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K-means Clustering

Partitional clustering approach
Number of clusters, K, must be specified
Each cluster is associated with a centroid (center point)

Each point is assigned to the cluster with the closest
centroid

0  The basic algorithm is very simple

O O O 0O

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change
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Example of K-means Clustering
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Example of K-means Clustering
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K-means Clustering — Details

0 Initial centroids are often chosen randomly.
—  Clusters produced vary from one run to another.

0  The centroid is (typically) the mean of the points in the
cluster.

0 ‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

0  K-means will converge for common similarity measures
mentioned above.

0  Most of the convergence happens in the first few
iterations.

—  Often the stopping condition is changed to ‘Until relatively few
points change clusters’

0 ComplexityisO(n*K*1*d)

—  n =number of points, K = number of clusters,
| = number of iterations, d = number of attributes
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Evaluating K-means Clusters

0 Most common measure is Sum of Squared Error (SSE)

— For each point, the error is the distance to the nearest cluster
— To get SSE, we square these errors and sum them.

1.5

SSE = ZK: > dist?(m;, x)

i:]. XECi

1.0

«
0 X is a data point in cluster C; and m; is the representative \
point for cluster Ci

can show that mi corresponds to the center (mean) of _

0.0

the cluster A S S

0 Given two sets of clusters, we prefer the one with the
smallest error

0 One easy way to reduce SSE is to increase K, the number of
clusters

0 Agood clustering with smaller K can have a lower SSE than
a poor clustering with higher K
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Two different K-means Clusterings
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Limitations of K-means

0 K-means has problems when clusters are of
differing
— Sizes
— Densities
— Non-globular shapes

0 K-means has problems when the data contains
outliers.
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Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)
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Overcoming K-means Limitations
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One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Limitations of K-means: Differing Density
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Overcoming K-means Limitations

3 o ©
o o
2 o %, & 9
(;2‘5@8
o B °
o
. DQ} s © © o oo
o
T, o 8 ° 8
1= Q@O%CQO © 80
o
- O
PO 5 o o
b o b o8 o o
OC} DCO ]
o
A
2 1 0 1 2 3
X

Original Points

02/14/2018

K-means Clusters

Introduction to Data Mining, 2" Edition

13



Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters
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Empty Clusters

0 K-means can yield empty clusters
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Handling Empty Clusters

0 Basic K-means algorithm can yield empty
clusters

0 Several strategies

= Choose a point and assign it to the cluster

+Choose the point that contributes most to SSE
+Choose a point from the cluster with the highest SSE

0 If there are several empty clusters, the above can
be repeated several times.
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Pre-processing and Post-processing

0 Pre-processing
— Normalize the data
— Eliminate outliers

0 Post-processing
— Eliminate small clusters that may represent outliers

— Split ‘loose’ clusters, i.e., clusters with relatively high
SSE

— Merge clusters that are ‘close’ and that have relatively
low SSE

— Can use these steps during the clustering process
¢ ISODATA
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids ...
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Problems with Selecting Initial Points

0 If there are K ‘real’ clusters then the chance of selecting
one centroid from each cluster is small.

—  Chance is relatively small when K is large
—  If clusters are the same size, n, then

number of ways to select one centroid from each cluster KIn¥ K!

P = Kf;'

number of ways to select K centroids - (Kn)K

—  For example, if K = 10, then probability = 10!/101% = 0.00036

—  Sometimes the initial centroids will readjust themselves in
‘right’ way, and sometimes they don't

—  Consider an example of five pairs of clusters
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10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other
have only one.
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10 Clusters Example
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

0 Multiple runs
— Helps, but probability is not on your side

0 Sample and use hierarchical clustering to determine
Initial centroids

0 Select more than k initial centroids and then select among
these initial centroids

— Select most widely separated
0 Postprocessing

0 Generate a larger number of clusters and then perform a
hierarchical clustering

0 Bisecting K-means
— Not as susceptible to initialization issues
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Updating Centers Incrementally

0 In the basic K-means algorithm, centroids are
updated after all points are assigned to a centroid

0 An alternative Is to update the centroids after
each assignment (incremental approach)

— Each assignment updates zero or two centroids
— More expensive

— Introduces an order dependency

— Never get an empty cluster

— Can use “weights” to change the impact
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Finding the best number of clusters

0 In k-means the number of clusters K is given

— Partition n objects into predetermined number of
clusters

— Finding the “right” number of clusters is part of

the problem o
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Convergence of K-Means

0 Define goodness measure of cluster c as sum of squared
distances from cluster centroid:

— SSE_(c,5) =2, (d. —s,)? (sum over all d. in cluster c)
— G(C,s) = Z. SSE(c,s)
0 Re-assignment monotonically decreases G

— It is a coordinate descent algorithm (opt one component at a time)

0 At any step we have some value for G(C,s)
1) Fix s, optimize C = assign d to the closest centroid = G(C’,s) <= G(C,s)
2) Fix C’, optimize s = take the new centroids = G(C',s" ) <=G(C’,s) <= G(C,s)

The new cost is smaller than the original one > local minimum
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