Time Series - Shapelet/Motif Discovery
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Time Series Classification

* Given a set X of ntime series, X ={x,, x,, ..., X}, each time series
has m ordered values x; = <X,;, X;», ..., X¢, > @nd a class value c..

* The objective is to find a function fthat maps from the space of
possible time series to the space of possible class values.

* Generally, it is assumed that all the TS have the same length m.



Shapelet-based Classification

1. Representa TS as a vector of
distances with representative
subsequences, namely shapelets.

2. Use It as input for machine
learning classifiers.
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Time Series Shapelets

* Shapelets are TS subsequences which are
maximally representative of a class.

* Shapelets can provide interpretable results,
which may help domain practitioners better
understand their data.

 Shapelets can be significantly more
accurate/robust because they are local
features, whereas most other state-of-the-art
TS classifiers consider global features.
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Finding Shapelets

FindingShapeletBF (dataset D, MAXLEN, MINLEN)
1 candidates < GenerateCandidates(D, MAXLEN, MINLEN)
2 bsf gain € 0

3 For each S in candidates

4 gain € CheckCandidate(D, S)

5 If gain > bsf gain

6 bsf gain € gain

7 bsf shapelet € S

8 EndIf

9 EndFor

10 | Return bsf shapelet




Generate Candidate

GenerateCandidates (dataset D, MAXLEN, MINLEN)

pool € O
| € MAXLEN
While / > MINLEN
For Tin D
pool € pool U S7
EndFor
€< [-1
EndWhile
Return poo!

Sliding a window of size | across all
of the time series objects In the

dataset D, extracts all of the possible
candidates and adds them to the pool
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Extract Subseguences of all Possible Lengths

Candidates Pool
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Extract Subseguences of all Possible Lengths

Candidates Pool
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Extract Subseguences of all Possible Lengths

Candidates Pool
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Extract Subseguences of all Possible Lengths

Candidates Pool
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Extract Subseguences of all Possible Lengths

Candidates Pool
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Check Candidates

CheckCandidate (dataset D, shapelet candidate S)

objects histogram < O
For each 7in D

dist € SubsequenceDist(7, .S)

insert 7' into objects histogram by the key dist
EndFor

Return CalculateInformationGain(objects histogram)
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« Inserts all of the time series objects into the histogram objects_histogram according to the
distance from the time series object to the candidate

e (Calculate Information Gain



Distance with a Subsequence

* Distance from the TS to the subsequence SubsequenceDist(T, S) is a distance
function that takes time series T and subsequence S as inputs and returns a non-
negative value d, which is the distance from T to S.

* SubsequenceDist(T, S) = min(Dist(S, S"), for S' € 55!
« where S;5lis the set of all possible subsequences of T

* Intuitively, it is the distance between S and its best matching location in T.
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Check Candidates with IG

CalculateInformationGain (distance histogram obj hist)

split dist € OptimalSplitPoint(obj hist)
D<€ O,D, <0
For d in obj hist
If d.dist < split dist
D, € Dy U d.objects
Else
D, € D, U d.objects
EndIf
EndFor )
0 Return /(D) - /(D)
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Testing The Utility of a Candidate Shapelet

 Arrange the TSs in the dataset D based on the distance from the
candidate.

 Find the optimal split point that maximizes the information gain (same
as for Decision Tree classifiers)

* Pick the candidate achieving best utility as the shapelet
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 ATS dataset D consists of two classes, A and B.

 Given that the Broportion of objects in class A is p(A) and the proportion of objects
In class B is p(B),

* The Entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

« Givena str_ateﬂy that divides D into two subsets D, and D,, the information
refmal?llng t;n tt e dataset after splitting is defined by the weighted average entropy
of each subset.

« |If the fraction of objects in D, is f(D,) and in D, is f(D,), the total entropy of D
after splitting is 1(D) = f(D,)I(D,) + f(D,)I(D,).
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- Given a certain split strategy sp which divides _oppant
D into two subsets D, and D,, the entropy shapelet = 5.1
before and after splitting is 1(D) and 1(D).
* The information gain for this splitting rule is:
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Problem

MANLEN

* The total number of candidate iIs Z Z -
(7] -1+1)

I=MINLEN T €D

 For each candidate you have to compute the distance between this
candidate and each training sample (space inefficiency)

 For instance
200 instances with length 275
* 7,480,200 shapelet candidates



Speedup

* Distance calculations form TSs to shapelet candidates is expensive.

 Reduce the time Iin two ways

« Distance Early Abandon: reducing the distance computation time between
two TS

« Admissible Entropy Pruning: reducing the number of distance calculations
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Distance Early Abandon

* We only need the minimum distance. T —_—h .
location _)%_\

» Method:
» Keep the best-so-far distance
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« Abandon the calculation if the partial current
distance is larger than best-so-far.

« We can avoid to compute the full distance for S
If the partial one is greater than the best so far

calculation -7
abandoned at this point




Admissible Entropy Pruning

* We only need the best shapelet for each class
* For a candidate shapelet

* \WWe do not need to calculate the distance for each

training sample
 After calculating some training samples, if the
upper bound of information gain

(corresponding to the optimistic scenario) < best
candidate shapelet

« Stop calculation for that candidate and try next
candidate
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Motif



Time Series Motif Discovery

* Finding repeated patterns, i.e., pattern mining.

* Are there any repeated patterns, of length m in the TS?

i A Winding Dataset C _
I | | (  The angular speed c;f reel 2 )
0 500 1000 1500 2000 2500
w B



Why Find Motifs?

* Mining association rules in TS requires the discovery of motifs.
These are referred to as primitive shapes and frequent patterns.

* Several TS classifiers work by constructing typical prototypes of
each class. These prototypes may be considered motifs.

* Many TS anomaly detection algorithms consist of modeling
normal behavior with a set of typical shapes (which we see as

motifs), and detecting future patterns that are dissimilar to all
typical shapes.



Matrix Profile

* The Matrix Profile (MP) is a data structure that annotates a TS and
can be exploited for many purposed: e.g. efficient Motif Discovery.

* Given atime series, T and a desired subsequence length, m.
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Matrix Profile

* For each subsequence we keep only the distance with the closest

nearest neighbor. .o au set of

subsequence corresponding
6.04 hearestneighbor
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Matrix Profile

* The distance to the corresponding nearest neighbor of each
subsequence can be stored in a vector called matrix profile P.

The matrix profile value at location /is the
distance between T, and its nearest
neighbor



Matrix Profile

* The index of corresponding nearest neighbor of each
subsequence is also stored in a vector called matrix profile
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The matrix profile value at location i is the
distance between T, and its nearest
neighbor



Matrix Profile

The MP index allows to find the nearest neighbor to any subsequence in constant
time.

Note that the pointers in the matrix profile index are not necessarily symmetric.
If A points to B, then B may or may not pointto A

The classic TS motif: the two smallest values in the MP must have the same value,
and their pointers must be mutual.
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How to “read” a Matrix Profile

* For relatively low values, you know that the subsequence in the
original TS must have (at least one) relatively similar subsequence
elsewhere in the data (such regions are “motifs”)

* For relatively high values, you know that the subsequence in the
original TS must be unique in its shape (such areas are

anOmalieS). Must be an anomaly in the
/ original data, in this region.

We call these Time Series
Discords

| l [ J
0 500 1000 1500 2000 2500 3000

Must be conserved shapes (motifs) in the original
data, in these three regions



How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.
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Matrix profile is initialized as inf vector

This is just a toy example, so the values and the vector length does not fit the time series shown
above




How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.
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At the first iteration, a subsequence T; israndomly selected from T




How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.
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We compute the distances between T; and every subsequences from T (time complexity = O(|T|log(|T])))
We then put the distances in a vector based on the position of the subsequences
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\ The distance between T; and Ty (first subsequence)is 3




How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.
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We compute the distances between T; and every subsequences from T (time complexity = O(|T|log(|T])))
We them put the distances in a vector based on the position of the subsequences
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Let say T; happen to be the third subsequences,
therefore the third value in the distance vectoris 0



How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.
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In the second iteration, we randomly select another subsequence T; and it happens to be the 12t
subsequences



How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.
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Once again, we compute the distance between T, and every subsequences of T
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How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.
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How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.




How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.

“‘ AV ““ /f \ ’/A\‘
AN \,“'V'f"f'w\ Il ‘\v’/\/\/\/”/\f/ \_—~ NN “ p A /VW/\/\/—/V\—/\ /\,’V\/H,,/yﬁ“ T \/f‘\/\< ~An A \//\f/ \ \/\ \——\ “/\/\/\_/A‘\ /f N \v‘s“\\,j//\/\*\j‘\/
Vv R V4 J ] :
\\

min The same elementwise minimum




How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.
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We repeat the two steps (distance computation and update) until we
have used every subsequences



How to Compute Matrix Profile?

* Given atime series, T and a desired subsequence length, m.

min

There are |T| subsequences and the distance computation is O(|T|log(|T]))

The overall time complexity is O(|T|?log(|T]))
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Motif Discovery From Matrix Profile

Local minimums are corresponding to motifs



Motif Discovery From Matrix Profile
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Motif/Shapelet Summary

* Amotifis arepeated
pattern/subsequence in a given TS.

* Ashapeletis a pattern/subsequence
which is maximally representative of a
class with respect to a given dataset of
TSs.
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