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Similarity and Dissimilarity

• Similarity
• Numerical measure of how alike two data objects are.
• Is higher when objects are more alike.
• Often falls in the range [0,1]

• Dissimilarity
• Numerical measure of how different are two data objects
• Lower when objects are more alike
• Minimum dissimilarity is often 0
• Upper limit varies

• Proximity refers to a similarity or dissimilarity



Similarity/Dissimilarity for one Attribute
p and q are the attribute values for two data objects.



Euclidean Distance

   

where n is the number of dimensions (attributes) and xk and 
yk  are, respectively, the kth attributes (components) or data 
objects x and y. Standardization is necessary, if scales differ.

•  Standardization is necessary, if scales differ.



Euclidean Distance

Distance Matrix



Minkowski Distance

• Minkowski Distance is a generalization of Euclidean Distance

   

Where r is a parameter, n is the number of dimensions (attributes) and 
xk and yk are, respectively, the kth attributes (components) or data 
objects x and y.



Minkowski Distance: Examples

• r = 1.  City block (Manhattan, taxicab, L
1
 norm) distance. 

• A common example of this is the Hamming distance, which is just the number of bits that are different 
between two binary vectors

• r = 2.  Euclidean distance

• r → ∞.  “supremum” (L
max 

norm, L∞ 
norm) distance. 

• This is the maximum difference between any component of the vectors

• Do not confuse r with n, i.e., all these distances are defined for all numbers of 
dimensions.



Minkowski Distance

Distance Matrix



Common Properties of a Distance

• Distances, such as the Euclidean, have some well-known properties.

1. d(x, y) ≥ 0   for all x and y and d(x, y) = 0 only if 
x = y. (Positive definiteness)

2. d(x, y) = d(y, x)   for all x and y. (Symmetry)
3. d(x, z) ≤ d(x, y) + d(y, z)   for all points x, y, and z.  

(Triangle Inequality)

where d(x, y) is the distance (dissimilarity) between points (data objects), x and y.

• A distance that satisfies these properties is a metric



Common Properties of a Similarity

Similarities, also have some well-known properties.

1. s(x, y) = 1 (or maximum similarity) only if x = y. 
(does not always hold, e.g., cosine)

2. s(x, y) = s(y, x)   for all x and y. (Symmetry)

where s(x, y) is the similarity between points (data objects), x and y.



Binary Data



Similarity Between Binary Vectors

• Common situation is that objects, p and q, have only binary attributes

• Compute similarities using the following quantities
M01 = the number of attributes where p was 0 and q was 1
M10 = the number of attributes where p was 1 and q was 0
M00 = the number of attributes where p was 0 and q was 0
M11 = the number of attributes where p was 1 and q was 1

• Simple Matching and Jaccard Coefficients 
SMC =  number of matches / number of attributes 
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SMC versus Jaccard: Example

p =  1 0 0 0 0 0 0 0 0 0    

q =  0 0 0 0 0 0 1 0 0 1 

M01 = 2   (the number of attributes where p was 0 and q was 1)
M10 = 1   (the number of attributes where p was 1 and q was 0)
M00 = 7   (the number of attributes where p was 0 and q was 0)
M11 = 0   (the number of attributes where p was 1 and q was 1)
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) = 0 / (2 + 1 + 0) = 0 



Document Data



Cosine Similarity

• If d
1
 and d

2
 are two document vectors, then

             cos( d
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1
|| ||d

2
|| 

   where ∙ indicates vector dot product and || d || is  the norm of vector d.  

• Example: 

  d
1
 =  3 2 0 5 0 0 0 2 0 0 

   d
2
 =  1 0 0 0 0 0 0 1 0 2 

    d
1
 ∙ d

2
=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

   ||d
1
|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481

    ||d
2
|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245

    cos( d
1
, d

2
 ) = .3150



Using Weights to Combine Similarities

•  



Correlation

• Correlation measures the linear relationship between objects (binary 
or continuous)

• To compute correlation, we standardize data objects, p and q, and 
then take their dot product (covariance/standard deviation)



Visually Evaluating Correlation

Scatter plots 
showing the 
similarity from 
–1 to 1.



Mixed/Heterogenous Distances

• What happen if we have data with both continuous and categorical 
attributes?

• Option 1: discretize continuous attributes and use categorical 
distances like Jaccard, SMC, etc.

• Option 2:  pretend that categorical attributes can be represented with 
values and use continuous distances like Euclidean, Manhattan, etc.

• Option 3: define a new heterogenous distance like:
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