DATA MINING 2 Performance Evaluation

Riccardo Guidotti

a.a. 2021/2022

https://www.wooclap.com/DM2EVAL

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.

Confusion Matrix:

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	а	b	
	Class=No	С	d	

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	a (TP)	b (FN)	
CLASS	Class=No	c (FP)	d (TN)	

Most widely-used metric:
$$\frac{a+d}{Accuracy} = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS			
	C(i j)	Class=Yes	Class=No	
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)	
CLASS	Class=No	C(Yes No)	C(No No)	

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	-1	100
	-	1	0

Model M ₁	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	150	40
	-	60	250

Model M ₂	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	250	45
	-	5	200

$$Cost = 3910$$

$$Cost = 4255$$

Cost vs Accuracy

Count	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	q
CLASS	Class=No	С	d

Cost	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	р	q	
CLASS	Class=No	q	р	

Accuracy is proportional to cost if

1.
$$C(Yes|No)=C(No|Yes) = q$$

2.
$$C(Yes|Yes)=C(No|No) = p$$

$$N = a + b + c + d$$

Accuracy =
$$(a + d)/N$$

Cost = p (a + d) + q (b + c)
= p (a + d) + q (N - a - d)
= q N - (q - p)(a + d)
= N [q - (q-p)
$$\times$$
 Accuracy]

Cost-Sensitive Measures

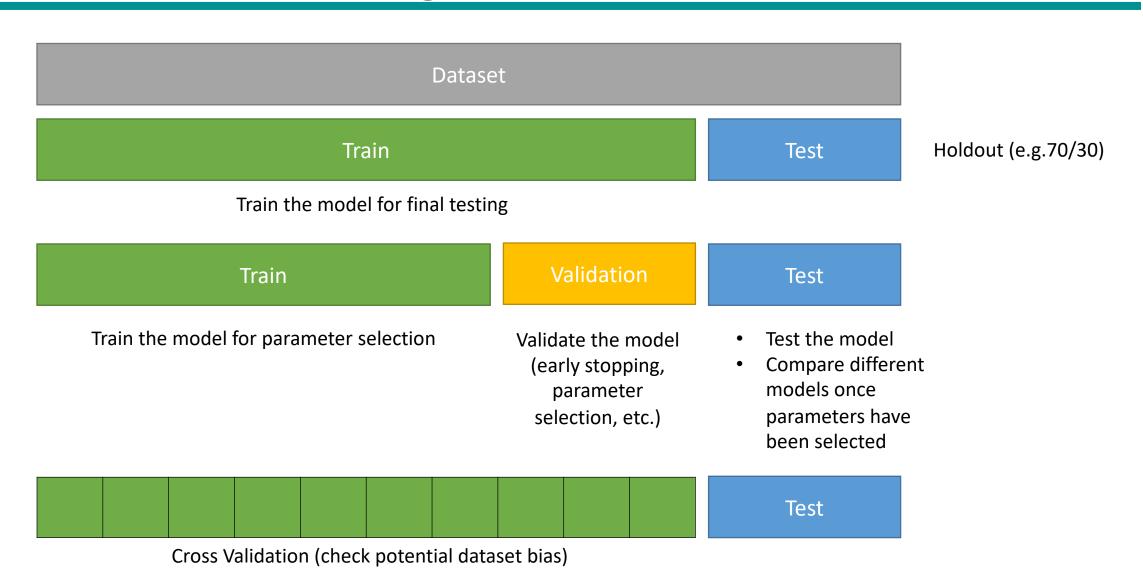
Precision (p) =
$$\frac{TP}{TP + FP}$$

Recall (r) = $\frac{TP}{TP + FN}$
F-measure (F) = $\frac{2rp}{r + p} = \frac{2TP}{2TP + FN + FP}$

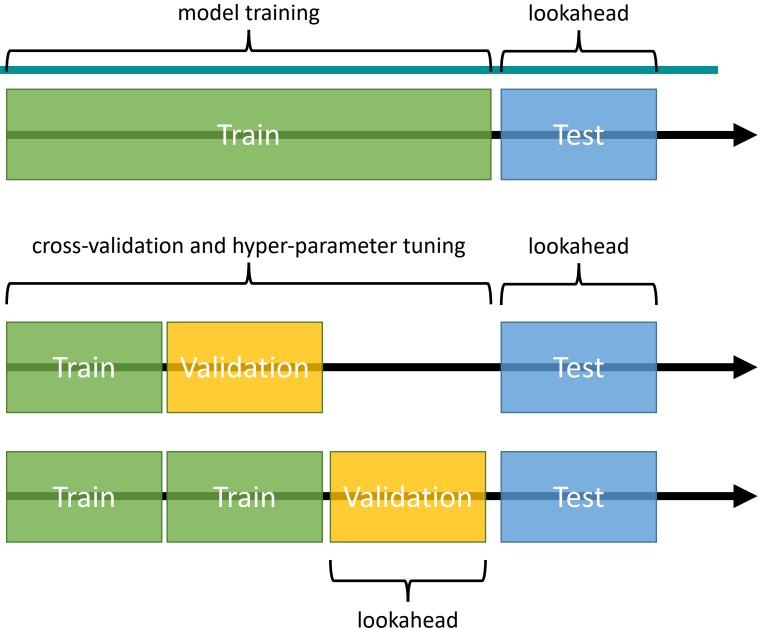
- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_2 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Data Partitioning



Cross Validation Considering Time

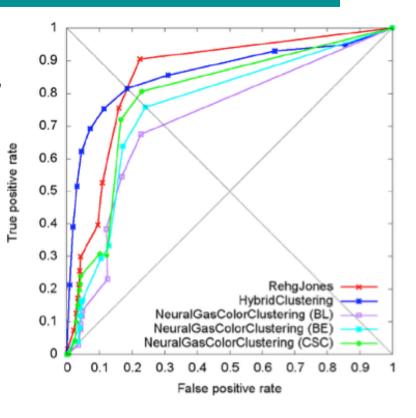


ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

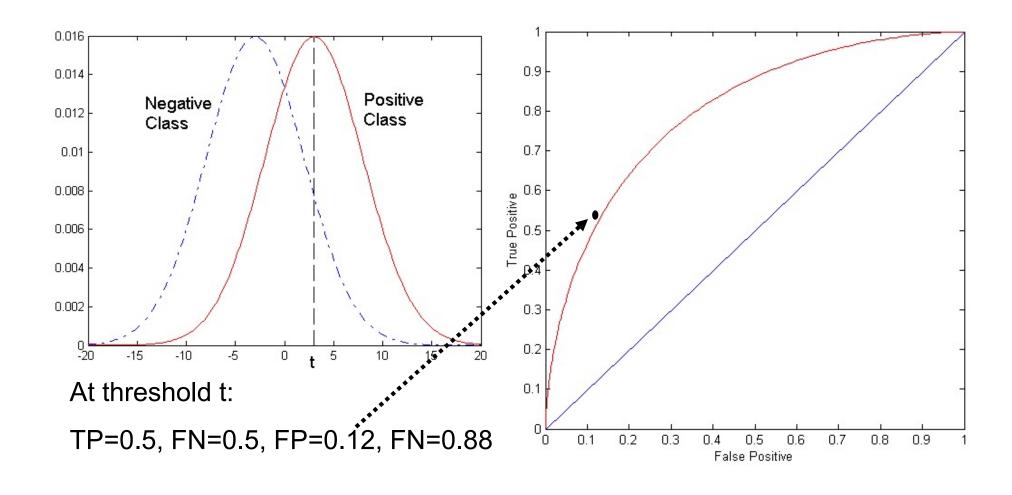
Receiver Operating Characteristic Curve

- It illustrates the ability of a binary classifier as its discrimination threshold THR is varied.
- The *ROC* curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various THR.
- The TPR = TP / (TP + FN) is also known as sensitivity, recall or probability of detection.
- The FPR = FP / (TN + FP) is also known as probability of *false alarm* and can be calculated as (1 specificity).



ROC Curve

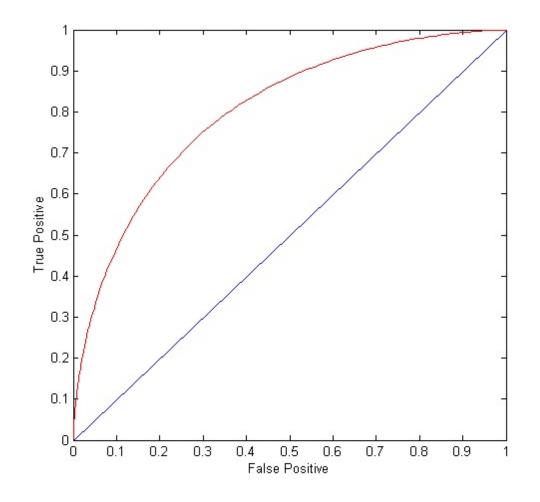
- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive



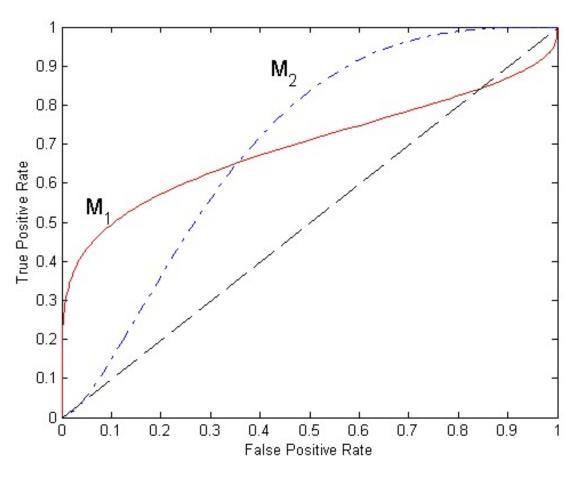
ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (0,1): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class



Using ROC for Model Comparison



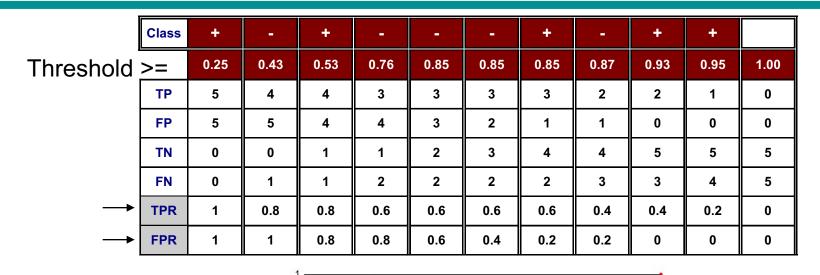
- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct a ROC curve

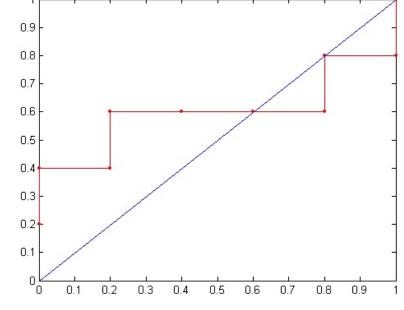
Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve



ROC Curve:



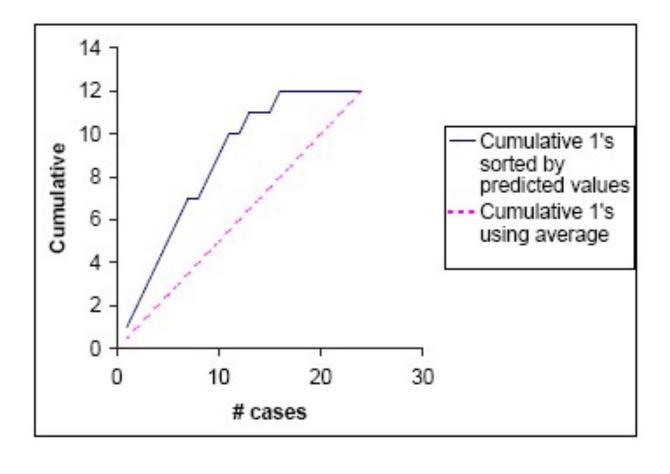
Lift Chart

- The lift curve is a popular technique in direct marketing.
- The input is a dataset that has been "scored" by appending to each case the estimated probability that it will belong to a given class.
- The cumulative *lift chart* (also called *gains chart*) is constructed with the cumulative number of cases (descending order of probability) on the x-axis and the cumulative number of true positives on the y-axis.
- The dashed line is a reference line. For any given number of cases (the x-axis value), it represents the expected number of positives we would predict if we did not have a model but simply selected cases at random. It provides a benchmark against which we can see performance of the model.

Notice: "Lift chart" is a rather general term, often used to identify also other kinds of plots. Don't get confused!

Lift Chart – Example

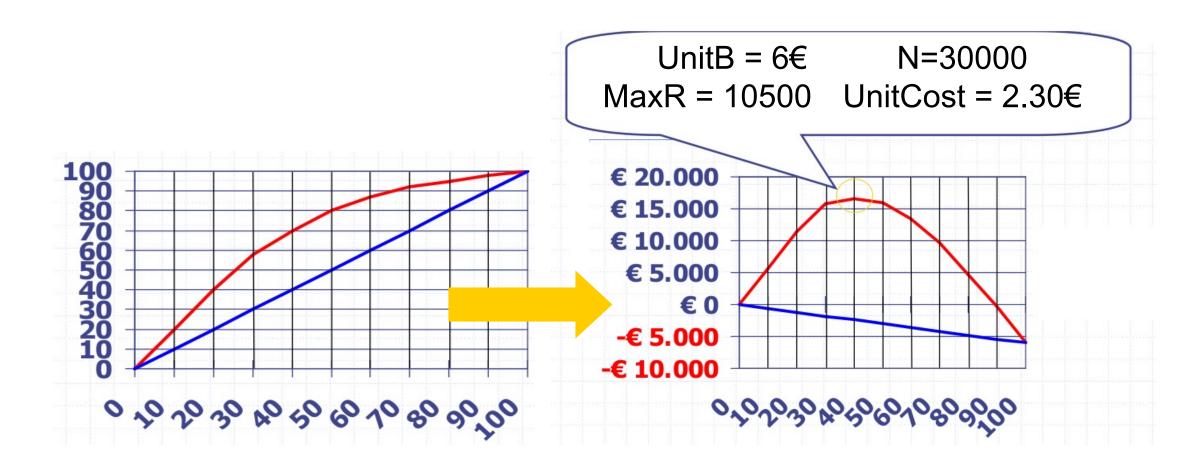
Serial no.	Predicted prob of 1	Actual Class	Cumulative Actual class
1	0.995976726	1	1
2	0.987533139	1	2
3	0.984456382	1	3
4	0.980439587	1	4
5	0.948110638	1	5
6	0.889297203	1	6
7	0.847631864	1	7
8	0.762806287	0	7
9	0.706991915	1	8
10	0.680754087	1	9
11	0.656343749	1	10
12	0.622419543	0	10
13	0.505506928	1	11
14	0.47134045	0	11
15	0.337117362	0	11
16	0.21796781	1	12
17	0.199240432	0	12
18	0.149482655	0	12
19	0.047962588	0	12
20	0.038341401	0	12
21	0.024850999	0	12
22	0.021806029	0	12
23	0.016129906	0	12
24	0.003559986	0	12



Lift Chart – Application Example

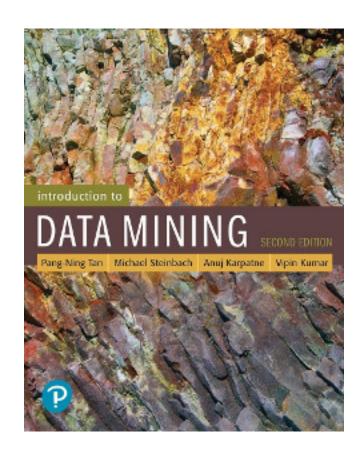
- From Lift chart we can easily derive an "economical value" plot, e.g. in target marketing.
- Given our predictive model, how many customers should we target to maximize income?
- Profit = UnitB*MaxR*Lift(X) UnitCost*N*X/100
- UnitB = unit benefit, UnitCost = unit postal cost
- N = total customers
- MaxR = expected potential respondents in all population (N)
- Lift(X) = lift chart value for X, in [0,..,1]

Lift Chart – Application Example



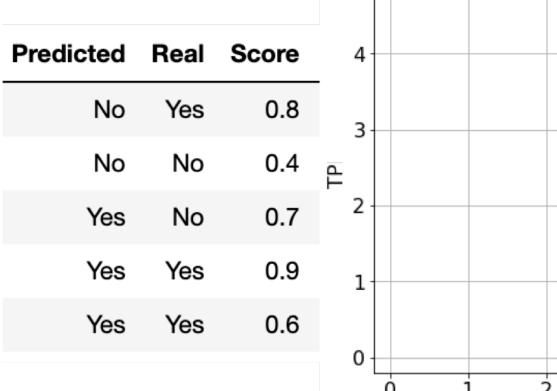
References

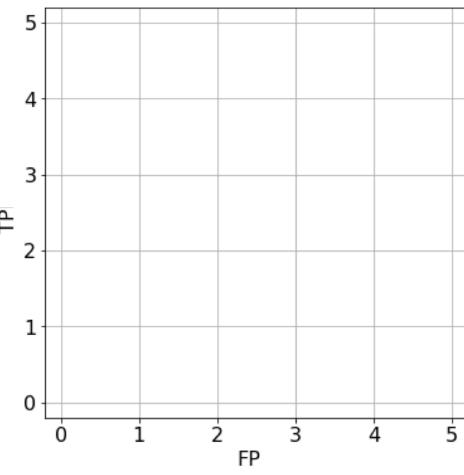
• Chapter 3. Classification: Basic Concepts and Techniques.



Exercises – ROC & Lift Chart

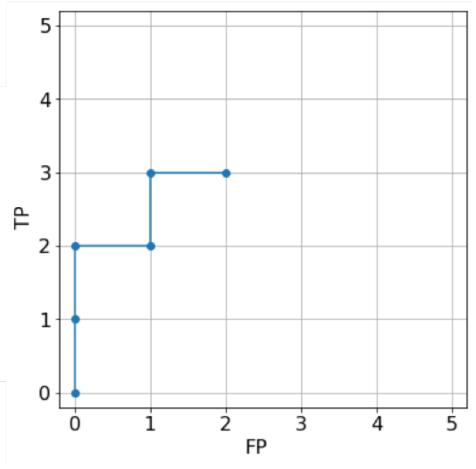
ROC Exercise



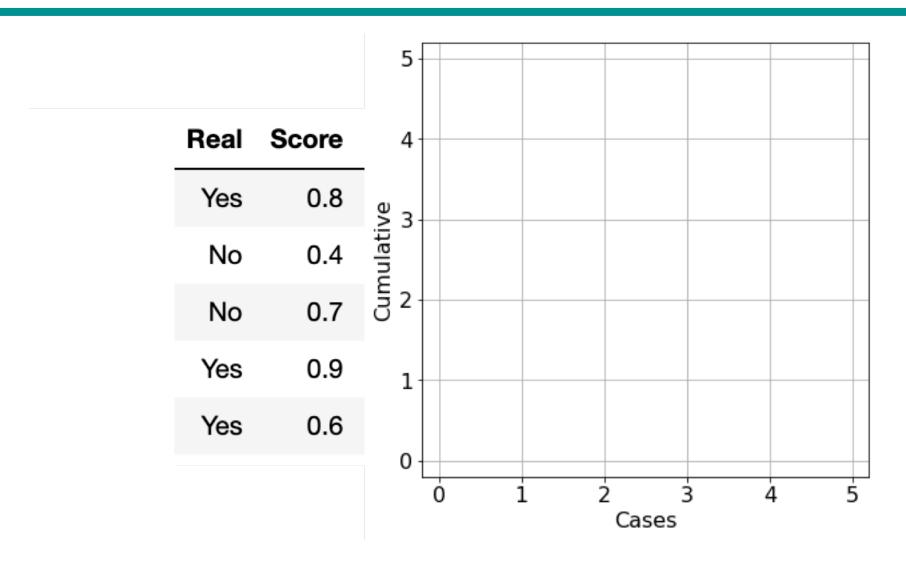


ROC Exercise Solution

Predicted	Real	Score	FP	TP
Yes	Yes	0.9	0	1
No	Yes	8.0	0	2
Yes	No	0.7	1	2
Yes	Yes	0.6	1	3
No	No	0.4	2	3



Lift Exercise



Lift Exercise Solution

Real	Score	Cases	Cumulative
Yes	0.9	0	1
Yes	8.0	1	2
No	0.7	2	2
Yes	0.6	3	3
No	0.4	4	3

