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Regression

• Given a dataset containing N observations Xi, Yi i = 1, 2, …, N
• Regression is the task of learning a target function f that maps each 

input attribute set X into a output Y.
• The goal is to find the target function that can fit the input data with 

minimum error.
• The error function can be expressed as
• Absolute Error = ∑! |𝑦! − 𝑓(𝑥!)|
• Squared Error = ∑!(𝑦! − 𝑓 𝑥! )"

residuals



Linear Regression

• Linear regression is a linear approach to 
modeling the relationship between a 
dependent variable Y and one or more 
independent (explanatory) variables X. 
• The case of one explanatory variable is 

called simple linear regression. 
• For more than one explanatory variable, 

the process is called multiple linear 
regression.
• For multiple correlated dependent 

variables, the process is called  
multivariate linear regression.
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What does it mean to predict Y?

• Look at X = 5. There are many different Y values at X=5.
• When we say predict Y at X =5, we are really asking:
• What is the expected value (average) of Y at X = 5?



What does it mean to predict Y?

• Formally, the regression function is given by E(Y|X=x). This is the 
expected value of Y at X=x.
• The ideal or optimal predictor of Y based on X is thus
• f(X) = E(Y | X=x)



Simple Linear Regression

• In general, such a relationship may not hold exactly for the largely 
unobserved population
• We call the unobserved deviations from Y the errors.
• The goal is to find estimated values m' and b' for the parameters m

and b which would provide the "best" fit for the data points.

Y = mX + bLinear Model:

Dependent
Variable

Independent
Variable

Slope Intercept (bias)

𝑌 = 𝛽!𝑋 + 𝛽"



Least Square Method

• A standard approach for doing this is to apply the method of least 
squares which attempts to find the parameters m, b that minimizes 
the sum of squared error.
• SSE = ∑!(𝑦! − 𝑓 𝑥! )" = ∑!(𝑦! −𝑚𝑥! − 𝑏)"

• also known as the residual sum of squares.
• That starting from random m and b, it changes them by setting their 

values as the corresponding partial derivatives of the equation above, 
until convergence is reached.



Least Square Method

• Blue line shows the least 
square fit. Lines from red 
points to the regression line 
illustrate the residuals. 
• For any other choice of slope 

m or intercept b the SSE 
between that line and the 
observed data would be larger 
than the SSE of the blue line. 
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Examples



Alternative Fitting Methods

• Linear regressions are often fitted using the least squares approach. 
• However, they can be fitted in other ways, such as by minimizing a 

penalized version of the least squares cost function as in ridge regression
(L2-norm penalty) and lasso (L1-norm penalty).
• Tikhonov regularization, also known as ridge regression, is a method of 

regularization of ill-posed problems particularly useful to mitigate the 
multicollinearity, which commonly occurs in models with large numbers of 
parameters.
• Lasso (least absolute shrinkage and selection operator) performs both 

variable selection and regularization in order to enhance the prediction 
accuracy and interpretability of the statistical model it produces.



Linear Regression Models Objective Functions

• Simple      𝛽# + 𝛽$𝑥 − 𝑦
• Multiple   𝛽# + ∑!(𝑦! − 𝛽!𝑥!)"

• Ridge 𝛽# + ∑!(𝑦! − 𝛽!𝑥!)" + 𝜆∑% 𝛽%
"

• Lasso 𝛽# + ∑!(𝑦! − 𝛽!𝑥!)" + 𝜆∑% |𝛽%|
regularization



Evaluating Regression

• Coefficient of determination R2

• is the proportion of the variance in the dependent variable that is predictable 
from the independent variable(s)

• Mean Squared/Absolute Error MSE/MAE
• a risk metric corresponding to the expected value of the squared 

(quadratic)/absolute error or loss

hat means predicted



Example

• Height (m): 1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83

• Mass (kg): 52.21, 56.12, 54.48, 55.84, 53.20, 58.57, 59.93, 63.29, 63.11, 61.47, 66.28, 69.10, 67.92, 72.19, 74.46

• Intercept: -35.30454824113264
• Coefficient: 58.87472632
• R2: 0.93 
• MSE: 3.40
• MAE: 1.43



Linear Regression Recap

• Linear regression is used to fit a 
linear model to data where the 
dependent variable is continuous.
• Given a set of points (Xi,Yi), we 

wish to find a linear function (or 
line in 2 dimensions) that “goes 
through” these points.
• In general, the points are not 

exactly aligned.
• The objective is to find the line 

that best fits the points.

𝑌 = 𝛽!𝑋 + 𝛽"



Logistic Regression

• Logistic Regression is used to fit a curve to 
data in which the dependent variable is 
binary, or dichotomous.

• For example: predict the response to 
treatment, where we might code survivors 
as 1 and those who don’t survive as 0, or 
pass/fail, win/lose, healthy/sick, etc.



A Problem with Linear Regression

• Drawing a line between the means for the two 
variable levels is problematic in two ways: 
• the line seems to oversimplify the relationship,
• it gives predictions that cannot be observable 

values of Y for extreme values of X.
• This is analogous to fitting a linear model to the 

probability of the event. 
• Probabilities can only take values in [0, 1]. 
• Hence, we need a different approach to ensure 

that our model is appropriate for the data.



A Problem with Linear Regression

• The mean of a binomial variable coded as 
(1,0) is a proportion. We can plot conditional 
probabilities as Y for each level of X. 
• We can fit a linear model to these 

probabilities, but the linear model does not 
predict the maximum likelihood estimates 
for each group (the mean—shown by the 
circles) and it still produces unobservable 
predictions for extreme values of the 
dependent variable.



A Better Solution

• As stated previously, we can model the 
nonlinear relationship between X and Y by 
transforming one of the variables. 
• A common transformation result in sigmoid 

functions is logit transformation. 
• Logit transformations impose a cumulative 

normal function on the data and are easy to 
work with because the function can be 
simplified to a linear equation. 



Odds

• Given some event with 
probability p of being 
1, the odds of that 
event are given by:

• When we go from Normal to High, 
the odds of being Sick triple:

• Odds ratio: 0.293/0.111 = 2.64

• 2.64 times more likely to be Sick 
with high values

odds = p / (1–p)

Yes No Total

Normal 402 3614 4016

High 101 345 446

Total 503 3959 4462

The odds of being sick if you have a Normal value are:
• Odds(Sick|Normal) = P(sick)/1-P(sick)  = 

= (402/4016) / (1 - (402/4016)) 
= 0.1001 / 0.8889 = 0.111

The odds of being not sick with a Normal value is the reciprocal:
• Odds(not Sick|Normal) = 0.8999/0.1001 = 8.99
For the High value we have
• Odds(Sick|High) = 101/345 = 0.293
• Odds(not Sick|High) = 345/101 = 3.416
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Logit Transform

• The logit is the natural log of the odds
• logit(p) = ln(odds) = ln(p/(1-p)) 



Logistic Regression

• In Logistic Regression we seek a model

• That is, the log odds (logit) is assumed to be linearly related to the 
independent variable X
• In this way it is possible to solve an ordinary (linear) regression.

𝑌 = 𝑙𝑜𝑔𝑖𝑡 𝑝 = 𝛽!𝑋 + 𝛽"



Recovering Probabilities

• which gives p as a sigmoid function!

€ 

ln( p
1− p

) = β0 + β1X

⇔
p

1− p
= eβ 0 +β1X

⇔ p =
eβ 0 +β1X

1+eβ 0 +β1X
=

1
1+e−(β 0 +β1X )



Interpretation of Beta1

• Let:
• odds1 = odds for value X (p/(1–p))
• odds2 = odds for value X + 1 unit

• Then:

• The exponent of the slope describes the proportionate rate at which the 
predicted odds ratio changes with each successive unit of X

€ 

odds2
odds1

=
eβ 0 +β1 (X +1)

eβ 0 +β1X

=
e(β 0 +β1X )+β1

eβ 0 +β1X
=
e(β 0 +β1X )eβ1

eβ 0 +β1X
= eβ1



Example

• Hours: 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50

• Pass: 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1

Beta0 = −4.0777, Beta1 = 1.5046

One additional hour of study is estimated to increase log-odds by 1.5046, so multiplying odds by e1.5046 =  4.5.

For example, for a student who studies 2 hours we have an estimated probability of passing the exam of 0.26. 

Similarly, for a student who studies 4 hours, the estimated probability of passing the exam is 0.87.
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