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Instance-based Classifiers



Instance-based Classifiers

• Instead of performing explicit generalization, compare new instances 
with instances seen in training, which have been stored in memory.
• Sometimes called memory-based learning.
• Advantages
• Adapt its model to previously unseen data by storing a new instance or 

throwing an old instance away.

• Disadvantages
• Lazy learner: it does not build a model explicitly.
• Classifying unknown records is relatively expensive: in the worst case, given n

training items, the complexity of classifying a single instance is O(n). 



Nearest-Neighbor Classifier (K-NN)

Basic idea: If it walks like a duck, quacks 
like a duck, then it’s probably a duck.

Requires three things
1. Training set of stored records
2. Distance metric to compute 

distance between records
3. The value of k, the number of 

nearest neighbors to retrieve



Nearest-Neighbor Classifier (K-NN)

Given a set of training records (memory), 
and a test record:
1. Compute the distances from the 

records in the training to the test.
2. Identify the k “nearest” records.
3. Use class labels of nearest neighbors to 

determine the class label of unknown 
record (e.g., by taking majority vote).



Definition of Nearest Neighbor

• K-nearest neighbors of a record x are data points that have the k
smallest distance to x.



Choosing the Value of K

• If k is too small, it is sensitive to 
noise points and it can leads to 
overfitting to the noise in the 
training set.

• If k is too large, the neighborhood 
may include points from other 
classes.

• General practice k = sqrt(N) where 
N is the number of samples in the 
training dataset.



Nearest Neighbor Classification

Compute distance between two points:

• Euclidean distance 𝑑 𝑝, 𝑞 = ∑!(𝑝! − 𝑞!)"

Determine the class from nearest neighbors
• take the majority vote of class labels among the k nearest neighbors
• weigh the vote according to distance (e.g. weight factor, w = 1/d2)



Dimensionality and Scaling Issues

• Problem with Euclidean measure: high dimensional data can cause 
curse of dimensionality.
• Solution: normalize the vectors to unit length 

• Attributes may have to be scaled to prevent distance measures from 
being dominated by one of the attributes.
• Example:
• height of a person may vary from 1.5m to 1.8m
• weight of a person may vary from 10km to 200kg
• income of a person may vary from $10K to $1M



Parallel Exemplar-Based Learning System (PEBLS)

• PEBLS is a nearest-neighbor learning system (k=1) designed for 
applications where the instances have symbolic feature values.
• Works with both continuous and nominal features.
• For nominal features, the distance between two nominal values is 

computed using Modified Value Difference Metric (MVDM)
• 𝑑 𝑉#, 𝑉" = ∑! |
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• Where n1 is the number of records that consists of nominal attribute 
value V1 and n1i is the number of records whose target label is class i.



Distance Between Nominal Attribute Values

• d(Status=Single, Status=Married) = | 2/4 – 0/4 | + | 2/4 – 4/4 | = 1

• d(Status=Single, Status=Divorced) = | 2/4 – 1/2 | + | 2/4 – 1/2 | = 0

• d(Status=Married, Status=Divorced) = | 0/4 – 1/2 | + | 4/4 – 1/2 | = 1
• d(Refund=Yes, Refund=No) = | 0/3 – 3/7 | + | 3/3 – 4/7 | = 6/7



Distance Between Records

• 𝛿 𝑋, 𝑌 = 𝑤!𝑤" ∑#$%& 𝑑(𝑋#, 𝑌#)

• Each record X is assigned a weight 𝑤! =
'!"#$%&'(
'!"#$%&'(

')##$'(
, which represents its reliability

• 𝑁!"#$%&'( is the number of times X is used for prediction

• 𝑁!"#$%&'(')##$'( is the number of times the prediction using X is correct

• If 𝑤! ≅ 1 X makes accurate prediction most of the time

• If 𝑤!> 1, then X is not reliable for making predictions. High 𝑤! >1 would result in 
high distance, which makes it less possible to use X to make predictions.



Characteristics of Nearest Neighbor Classifiers

• Instance-based learner: makes predictions without maintaining 
abstraction, i.e., building a model like decision trees.
• It is a lazy learner: classifying a test example can be expensive because 

need to compute the proximity values between test and training examples.
• In contrast eager learners spend time in building the model but then the 

classification is fast.
• Make their prediction on local information and for low k they are 

susceptible to noise.
• Can produce wrong predictions if inappropriate distance functions and/or 

preprocessing steps are performed.



Naïve Bayes Classifiers



Bayes Classifier

• A probabilistic framework for solving classification problems.
• Let P be a probability function that assigns a number between 0 and 1 to 

events.
• X = x an events is happening.
• P(X = x) is the probability that events X = x.
• Joint Probability P(X = x, Y = y)
• Conditional Probability P(Y = y | X = x)
• Relationship: P(X,Y) = P(Y|X) P(X) = P(X|Y) P(Y)
• Bayes Theorem: P(Y|X) = P(X|Y)P(Y) / P(X)
• Another Useful Property: P(X =x) = P(X=x, Y=0) + P(X=x, Y=1)



Bayes Theorem

• Consider a football game. Team 0 wins 65% of the time, Team 1 the 
remaining 35%. Among the game won by Team 1, 75% of them are won 
playing at home. Among the games won by Team 0, 30% of them are won 
at Team 1’s field.
• If Team 1 is hosting the next match, which team will most likely win?
• Team 0 wins: P(Y = 0) = 0.65
• Team 1 wins: P(Y = 1) = 0.35
• Team 1 hosted the match won by Team 1: P(X = 1|Y = 1) = 0.75
• Team 1 hosted the match won by Team 0: P(X = 1|Y = 0) = 0.30
• Objective P(Y = 1|X = 1)



Bayes Theorem

• P(Y = 1|X = 1) = P(X = 1|Y = 1)P(Y = 1) / P(X = 1) =
• = 0.75 x 0.35 / (P(X = 1, Y = 1) + P(X = 1, Y = 0))
• = 0.75 x 0.35 / (P(X = 1|Y = 1)P(Y=1) + P(X = 1|Y = 0)P(Y=0))
• = 0.75 x 0.35 / (0.75 x 0.35 + 0.30 x 0.65)
• = 0.5738

• Therefore Team 1 has a better chance to win the match



Bayes Theorem for Classification

• X denotes the attribute sets, X = {X1, X2, … Xd}
• Y denotes the class variable
• We treat the relationship probabilistically using P(Y|X)

• 𝑃 𝑌 𝑋 = % 𝑋 𝑌 %(')
%())

Posterior
Probability

Prior
Probability

Likelihood

Evidence
(sum over alternative events)



Bayes Theorem for Classification

• Learn the posterior P(Y | X) for every combination of X and Y.
• By knowing these probabilities, a test record X’ can be classified by 

finding the class Y’ that maximizes the posterior probability P(Y’|X’).
• This is equivalent of choosing the value of Y’ that maximizes 

P(X’|Y’)P(Y’).
• How to estimate it?



Naïve Bayes Classifier

• It estimates the class-conditional probability by assuming that the 
attributes are conditionally independent given the class label y.
• The conditional independence is stated as:
• 𝑃 𝑋 𝑌 = 𝑦 = ∏!*#

+ 𝑃(𝑋!|𝑌 = 𝑦)
• where each attribute set X = {X1, X2, … Xd}



Conditional Independence

• Given three variables Y, X1, X2 we can say that Y is independent from 
X1 given X2 if the following condition holds:
• P(Y | X1, X2) = P(Y|X2)

• With the conditional independence assumption, instead of computing 
the class-conditional probability for every combination of X we only 
have to estimate the conditional probability of each Xi given Y.
• Thus, to classify a record the naive Bayes classifier computes the 

posterior for each class Y and takes the maximum class as result
• 𝑃 𝑌 𝑋 = 𝑃 𝑌 ∏!*#

+ 𝑃 𝑋! 𝑌 = 𝑦 /𝑃(𝑋)

How to estimate ?



How to Estimate Probability From Data

• Class P(Y) = Ny/ N
• Ny number of records with outcome y
• N number of records
• Categorical attributes 
• P(X = x | Y = y) = Nxy / Ny

• Nxy records with value x and outcome y

• P(Evade = Yes) = 3/10
• P(Marital Status = Single|Yes) = 2/3



How to Estimate Probability From Data

Continuous attributes
• Discretize the range into bins

• one ordinal attribute per bin
• violates independence assumption

• Two-way split: (X < v) or (X > v)
• choose only one of the two splits as new attribute

• Probability density estimation:
• Assume attribute follows a normal distribution
• Use data to estimate parameters of distribution (e.g., mean and standard deviation)
• Once probability distribution is known, can use it to estimate the conditional 

probability P(X|y) 



How to Estimate Probability From Data

• Normal distribution

• P(Xi = xi | Y = y) = #
",-"$

𝑒
.
(&" ' ("$)

#

#*"$
#

• 𝜇!/ can be estimated as the mean of Xi
for the records that belongs to class yj.

• Similarly, 𝜎!/ as the standard deviation.
• P(Income = 120|No) = 0.0072
• mean = 110
• std dev = 54.54



Example

Given X = {Refund = No, Married, Income = 120k}

• P(Refund=Yes|No) = 3/7
• P(Refund=No|No) = 4/7
• P(Refund=Yes|Yes) = 0
• P(Refund=No|Yes) = 1
• P(Marital Status=Single|No) = 2/7
• P(Marital Status=Divorced|No)=1/7
• P(Marital Status=Married|No) = 4/7
• P(Marital Status=Single|Yes) = 2/3
• P(Marital Status=Divorced|Yes)=1/3
• P(Marital Status=Married|Yes) = 0/3
For taxable income:
• If class=No: 

• mean=110, variance=2975
• If class=Yes: 

• mean=90, variance=25

P(X|Class=No) = P(Refund=No|Class=No)
× P(Married| Class=No)
× P(Income=120K| Class=No)

= 4/7 × 4/7 × 0.0072 
= 0.0024

P(X|Class=Yes) = P(Refund=No| Class=Yes)
× P(Married| Class=Yes)
× P(Income=120K| Class=Yes)

= 1 × 0 × 1.2 × 10-9 
= 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)
=> Class = No



M-estimate of Conditional Probability

• If one of the conditional probability is zero, then the entire expression 
becomes zero.
• For example, given X = {Refund = Yes, Divorced, Income = 120k}, if 

P(Divorced|No) is zero instead of 1/7, then
• P(X|No) = 3/7 x 0 x 0.00072 = 0
• P(X|Yes) = 0 x 1/3 x 10-9 = 0

• M-estimate P(X|Y) = 
!!""#$
!""#

(if P(X|Y) = 
!!""%
!""|'|

is Laplacian estimation)

• m is a parameter, p is a user-specified parameter (e.g. probability of 
observing xi among records with class yj.
• In the example with m = 3 and p = 1/m = 1/3 (i.e., Laplacian estimation) we have
• P(Married |Yes) = (0+3x1/3)/(3+3)  = 1/6



Naïve Bayes Classifier

• Robust to isolated noise points
• Handle missing values by ignoring the instance 

during probability estimate calculations
• Robust to irrelevant attributes
• Independence assumption may not hold for 

some attributes
• Use other techniques such as Bayesian Belief 

Networks (BBN, not treated in this course)
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