Data Management and Business Intelligence

Anna Monreale and Francesca Naretto Computer Science Department

BUSINESS INTELLIGENCE

Information storage and management to support Decision Making processes

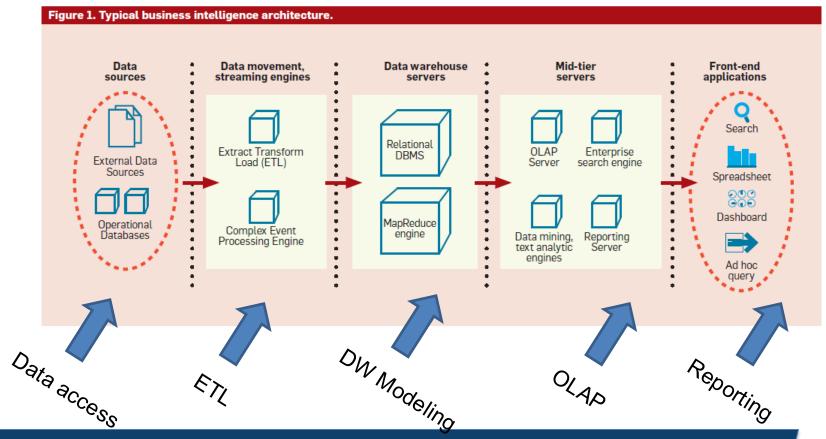
FROM DATA BASES TO DECISION SUPPORT DATA BASES

- **FACT** In organizations, often the most important **decisions** are not based on fact (**informed decisions**), but on **intuition and experience** of experts.
- **FACT** Organizations accumulate large quantity of data, that are often a resource scarcely used.

FACTOrganizations today must use data-intensive Business Intelligence
techniques to make better and timely important and complex decisions.

BUSINESS INTELLIGENCE

A set of methods and tools for interactive data analysis used to understand and analyze business performance in order to obtain useful information to **support unstructured decision making**.


The term intelligence is used to mean search for something interesting, as in the Intelligence Service.

BI Architecture

The design, implementation and use of a specific database, called **Data Warehouse (DW)**, to produce useful information to support decisionmaking with **Business Intelligence** applications

Università di Pisa

THE INFORMATION RESOURCE

FACT An **Information System** is a system whose purpose is to collect, store, process, and communicate information relevant to an organization.

FACT Organizations have used information systems for centuries and have used a variety of technologies to process information (Ebla clay tablets, 2500 BC).

INFORMATION SYSTEMS

Operational System

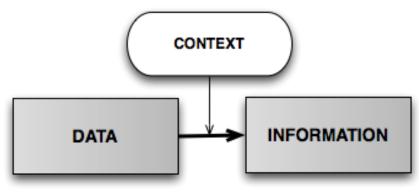
- Data are organized in a **DB**.
- Data are managed by a traditional DBMS.
- The applications **are used to perform** structured business operational activities.

Decision Support System (DSS)

- Data are organized in a separate specialized DB Data Warehouse (DW)
- Data are managed by a **specialized DBMS**.
- The Business Intelligence applications, are used to analyze data.

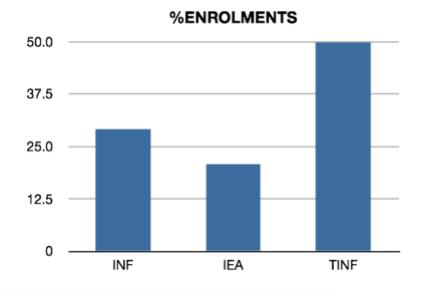
Università di Pisa

FROM DATA TO INFORMATION FOR DECISION MAKING


Data

A representation of certain facts without context, which can be processed by computers.

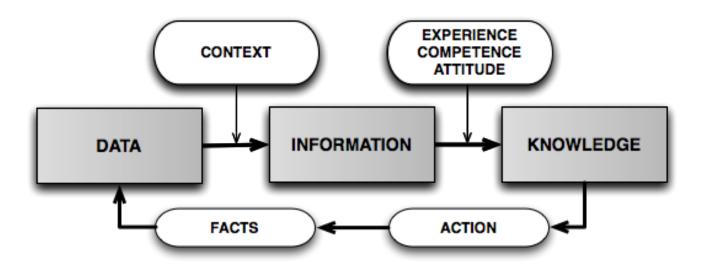
461178	INF	2001	2004	Bologna
498899	IEA	2003	2004	Bari
440033	TINF	2000	2002	Roma
441155	INF	2000	2002	Pisa
481188	TINF	2002	2004	Pisa
482299	INF	2002	2006	Pisa
460076	TINF	2001	2003	Pisa
461176	IEA	2001	2003	Pisa
442277	TINF	2000	2004	Pisa
442266	INF	2000	2003	Pisa


FROM DATA TO INFORMATION

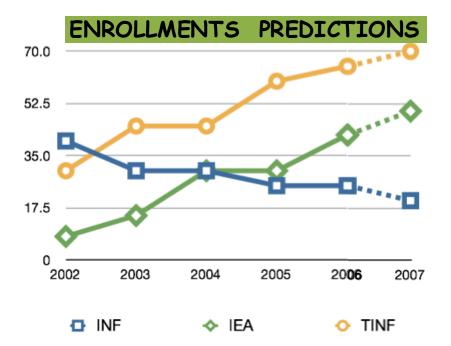
Information

Data, or a condensed form of them, become information when they are interpreted in a certain context.

StudentN	Course	YearEnrol	YearDegree	FromUniv
442266	INF	2000	2003	Pisa
442277	TINF	2000	2004	Pisa
461176	IEA	2001	2003	Pisa
460076	TINF	2001	2003	Pisa
482299	INF	2002	2006	Pisa
481188	TINF	2002	2004	Pisa
441155	INF	2000	2002	Pisa
440033	TINF	2000	2002	Roma
498899	IEA	2003	2004	Bari
461178	INF	2001	2004	Bologna
•••	•••		•••	•••



FROM INFORMATION TO KNOWLEDGE


Knowledge

Information become **knowledge** when **expand** the **recipient** capability of understanding the reality, and allow him to make new predictions, informed and effective decisions, and proper actions.

FROM DATA TO DECISIONS

TYPES OF DATA SYNTHESIS

Reports: To find out what happened

Multidimensional Data Analysis: To explore data interactively to look for useful information.

Exploratory Data Analysis: To discover useful models of data with **Data Mining** algorithms.

MULTIDIMENSIONAL DATA ANALYSIS (1)

Let us explore the sales data stored in the table Sales(Product, Market, Date, Revenue)

For 2011, the total revenue, by semester.

Traditional Report

Revenue by Semester Year 2011		
Semester	Revenue	
1 2	16000 16000	
Total	32000	

Let us see if we can find more information with other business questions.

MULTIDIMENSIONAL DATA ANALYSIS (2)

For 2011, the total revenue, by market

Revenue by Market Year 2011			
Market	Revenue		
M1	8 000		
M2	8 000		
M3	8 000		
M4	8 000		
Total	32000		

For 2011, the total revenue, by product

	Revenue by Product Year 2011			
Product	Revenue			
P1 P2 P3 P4	8 000 8 000 8 000 8 000			
Total	32000			

MULTIDIMENSIONAL DATA ANALYSIS (3)

For 2011, the total revenue by semester, by product

Revenue by Semester, by Product Year 2011					
Semester	P 1	P2	P3	P4	Total
1 2	4 000 4 000	4 000 4 000	4 000 4 000	4 000 4 000	16000 16000
Total	8 0 0 0	8 000	8 000	8 000	32 000

For 2011, the total revenue by semester, by market

R	Revenue by Semester, by Market Year 2011				
Semester	M1	M2	MЗ	M4	Total
1 2	4000 4000	4 000 4 000	4 000 4 000	4 000 4 000	16000 16000
Total	8 0 0 0	8000	8 000	8 000	32000

MULTIDIMENSIONAL DATA ANALYSIS (4)

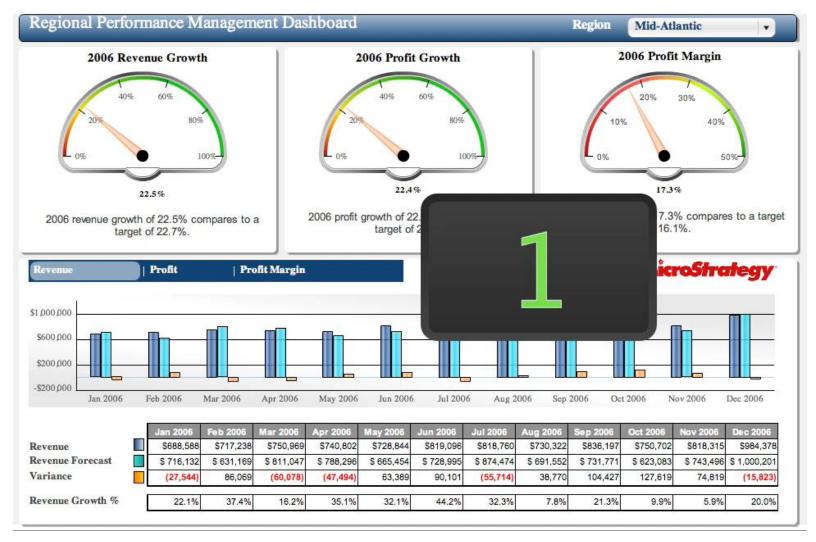
For 2011, the total revenue by semester, by product, by Market

OK, now we have got something interesting !

Revenue by Semester, by Product, by Market Year 2011						
Semester	Product	M1	M2	MЗ	M4	Total
1 1 1 1	P1 P2 P3 P4 Total S1	1 500 2 500 4 000	2 500 1 500 4 000	3 000 1 000 4 000	1 000 3 000 4 000	4 000 4 000 4 000 4 000 16 000
2 2 2 2	P1 P2 P3 P4 Total S2	4000 4000	4 000 4 000	1 500 2 500 4 000	2 500 1 500 4 000	4 000 4 000 4 000 4 000 16 000
Total		8 000	8 000	8 000	8 000	32000

The result must be well visualized...

EXAMPLE:


https://www.microstrategy.com/us/get-started/demo

Università di Pisa

ANOTHER EXAMPLE

Università di Pisa

INTRODUCTION TO DATA WAREHOUSES

What is a Data Warehouse (DW)

What do we model in a DW

How do we implement a DW

How do we make multidimensional analysis

DEFINITION

A DW is a decision support database with historical, nonvolatile data, pulled together primarily from operational business systems, structured and tuned to facilitate analysis of the performance of key business processes, worthy of improvement.

The first definition of data warehouse was provided by William Inmon in 1990.

A DW is a specialized database

- static (non volatile),
- with integrated data from different data sources,
- organized to analyze subjects of interest,
- with historical data,
- used to produce summarized data to support decision-making processes.

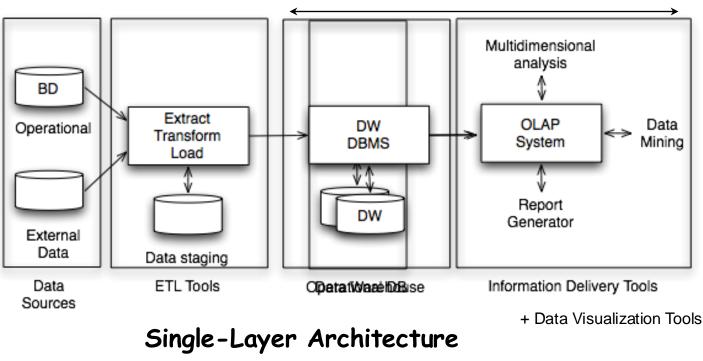
WHY SEPARATE DB AN DW?

To promote the high performance of both systems

- Special data organization, and implementation techniques are needed to support multidimensional analysis.
- Complex data analysis would degrade performance of operational DBMS.

The systems have different structures, contents, and uses of the data

- Decision support requires historical data which operational DBs do not typically maintain.
- DS requires aggregation of data from heterogeneous sources: operational DBs, external sources.
- Different sources typically use inconsistent data representations, codes and formats which have to be reconciled.


Data warehousing is the process to bring data from operational (OLTP) sources into a single data warehouse for analysis with Business Intelligence applications.

DATA WAREHOUSING ARCHITECTURES

DSS

Three-Layer Architecture

Business Intelligence

UNIVERSITÀ DI PISA

OLAP (On Line Analytical Processing)

WHAT IS MODELED IN A DW?

Managers think about a business process in terms of

facts,	A fact is an observation of the performance of a business
	process (the subject of analysis) (e.g. the sales made into a
	period of time)

measures, The **measures** are numerical attributes of a fact (e.g. qty, revenue, etc),

... which are useless without a **context**.

- dimensions, The dimensions give facts their context. In general a dimension is described by a set of attributes, otherwise is called degenerate. (e.g. sales revenue by product category, by month time, and by city market).
- and hierarchies, The attributes of a dimension may be related via a hierarchy of relationships (e.g. a month is related to the quarter and the year attributes).

FACTS ANALYSIS

Managers are interested in aggregate data: the sum, average minimum, maximum, ..., of measures of data groups with equal values of some dimensions or dimensional attributes.

Metrics and Key Performance Indicators (KPI)

Total sales revenue, by products.

FACTS ANALYSIS: AN SQL EXERCISE

Total revenue, by Product (SQL ?)

SALES

Product	Store	Date	Revenue
p1	m1	d1	120
p2	m1	d1	110
p1	m3	d1	500
p2	m2	d1	800
p1	m1	d2	400
p1	m2	d2	300

SELECT Product , SUM(Revenue) AS TotalRevenue

FROM Sales

GROUP BY Product;

Product	Store	Date	Revenue
p1	m1	d1	120
p1	m3	d1	500
p1	m1	d2	400
p1	m2	d2	300
p2	m1	d1	110
p2	m2	d1	800

Total Revenue	
1320	
910	

Università di Pisa

FACTS ANALYSIS

Managers think in term of business dimensions to analyze the data and produces requirements

Total revenue by Product. Total revenue by Product, by Market

Requirements for the design

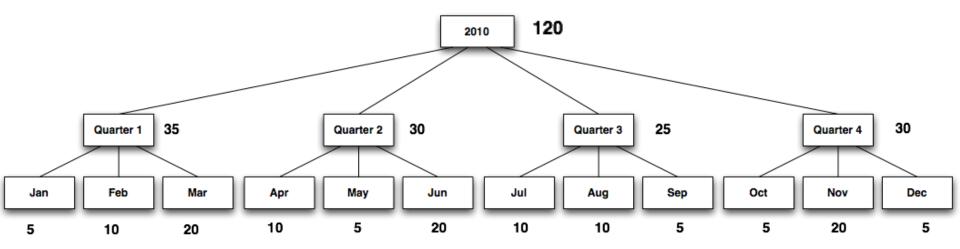
Revenue by Product		
Product	Revenue (€)	
P1 P2	130 910	

Revenue by Product and Market			
Product	Market	Revenue (€)	
P1	M1 M2	520 300	
P2	M3 M1 M2	500 110 800	

FACTS ANALYSIS WITH SUBTOTALS

Revenue by Product and Market		t and Market	
Product	Market	Revenue (€)	
P1	M1 M2 M3	520 300 500	Group by Product, Marke
P1	Total	1 320	Group by Product
P2	M1 M2	110 800	
P2	Total	910	No Group by
Total		2 2 3 0	

Università di Pisa


This result can be computed with a particular extension of SQL

FACTS ANALYSIS

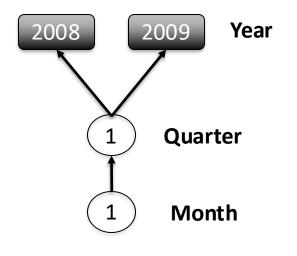
Managers analyse measure aggregates by business dimensions, and then in various levels of details, by exploiting **dimensional attributes hierarchies**.

Total Revenue, by Month Total Revenue, by Quarter Total Revenue, by Year Example with Sales of Year 2010

WHAT IS MODELED IN A DW: DIMENSIONAL HIERARCHIES

A dimensional attributes hierarchy models attributes dependency, i.e. a functional dependency between attributes, using the relational model terminology.

Definition 8.1 Functional Dependency

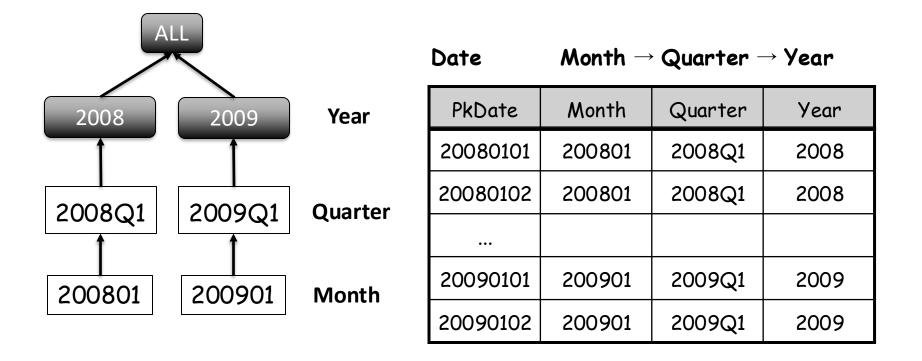

Given a relation schema R and X, Y subsets of attributes of R, a functional dependency $X \to Y$ (X determines Y) is a constraint that specifies that for every possible instance r of R and for any two tuples $t_1, t_2 \in r, t_1[X] = t_2[X]$ implies $t_1[Y] = t_2[Y]$.

For example, the dimension **Date** has attributes **Month**, **Quarter**, **Year**. Can we define a **dimensional hierarchy** among them?

Month \rightarrow Quarter \rightarrow Year

DIMENSIONAL HIERARCHIES

Date	Month \rightarrow	Quarter -	→ Year


. .

PkDate	Month	Quarter	Year
20080101	1	1	2008
20080102	1	1	2008
20090101	1	1	2009
20090102	1	1	2009

Università di Pisa

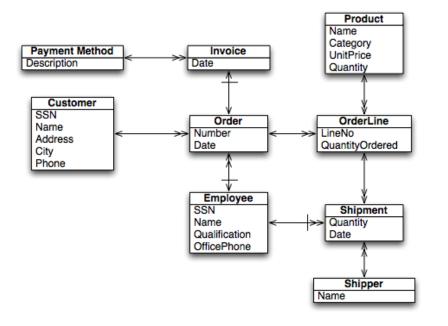
DIMENSIONAL HIERARCHIES

In a hierarchy we want for each child a unique parent, this means we can uniquely associate to a fact the chain of aggregations at different levels of detail

DATA MODELS FOR DW

To define the structure of a DW the following formalism are used, called **data models**:

The Dimensional Fact Model (DFM) is a graphical conceptual model used to analyze problems, given user requirements.


The **Relational Data Model**, as a logical model to design a solution

The **Multidimensional Model** (called **Cube**), useful to understand OLAP operations.

Università di Pisa

GOAL: AN ORDER DATA MART

Number of product ordered, by product, by customer, by month

Total revenue **by** product category, **by** customer, **by** year

Total revenue by customers of Italy by customer city, by year, by quarter

BUSINESS QUESTIONS

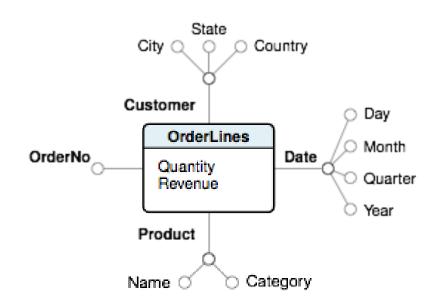
UNIVERSITÀ DI PISA

DATA BASE

A DATA MODEL FOR CONCEPTUAL DESIGN

Basics of a formalism to model

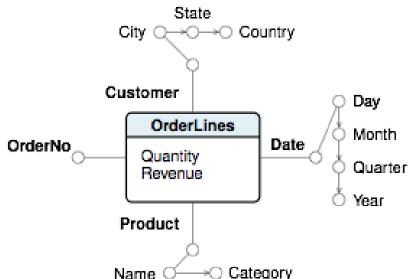
facts,


measures,

dimensions,

dimensional attributes.

A dimension without **attributes** is called **degenerate**


Later on other formalism features and how to model...

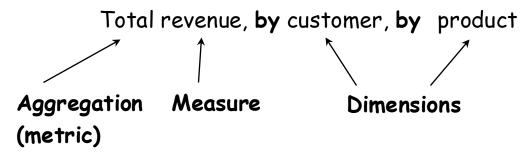
A DATA MODEL FOR CONCEPTUAL DESIGN: DIMENSIONAL ATTRIBUTES WITH HIERACHIES

With hierarchies

CONSIDERATIONS ON CONCEPTUAL MODELING

Let us assume that a key business process of interest has been identified together with a sample of analysis to perform to support decisions. The primary job is to understand the requirements.

Let us assume that we have understood the requirements and we want design a data mart.


Step 0: Requirements gathering.

Requirements gathering focuses on the study of business processes and on analysis relevant for decision making.

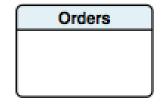
A not useful requirement analysis (a business question to answer):

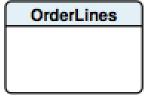
Why is my business not meeting the targets?

A useful business question:

Alternative: A report example

Step 1: Identify the Granularity of the Fact

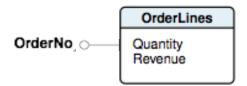

The first fundamental decision to be taken is the meaning of the fact.


What is the grain ?

Identifying the grain also means deciding on the level of detail you want to be made available in the dimensional model. The more detail there is, the lower the level of granularity.

- Remember: 1. Grain is the precision with which the measurements are taken.
 - 2. Grain determines measures and dimensions and dimensions determine grain !

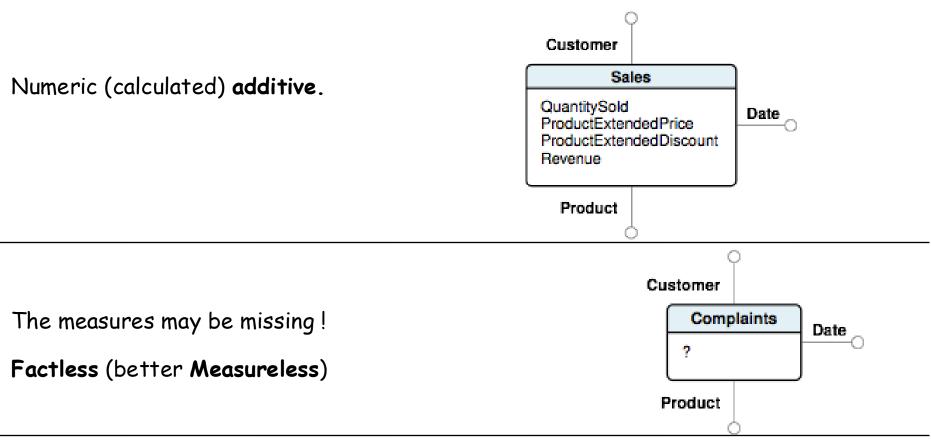
Example: Analyses are about customer orders. What is an Order?


Step 2: Identify the Fact Measures

The measures of interest are numeric values that make sense to add.

Not everything that is numeric is a measure!

Remember:


A measure is an observation of the performance of a business process

It is important to specify a measure Type.

MEASURE TYPES

Numeric non-additive.

Gross Margin = Margin/Revenue ? Unit Price ?

Step 3: Identify the Fact Dimensions

Identify the dimensions to give fact measures their context.

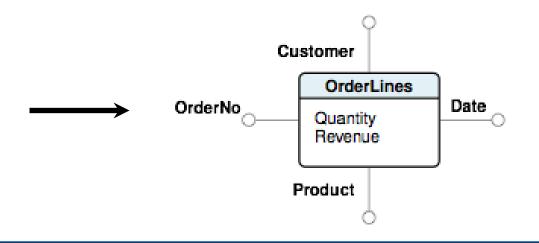
The Five Ws and one H questions, or the Six Ws (?)

(from Wikipedia) are questions whose answers are considered basic in informationgathering. They are often mentioned in journalism, research, and police investigation. They constitute a formula for getting the complete story on a subject. According to the principle of the **Six Ws**, a report can only be considered complete if it answers the following questions:

Who is it about?

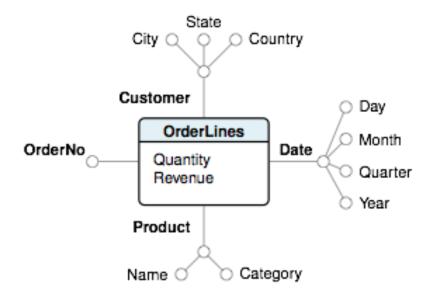
What happened?

Where did it take place? Why did it happen?

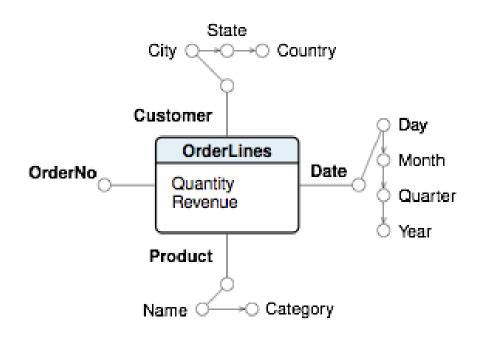

When did it take place? How did it happen?

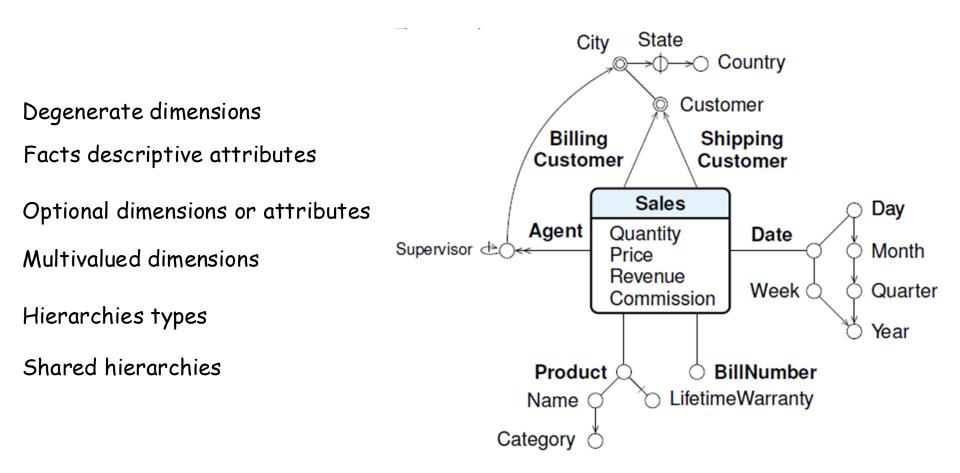
Step 3: Identify the Fact Dimensions

Identify the dimensions to give fact measures their context.

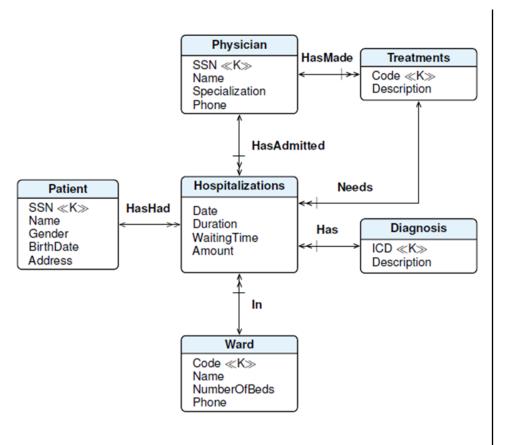

The **Six Ws** questions aim to identify the **variables determining the measures** and possible **intervention levers**.

Step 4: Identify Dimensional Attributes


The dimensional attributes are important for analysis and for reports.


Step 5: Identify the Dimensional Attribute Hierarchies

Attribute hierarchies is a natural way to support interactive exploration of facts. Users understand them intuitively, because they are used to look at a summarized report and then to decide to look at a more detailed one.


MORE ABOUT DATA MART CONCEPTUAL MODELLING

LAB: HOSPITAL

An hospital needs a DM to extract information from their operational database with information about inpatients treatments.

- 1. Total billed amount for hospitalizations, by diagnosis code and description, by month (year).
- 2. Total number of hospitalizations and billed amount, **by** ward, **by** patient gender (age at date of admission, city, region).
- 3. Total billed amount, average length of stay and average waiting time, by diagnosis code and description, by name (specialization) of the physician who has admitted the patient.
- 4. Total billed amount, and average waiting time of admission, by patient age (region), by treatment code (description).

Hospitalization Dimensions Requirements analysis Measures Metrics Total billed amount for hospitalizations, by diagnosis code and description, by month (year). Total number of hospitalizations and billed amount, by ward, by patient gender (age at date of admission, city, region). Total billed amount, average length of stay and average waiting time by diagnosis code and description, by name (specialization) of the physician who admitted the patient. Total billed amount, and average waiting time for admission by patient age (region), by treatment code (description).

Hospitalization

		riospitalization
Dimensions	Measures	Metrics
Diagnosis (ICD, Description), Date (Month, Year)	-	
_		
_		
	Diagnosis (ICD, Description), Date	Diagnosis (ICD, Description), Date

Requirements analysis	Dimensions	Measures	Metrics
Total billed amount for hospital- izations, by diagnosis code and description, by month (year).	Diagnosis (ICD, Description), Date (Month, Year)	Amount	Total Amount
Total number of hospitaliza- tions and billed amount, by ward, by patient gender (age at date of admission, city, region).			
Total billed amount, average length of stay and average waiting time by diagnosis code and description, by name (spe- cialization) of the physician who admitted the patient.	_		
Total billed amount, and av- erage waiting time for admis- sion by patient age (region), by treatment code (description).	_		

Università di Pisa

Hospitalization

Hospitalization

Requirements analysis	Dimensions	Measures	Metrics
Total billed amount for hospital- izations, by diagnosis code and description, by month (year).	Diagnosis (ICD, Description), Date (Month, Year)	Amount	Total Amount
Total number of hospitaliza- tions and billed amount, by ward, by patient gender (age at date of admission, city, region).	Ward, Patient (Gender, Age, City, Region)		
Total billed amount, average length of stay and average waiting time by diagnosis code and description, by name (spe- cialization) of the physician who admitted the patient.			
Total billed amount, and av- erage waiting time for admis- sion by patient age (region), by treatment code (description).	_		

Hospitalization Dimensions Requirements analysis Measures Metrics Total Amount Diagnosis Total billed amount for hospital-Amount izations, by diagnosis code and (ICD, Description), description, by month (year). Date (Month, Year) Total number of hospitaliza-Ward. Total number Amount Patient tions and billed amount, by Total Amount ward, by patient gender (age at (Gender, Age, City, Region) date of admission, city, region). Total billed amount, average length of stay and average waiting time by diagnosis code and description, by name (specialization) of the physician who admitted the patient. Total billed amount, and average waiting time for admission by patient age (region), by treatment code (description).

Hospitalization Dimensions Requirements analysis Measures Metrics Diagnosis Total Amount Total billed amount for hospital-Amount izations, by diagnosis code and (ICD, Description), description, by month (year). Date (Month, Year) Total number of hospitaliza-Ward. Total number Amount Patient tions and billed amount, by Total Amount ward, by patient gender (age at (Gender, Age, City, Region) date of admission, city, region). Total billed amount, average Diagnosis length of stay and average (ICD code, Description), waiting time by diagnosis code Physician and description, by name (spe-(Name, Specialization) cialization) of the physician who admitted the patient. Total billed amount, and average waiting time for admission by patient age (region), by treatment code (description).

treatment code (description).

Hospitalization Dimensions Requirements analysis Measures Metrics Diagnosis Total Amount Total billed amount for hospital-Amount izations, by diagnosis code and (ICD, Description), description, by month (year). Date (Month, Year) Total number of hospitaliza-Ward. Total number Amount tions and billed amount, by Patient Total Amount ward, by patient gender (age at (Gender, Age, City, Region) date of admission, city, region). Total Amount Total billed amount, average Diagnosis Amount. length of stay and average (ICD code, Description), Duration. Average Durawaiting time by diagnosis code Physician WaitingTime tion and description, by name (spe-(Name, Specialization) Average Waitcialization) of the physician inaTime who admitted the patient. Total billed amount, and average waiting time for admission by patient age (region), by

Hospitalization Dimensions Requirements analysis Measures Metrics Diagnosis Total Amount Total billed amount for hospital-Amount izations, by diagnosis code and (ICD, Description), description, by month (year). Date (Month, Year) Total number of hospitaliza-Ward. Total number Amount Total Amount tions and billed amount, by Patient ward, by patient gender (age at (Gender, Age, City, Region) date of admission, city, region). Total Amount Total billed amount, average Diagnosis Amount. (ICD code, Description), length of stay and average Duration. Average Durawaiting time by diagnosis code Physician WaitingTime tion and description, by name (spe-(Name, Specialization) Average Waitcialization) of the physician inaTime who admitted the patient. Patient Total billed amount, and average waiting time for admis-(Age, Region), sion by patient age (region), by Treatment treatment code (description). (Code, Description)

Hospitalization Dimensions Requirements analysis Measures Metrics Diagnosis Total Amount Total billed amount for hospital-Amount izations, by diagnosis code and (ICD, Description), description, by month (year). Date (Month, Year) Ward. Total number Total number of hospitaliza-Amount Total Amount tions and billed amount, by Patient ward, by patient gender (age at (Gender, Age, City, Region) date of admission, city, region). Total Amount Total billed amount, average Diagnosis Amount. (ICD code, Description), length of stay and average Duration. Average Durawaiting time by diagnosis code Physician WaitingTime tion and description, by name (spe-(Name, Specialization) Average Waitcialization) of the physician inaTime who admitted the patient. Patient Total Amount Total billed amount, and av-Amount. erage waiting time for admis-(Age, Region), Average Waitsion by patient age (region), by Treatment WaitingTime ingTime treatment code (description). (Code, Description)

Fact granularity

Description

Preliminary dimensions

Preliminary measures

HOSPITALIZATIONS DATA MART CONCEPTUAL SCHEMA

			Hospitalization
Requirements analysis	Dimensions	Measures	Metrics
Total billed amount for hospital- izations, by diagnosis code and description, by month (year).	Diagnosis (ICD, Description), Date (Month, Year)	Amount	Total Amount
Total number of hospitaliza- tions and billed amount, by ward, by patient gender (age at date of admission, city, region).	Ward, Patient (Gender, Age, City, Region)	Amount	Total number Total Amount
Total billed amount, average length of stay and average waiting time by diagnosis code and description, by name (spe- cialization) of the physician who admitted the patient.	Diagnosis (ICD code, Description), Physician (Name, Specialization)	Amount, Duration, WaitingTime	Total Amount Average Dura- tion Average Wait- ingTime
Total billed amount, and av- erage waiting time for admis- sion by patient age (region), by treatment code (description).	Patient (Age, Region), Treatment (Code, Description)	Amount, Duration, WaitingTime	Total Amount Average Wait- ingTime

Hospitalizations

Duration WaitingTime Amount

Requirements Analysis

DATA MART

SUMMARY

The analysis-driven design of a data mart.

Business questions

For a data subsets to use,

the metrics to compute,

grouping data by dimensions (attributes),

how the result should be presented.

SELECT X FROM ... WHERE B GROUP BY Y ORDER BY W

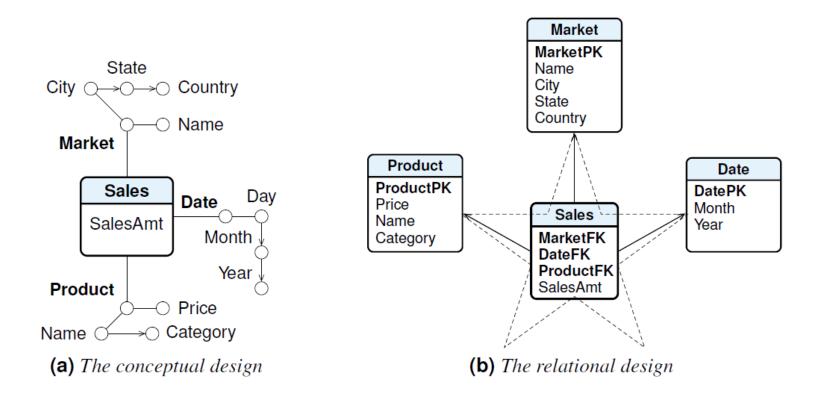
Alternative: Types of reports to be produced

Facts granularity, measures and their types, dimensions Data availability

RELATIONAL MODEL

Relational OLAP systems are relational DBMS extended with specific features to support business intelligence analysis.

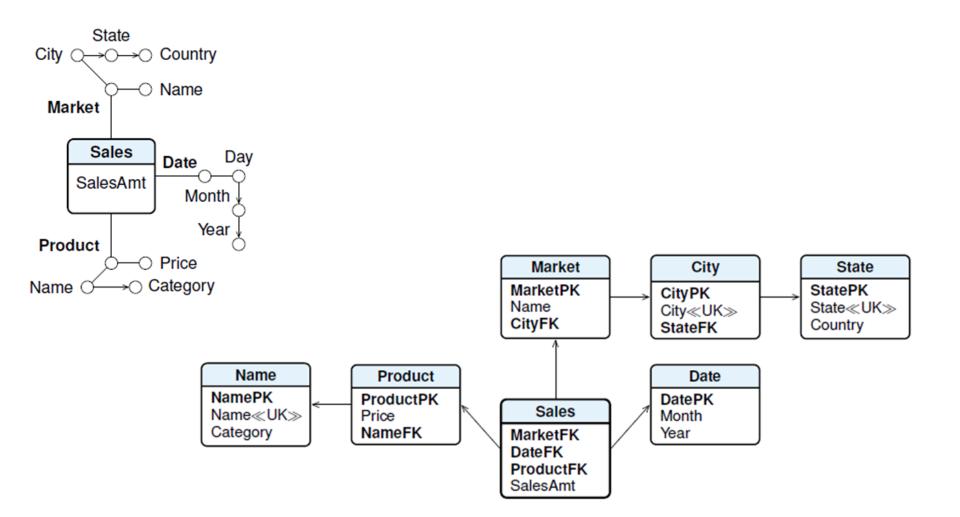
A DW is represented with a special kind of relational schema


A star schema,

A snowflake schema or

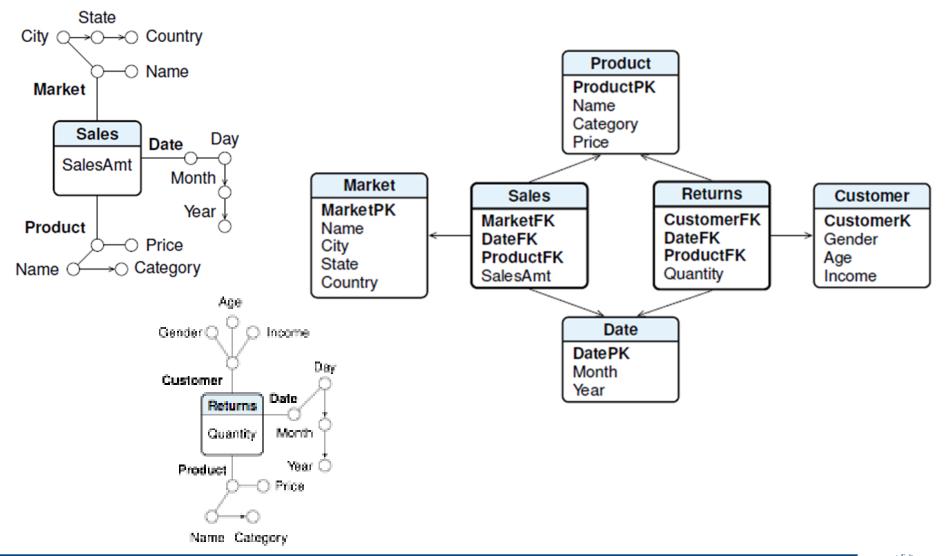
A constellation schema.

A STAR SCHEMA EXAMPLE

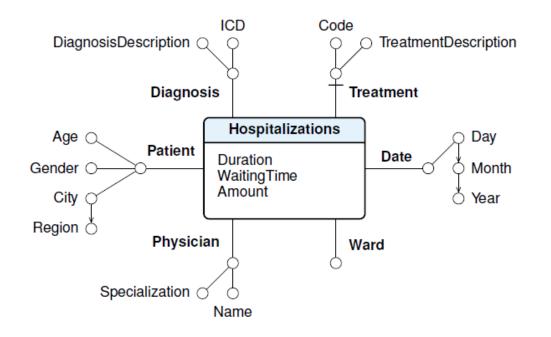


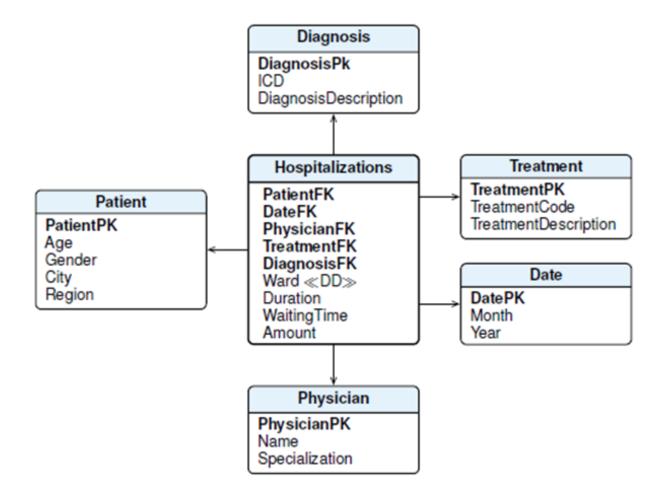
In a data mart relational schema a dimension table always uses a system-generated primary key, called a Surrogate Key, to support Type 2 technique of slowly changing dimensions.

And the fact table key?



SNOWFLAKE SCHEMA


CONSTELLATION SCHEMA


HOSPITALIZATIONS DATA MART CONCEPTUAL SCHEMA

DESIGN THE LOGICAL SCHEMA

HOSPITALIZATIONS: INITIAL LOGICAL SCHEMA

