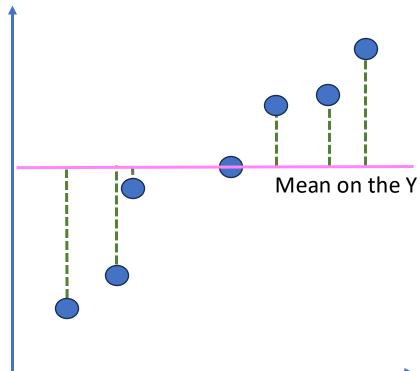
Patient heart rate



Patient weight

$$R^{2} = \frac{SS(mean_{y}) - SS(slope)}{SS(mean_{y})} = \frac{100 - 40}{100} = 0.60 = 60\%$$

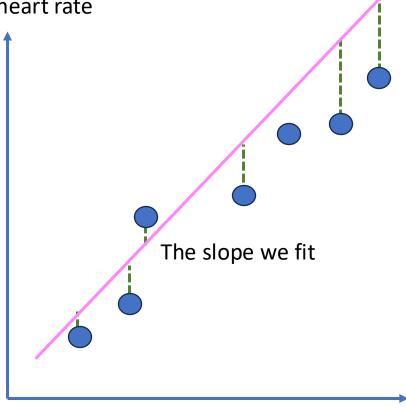
Patient heart rate



Patient weight

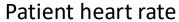
Let's assume the Sum of Squared errors here is: 100

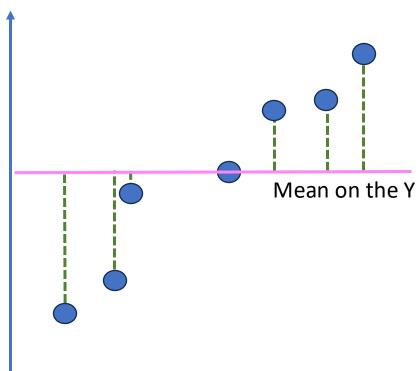
Patient heart rate



Patient weight

$$R^2 = \frac{SS(mean_y) - SS(slope)}{SS(mean_y)} = \frac{100 - 60}{100} = 0.40 = 40\%$$

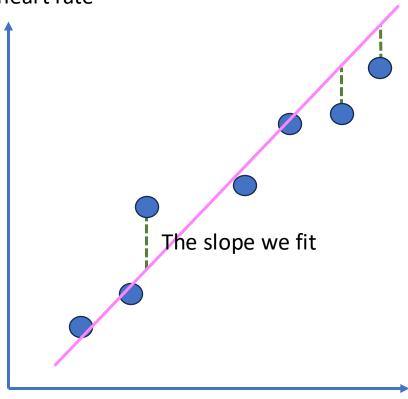




Patient weight

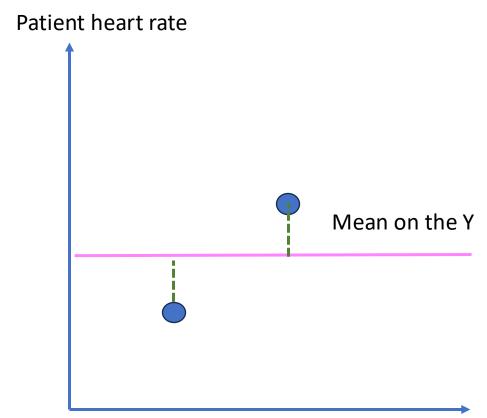
Let's assume the Sum of Squared errors here is: 100

Patient heart rate



Patient weight

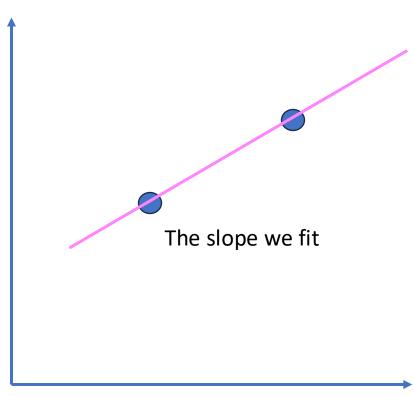
$$R^{2} = \frac{SS(mean_{y}) - SS(slope)}{SS(mean_{y})} = \frac{100 - 20}{100} = 0.80 = 80\%$$



Patient weight

Let's assume the Sum of Squared errors here is: 100

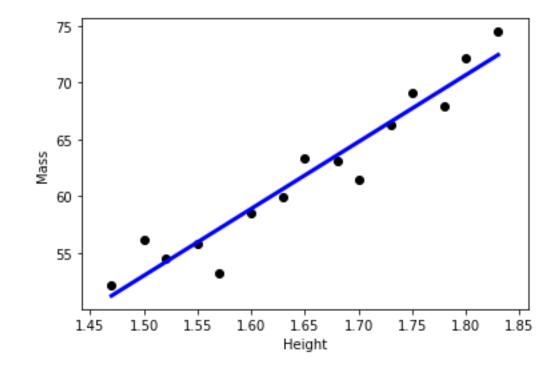
Patient heart rate



Patient weight

$$R^2 = \frac{SS(mean_y) - SS(slope)}{SS(mean_y)} = \frac{100 - 00}{100} = 1 = 100\%$$

- Height (m): 1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83
- Mass (kg): 52.21, 56.12, 54.48, 55.84, 53.20, 58.57, 59.93, 63.29, 63.11, 61.47, 66.28, 69.10, 67.92, 72.19, 74.46
- Intercept: -35.30454824113264
- Coefficient: 58.87472632
- R²: 0.93
- MSE: 3.40
- MAE: 1.43



References

• Regression. Appendix D. Introduction to Data Mining.

