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Similarity and Dissimilarity

• Similarity
• Numerical measure of how alike two data objects are.
• Is higher when objects are more alike.
• Often falls in the range [0,1]

• Dissimilarity
• Numerical measure of how different are two data objects
• Lower when objects are more alike
• Minimum dissimilarity is often 0
• Upper limit varies

• Proximity refers to a similarity or dissimilarity



Similarity/Dissimilarity for one Attribute
p and q are the attribute values for two data objects.



Euclidean Distance

where n is the number of dimensions (aKributes) and xk and 
yk are, respecMvely, the kth aKributes (components) or data 
objects x and y. StandardizaMon is necessary, if scales differ.

• Standardiza)on is necessary, if scales differ.



Euclidean Distance
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p1 0 2
p2 2 0
p3 3 1
p4 5 1

Distance Matrix

p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0



Minkowski Distance

• Minkowski Distance is a generalization of Euclidean Distance

Where r is a parameter, n is the number of dimensions (attributes) and 
xk and yk are, respectively, the kth attributes (components) or data 
objects x and y.



Minkowski Distance: Examples

• r = 1.  City block (Manhattan, taxicab, L1 norm) distance. 
• A common example of this is the Hamming distance, which is just the number of bits that are different 

between two binary vectors

• r = 2.  Euclidean distance

• r ®¥.  “supremum” (Lmax norm, L¥norm) distance. 
• This is the maximum difference between any component of the vectors

• Do not confuse r with n, i.e., all these distances are defined for all numbers of 
dimensions.



Minkowski Distance

Distance Matrix

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

L1 p1 p2 p3 p4
p1 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0

L2 p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

L¥ p1 p2 p3 p4
p1 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0



Common Properties of a Distance

• Distances, such as the Euclidean distance, have some well-known 
proper)es.

1. d(x, y) ³ 0   for all x and y and d(x, y) = 0 only if 
x = y. (PosiMve definiteness)

2. d(x, y) = d(y, x)   for all x and y. (Symmetry)
3. d(x, z) £ d(x, y) + d(y, z)   for all points x, y, and z.  

(Triangle Inequality)

where d(x, y) is the distance (dissimilarity) between points (data objects), x and 
y.

• A distance that sa)sfies these proper)es is a metric



Common Proper8es of a Similarity

Similarities, also have some well-known properties.

1. s(x, y) = 1 (or maximum similarity) only if x = y. 
(does not always hold, e.g., cosine)

2. s(x, y) = s(y, x)   for all x and y. (Symmetry)

where s(x, y) is the similarity between points (data objects), x and y.



Binary Data

Categorical insufficient sufficient good very good excellent
p1 0 0 1 0 0
p2 0 0 1 0 0
p3 1 0 0 0 0
p4 0 1 0 0 0

item bread butter milk apple tooth-past
p1 1 1 0 1 0
p2 0 0 1 1 1
p3 1 1 1 0 0
p4 1 0 1 1 0



Similarity Between Binary Vectors

• Common situa+on is that objects, p and q, have only binary a7ributes

• Compute similari+es using the following quan++es
M01 = the number of a/ributes where p was 0 and q was 1
M10 = the number of a/ributes where p was 1 and q was 0
M00 = the number of a/ributes where p was 0 and q was 0
M11 = the number of a/ributes where p was 1 and q was 1

• Simple Matching and Jaccard Coefficients 
SMC =  number of matches / number of a/ributes 

=  (M11 + M00) / (M01 + M10 + M11 + M00)

J = number of 11 matches / number of not-both-zero a5ributes values
= (M11) / (M01 + M10 + M11) 



SMC versus Jaccard: Example

p =  1 0 0 0 0 0 0 0 0 0    
q =  0 0 0 0 0 0 1 0 0 1

M01 = 2   (the number of aAributes where p was 0 and q was 1)
M10 = 1   (the number of aAributes where p was 1 and q was 0)
M00 = 7   (the number of aAributes where p was 0 and q was 0)
M11 = 0   (the number of aAributes where p was 1 and q was 1)

SMC = (M11 + M00)/(M01 + M10 + M11 + M00) = (0+7) / (2+1+0+7) = 0.7

J = (M11) / (M01 + M10 + M11) = 0 / (2 + 1 + 0) = 0
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Cosine Similarity

• If d1 and d2 are two document vectors, then
cos( d1, d2 ) = (d1 • d2) / ||d1|| ||d2||

where • indicates vector dot product and || d || is the length of vector d.

• Example:

d1 =  3 2 0 5 0 0 0 2 0 0 
d2 =  1 0 0 0 0 0 0 1 0 2

d1 • d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481
||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245

cos( d1, d2 ) = .3150



Using Weights to Combine Similari8es

• May not want to treat all aHributes the same.
• Use non-negaMve weights 𝜔!

• 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐱, 𝐲 = ∑!"#
$ "!#!$!(𝐱,𝐲)
∑!"#
$ "!#!

• Can also define a weighted form of distance



Correlation

• Correla)on measures the linear rela)onship between objects (binary 
or con)nuous)
• To compute correla)on, we standardize data objects, p and q, and 

then take their dot product (covariance/standard devia)on)



Visually Evalua+ng Correla+on

Scatter plots 
showing the 
similarity from 
–1 to 1.



Mixed/Heterogenous Distances

• What happen if we have data with both continuous and categorical 
attributes?
• Option 1: discretize continuous attributes and use categorical 

distances like Jaccard, SMC, etc.
• Option 2:  pretend that categorical attributes can be represented with 

values and use continuous distances like Euclidean, Manhattan, etc.
• Option 3: define a new heterogenous distance like:
• d(x, y) = ncat/n dcat(xcat, ycat) + ncon/n dcon(xcon, ycon)


