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Similarity and Dissimilarity

e Similarity
* Numerical measure of how alike two data objects are.
* |s higher when objects are more alike.
e Often falls in the range [0,1]

* Dissimilarity
* Numerical measure of how different are two data objects
* Lower when objects are more alike
* Minimum dissimilarity is often 0
* Upper limit varies

* Proximity refers to a similarity or dissimilarity



Similarity/Dissimilarity for one Attribute

p and q are the attribute values for two data objects.

Attribute Dissimilarity Similarity
Type
0 ifp= 1 ifp=
Nominal d = 1 w4 S = 1 Py
1 ifpz#gq 0 ifp#gq
d — =4l
. n—1 e
Ordinal (values mapped to integers 0 ton—1, | s =1 J—Ln_l
where n is the number of values)
Interval or Ratio | d = |p — ¢ s=—d,s= ﬁ or
g = |, == d—min_d

Table 5.1. Similarity and dissimilarity for simple attributes




Euclidean Distance

n

d(X, Y) — \ Z(fck — yk)2

k=1

where n is the number of dimensions (attributes) and X, and
y, are, respectively, the k™ attributes (components) or data
objects x and y. Standardization is necessary, if scales differ.

e Standardization is necessary, if scales differ.



Euclidean Distance
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Distance Matrix




Minkowski Distance

* Minkowski Distance is a generalization of Euclidean Distance

n 1/r
d(x,y) = (Z Tp — yﬂ)
k=1

Where 7 is a parameter, n is the number of dimensions (attributes) and

x, and y, are, respectively, the k™ attributes (components) or data

objects x and y.



Minkowski Distance: Examples

* r=1. City block (Manhattan, taxicab, L, norm) distance.

* A common example of this is the Hamming distance, which is just the number of bits that are different
between two binary vectors

e r = 2. Euclidean distance

*r— oo. “supremum” (L __ norm, L_norm) distance.
* This is the maximum difference between any component of the vectors

* Do not confuse r with n, i.e., all these distances are defined for all numbers of
dimensions.



Minkowski Distance

point X A
pl 0 2
p2 2 0
p3 3 1
p4 5 1

L1 pl p2 p3 p4

pl 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 pl p2 p3 p4

pl 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0
Lo pl p2 p3 p4

pl 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0

Distance Matrix




Common Properties of a Distance

* Distances, such as the Euclidean, have some well-known properties.

1. d(x,y)=0 forallxandyandd(x,y)=0onlyif
X = y. (Positive definiteness)

d(x,y) =d(y, x) forall xandy. (Symmetry)

2.
3. d(x,z)<d(x,y)+d(y,z) forall pointsx,y, and z.
(Triangle Inequality)

where d(x, y) is the distance (dissimilarity) between points (data objects), x and y.

 Adistance that satisfies these properties is a metric



Common Properties of a Similarity

Similarities, also have some well-known properties.

1.  s(x,y) =1 (or maximum similarity) only if x =y.
(does not always hold, e.g., cosine)
2. s(x,y)=s(y, x) forall xandy. (Symmetry)

where s(x, y) is the similarity between points (data objects), x and y.



Binary Data

Categorical insufficient sufficient o00d very good | excellent
pl 0 0 | 0 0
p2 0 0 1 0 0
p3 1 0 0 0 0
p4 0 | 0 0 0
item bread butter milk apple tooth-past
pl 1 1 0 | 0
p2 0 0 | | 1
p3 1 1 | 0 0
p4 1 0 | | 0




Similarity Between Binary Vectors

e Common situation is that objects, p and g, have only binary attributes

« Compute similarities using the following quantities

M,, = the number of attributes where p was 0 and q was 1
M, ,= the number of attributes where p was 1 and q was 0
M,, = the number of attributes where p was 0 and q was 0
M,, = the number of attributes where p was 1 and q was 1

 Simple Matching and Jaccard Coefficients
SMC = number of matches / number of attributes
= (Mll + I\/IOO) / (MOI + IvllO + I\/Ill + IVIOO)

J = number of 11 matches / number of not-both-zero attributes values

=(M,,) / (Mg + M, + M)



SMC versus Jaccard: Example

p=1000000000
qg=0000001001

(the number of attributes where p was 0 and q was 1)
(the number of attributes where p was 1 and q was 0)
(the number of attributes where p was 0 and q was 0)

(the number of attributes where p was 1 and q was 1)

SMC=(M_, +M_ )/ (M +M +M_ +M (04+7) / (2+1+0+7) = 0.7

oo) -

J=(M11)/(M01+M10+M11)=O/(2+1+O)=0



Document Data
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Cosine Similarity

° |f dl and d2 are two document vectors, then
cos(d,d,)=(d,-d,)/|ld, || |ld,l]

where - indicates vector dot productand || d | | is the norm of vector d.

* Example:
d1= 3205000200
d=1000000102

2

d,-ds= 3*¥1+2*0+0*0+5*0+0*0+0*0+0*0+2*1+0*0+0*2=5
|1d, || = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0%0)%% = (42) ** = 6.481
|1d, || = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) ®% = (6) ®* = 2.245

cos(d, d,)=.3150



Using Weights to Combine Similarities

« May not want to treat all attributes the same.
* Use non-negative weights wy,
Yk=1 WkOkSk(XY)

e similarity(x,y) =
y(x,y) D

* Can also define a weighted form of distance

n /7
d(x,y) = (Zwkxk — ykr)
=1



Correlation

 Correlation measures the linear relationship between objects (binary
or continuous)

* To compute correlation, we standardize data objects, p and q, and
then take their dot product (covariance/standard deviation)

covariance(X, y) _ Say
standard_deviation(x) * standard_deviation(y) sz sy’

corr(Xx,y) =



Visually Evaluating Correlation
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Mixed/Heterogenous Distances

* What happen if we have data with both continuous and categorical
attributes?

* Option 1: discretize continuous attributes and use categorical
distances like Jaccard, SMC, etc.
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* Option 3: define a new heterogenous distance like:
*d(x,y)=n_/nd_(x_,y )+n_/nd (x

con con’ ycon)



