DATA MINING 2- Introduction

Riccardo Guidotti

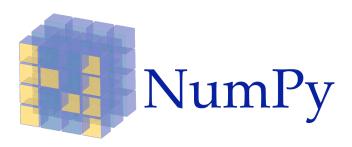
a.a. 2021/2022

Classes

- Classes
 - Monday, 11-13 (academic?), Room Fib C and MS Teams
 - Thursday, 11-13 (sharp?), Room Fib A and MS Teams
- Office Hours
 - Thursday, 15-17, MS Teams ???
 - Appointment [DM2 Meeting] at <u>riccardo.guidotti@unipi.it</u>
- Teaching Assistant
 - Francesco Spinnato [DM2 Meeting] at <u>francesco.spinnato@sns.it</u>

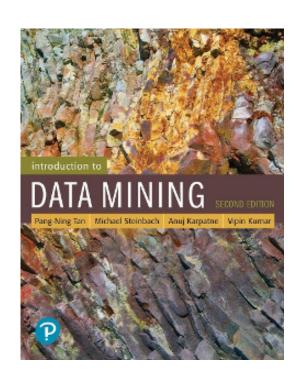
Topics

- Module 1: Imbalanced Learning, Dimensionality Reduction and Anomaly Detection
 - CRISP
 - Dimensionality Reduction
 - Imbalanced Learning
 - Anomaly Detection
- Module2: Advanced Classification Methods
 - Naive Bayes Classifier
 - Linear and Logistic Regression
 - Support Vector Machines
 - Neural Networks
 - Ensemble
 - Gradient Boosting
 - Rule-based Classifiers


- Module 3: Time Series
 - Similarity
 - Approximation
 - Motif, Shapelets
 - Classification, Clustering
- Module 4: Sequential Patterns and Advanced Clustering
 - Sequential Pattern Mining
 - X-Means, OPTICS
 - Transactional Clustering
- Module 5: Ethic Principles
 - Explaianbility

Laboratory

- Python
- Jupyter Notebook



Material

- Web Site: http://didawiki.cli.di.unipi.it/doku.php/dm/start
- Pang-Ning Tan, Michael Steinbach, Vipin Kumar. Introduction to Data Mining. Addison Wesley, ISBN 0-321-32136-7, 2006, 2° Edition (http://www-users.cs.umn.edu/~kumar/dmbook/index.php)
- Berthold, M.R., Borgelt, C., Höppner, F., Klawonn, F. Guide to Intelligent Data Analysis. Springer Verlag, 1st Edition., 2010. ISBN 978-1-84882-259-7
- Laura Igual et al. Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications.
- Slides, Exercises and Notebook

Exam

Project

- Topics proposed during the classes
- A single report to be sent periodically and one week before the oral exam
- Groups composed of up to 3 people

Oral

- Short discussion of the project (group presentation, where possible), plus
- Questions on all topics presented during the classes
- Exercises and questions about all topics

DM2 Mark =
$$0.6*$$
Oral + $0.4*$ Project
DM Mark = $(DM1 + DM2)/2$

Dataset

HAR: Human Activity Recognition Using Smartphones

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

The dataset for the project can be found at: https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+s martphones#

Detailed guidelines on the course webpage

Homework and Suggestions

Homework

Declare Project Groups by next Thursday 24th February adding your information at

https://docs.google.com/spreadsheets/d/1SuU8YLHKQcGvg4itG7xkpY KpyTJ77 bHQIVtsRN4 Hg/edit#gid=251564882

Suggestions

- Download and start to play with the dataset and perform data understanding.
- Use a Github repository for python and ipython files.
- Use a shared Overleaf project (LaTex) for the report.

Questions?

riccardo.guidotti@unipi.it

francesco.spinnato@sns.it

https://www.wooclap.com/DMSURVEY

Let's start!