DATA MINING 2 Dimensionality Reduction

Riccardo Guidotti

a.a. 2019/2020

Dimensionality Reduction

- Dimensionality reduction is the process of reducing the number of random variables under consideration by obtaining a set of principal variables.
- Approaches can be divided into feature selection and feature projection.

X ₁	X ₂	X ₃	X 4	X 5	X 6	X ₇	X 8	X ₉	X ₁₀
1.1	10	0.3	0.5	А	1	С	15	1.3	а
1.2	12	0.3	0.7	А	0	D	19	1.8	Ρ

Feature Selection

- Select a subset of the features according to different strategies:
 - the filter strategy (e.g. information gain),
 - the wrapper strategy (e.g. search guided by accuracy),
 - the embedded strategy (selected features add or are removed while building the model based on prediction errors).
- Classification and/or regression or can be done in the reduced space more accurately than in the original space.

Feature Selection

- Variance Threshold. It removes all features whose variance doesn't meet some threshold. By default, it removes all zero-variance features, i.e. features that have the same value in all samples.
- Univariate Feature Selection. It selects the best features based on univariate statistical tests. For instance it removes all but the k highest scoring features. An example of statistical test is the ANOVA F-value between label/feature.

• F-value =
$$\sum_{i=1}^{K} n_i (\bar{Y}_{i\cdot} - \bar{Y})^2 / (K-1) / \sum_{i=1}^{K} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i\cdot})^2 / (N-K),$$

- where \bar{Y}_i denotes the sample mean in the ith group, n_i is the number of observations in the ith group, \bar{Y} denotes the overall mean of the data, Y_{ij} is the jth observation in the ith out of K groups, K denotes the number of groups, N the overall sample size.
- F-value is large if the numeartor is large, which is unlikely to happen if the population means of the groups all have the same value.

Recursive Feature Elimination (RFE)

- Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model, or feature importance of decision tree), RFE selects features by recursively considering smaller and smaller sets of features.
- First, the estimator is trained on the initial set of features and the importance of each feature is obtained.
- Then, the least important features are pruned from current set of features.
- That procedure is recursively repeated on the pruned set until the desired number of features to select is eventually reached.

Feature Projection (a.k.a Feature Extraction)

- It transforms the data in the high-dimensional space to a space of fewer dimensions.
- The data transformation may be linear, or nonlinear.
- Approaches:
 - Principal Component Analysis (PCA)
 - Singular Value Decomposition (SVD)
 - Non-negative matrix factorization (NMF)
 - Linear Discriminant Analysis (LDA)
 - Autoencoder

Principal Component Analysis

- The goal of PCA is to find a new set of dimensions (attributes or features) that better captures the variability of the data.
- The first dimension is chosen to capture as much of the variability as possible.
- The second dimension is orthogonal to the first and, subject to that constraint, captures as much of the remaining variability as possible, and so on.

Covariance

• The covariance of two attributes is a measure of how strongly the attributes vary together.

covariance(
$$\mathbf{x}, \mathbf{y}$$
) = $s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$

- PCA calculates the covariance matrix of all pairs of attributes.
- Given matrix A, remove the mean of each column from the column vectors to get the centered matrix C
- The matrix $V = C^T C$ is the covariance matrix of the row vectors of A.

Eigenvalue and Eigenvectors

- Eigenvector of matrix A: a vector v such that $Av = \lambda v$
- λ : eigenvalue of eigenvector v
- A square matrix A of rank r, has r orthonormal eigenvectors v₁, v₂,..., v_r with eigenvalues λ₁, λ₂, ..., λ_r.
- Eigenvectors define an orthonormal basis for the column space of *A*

PCA Algorithm

- We finds the **eigenvalues** and **eigenvectors** of the covariance matrix (a positive semidefinite matrix with non-negative eigenvalues).
- The principal components are the eigenvectors with the largest eigenvalues and correspond to the dimensions that have the strongest correlation in the dataset.
- The new attributes have zero covariance to each other (they are orthogonal) and each attribute captures the most remaining variance in the data.
- The first attribute should capture the most variance in the data

Example

• Iris Dataset

References

• Dimensionality Reduction. Appendix B. Introduction to Data Mining.

