DATA MINING 1 Data Similarity

Dino Pedreschi, Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 2 "Introduction to Data Mining", 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Similarity and Dissimilarity

• Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

Dissimilarity

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for one Attribute

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity		
Type				
Nominal	$d = \left\{egin{array}{cc} 0 & ext{if} \ p = q \ 1 & ext{if} \ p eq q \end{array} ight.$	$s = \left\{egin{array}{ccc} 1 & ext{if} \; p = q \ 0 & ext{if} \; p eq q \end{array} ight.$		
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$		
Interval or Ratio	d = p-q	$s = -d, s = \frac{1}{1+d}$ or		
		$s = -d, s = rac{1}{1+d} ext{ or } s = 1 - rac{d-min_d}{max_d-min_d}$		

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where *n* is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects **x** and **y**. Standardization is necessary, if scales differ.

• Standardization is necessary, if scales differ.

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
p3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

• Minkowski Distance is a generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where *r* is a parameter, *n* is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects *x* and *y*.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- *r* = 2. Euclidean distance
- $r \rightarrow \infty$. "supremum" (L_{max} norm, L_∞ norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse *r* with *n*, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	X	У
p1	0	2
p2	2	0
p3	3	1
p4	5	1

-				
L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
p3	4	2	0	2
p4	6	4	2	0
L2	p1	p2	р3	р4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0
		-		
L_{∞}	p1	p2	p3	p4
p1	0	2	3	5
p2	2	0	1	3
p3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Common Properties of a Distance

- Distances, such as the Euclidean, have some well-known properties.
 - 1. $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all x and y and $d(\mathbf{x}, \mathbf{y}) = 0$ only if $\mathbf{x} = \mathbf{y}$. (Positive definiteness)
 - 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)
 - 3. $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ for all points \mathbf{x}, \mathbf{y} , and \mathbf{z} . (Triangle Inequality)

where $d(\mathbf{x}, \mathbf{y})$ is the distance (dissimilarity) between points (data objects), \mathbf{x} and \mathbf{y} .

• A distance that satisfies these properties is a metric

Common Properties of a Similarity

Similarities, also have some well-known properties.

- 1. s(x, y) = 1 (or maximum similarity) only if x = y.
 (does not always hold, e.g., cosine)
- 2. $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)

where *s*(**x**, **y**) is the similarity between points (data objects), **x** and **y**.

Binary Data

Categorical	insufficient	sufficient	good	very good	excellent	
p1	0	0	1	0	0	
p2	0	0	1	0	0	
p3	1	0	0	0	0	
p4	0	1	0	0	0	
item	bread	butter	milk	apple	tooth-pas t	
p1	1	1	0	1	0	
p2	0	0	1	1	1	
p3	1	1	1	0	0	
p4	1	0	1	1	0	

Similarity Between Binary Vectors

- Common situation is that objects, *p* and *q*, have only binary attributes
- Compute similarities using the following quantities

 $M_{01} =$ the number of attributes where p was 0 and q was 1 $M_{10} =$ the number of attributes where p was 1 and q was 0 $M_{00} =$ the number of attributes where p was 0 and q was 0 $M_{11} =$ the number of attributes where p was 1 and q was 1

• Simple Matching and Jaccard Coefficients

SMC = number of matches / number of attributes

 $= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$

J = number of 11 matches / number of not-both-zero attributes values

 $= (M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

p = 1000000000q = 0000001001

$$\begin{split} & M_{01} = 2 & (\text{the number of attributes where p was 0 and q was 1}) \\ & M_{10} = 1 & (\text{the number of attributes where p was 1 and q was 0}) \\ & M_{00} = 7 & (\text{the number of attributes where p was 0 and q was 0}) \\ & M_{11} = 0 & (\text{the number of attributes where p was 1 and q was 1}) \end{split}$$

SMC = $(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$

 $J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$

Document Data

	team	coach	рlа У	ball	score	game	wi	lost	timeout	season
Document 1	З	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	З	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Cosine Similarity

- If d_1 and d_2 are two document vectors, then
 - $\cos(d_{1'}d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$

where \cdot indicates vector dot product and || d || is the norm of vector d.

• Example:

 $d_1 = 3205000200$ $d_2 = 1000000102$

 $\begin{aligned} &d_1 \cdot d_2 = \ 3^*1 + 2^*0 + 0^*0 + 5^*0 + 0^*0 + 0^*0 + 0^*0 + 2^*1 + 0^*0 + 0^*2 = 5 \\ &||d_1|| = (3^*3 + 2^*2 + 0^*0 + 5^*5 + 0^*0 + 0^*0 + 0^*0 + 2^*2 + 0^*0 + 0^*0)^{0.5} = \ (42)^{0.5} = 6.481 \\ &||d_2|| = (1^*1 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 1^*1 + 0^*0 + 2^*2)^{0.5} = \ (6)^{0.5} = 2.245 \end{aligned}$

 $\cos(d_1, d_2) = .3150$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
 - Use non-negative weights ω_k

• similarity(
$$\mathbf{x}, \mathbf{y}$$
) = $\frac{\sum_{k=1}^{n} \omega_k \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \omega_k \delta_k}$

Can also define a weighted form of distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} w_k |x_k - y_k|^r\right)^{1/r}$$

Correlation

- Correlation measures the linear relationship between objects (binary or continuous)
- To compute correlation, we standardize data objects, p and q, and then take their dot product (covariance/standard deviation)

$$\operatorname{corr}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{covariance}(\mathbf{x}, \mathbf{y})}{\operatorname{standard_deviation}(\mathbf{x}) * \operatorname{standard_deviation}(\mathbf{y})} = \frac{s_{xy}}{s_x \ s_y},$$

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Mixed/Heterogenous Distances

- What happen if we have data with both continuous and categorical attributes?
- Option 1: discretize continuous attributes and use categorical distances like Jaccard, SMC, etc.
- Option 2: pretend that categorical attributes can be represented with values and use continuous distances like Euclidean, Manhattan, etc.
- Option 3: define a new heterogenous distance like:

•
$$d(x, y) = n_{cat}/n d_{cat}(x_{cat}, y_{cat}) + n_{con}/n d_{con}(x_{con}, y_{con})$$