DATA MINING 2 Performance Evaluation

Riccardo Guidotti

a.a. 2020/2021

Slides edited from Tan, Steinbach, Kumar, Introduction to Data Mining

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.

• Confusion Matrix:

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL CLASS	Class=Yes	а	b			
	Class=No	С	d			

a: TP (true positive)

- b: FN (false negative)
- c: FP (false positive)
- d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)		
	Class=No	c (FP)	d (TN)		

Most widely-used metric:

$$Accuracy = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS				
	C(i j)	Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)		
	Class=No	C(Yes No)	C(No No)		

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS				
	C(i j)	+	-		
ACTUAL CLASS	+	-1	100		
ULAGO		1	0		

Model M ₁	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	150	40	
OLAOO		60	250	

Model M ₂	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	250	45	
OLAOO	-	5	200	

Accuracy =
$$80\%$$

Cost = 3910

Accuracy = 90% Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL CLASS	Class=Yes	а	b			
	Class=No	С	d			

Cost	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	р	q		
	Class=No	q	р		

Accuracy is proportional to cost if 1 - C(Vac|Na) = C(Na|Na) = C(Na) = C(

1. C(Yes|No)=C(No|Yes) = q 2. C(Yes|Yes)=C(No|No) = p

N = a + b + c + d

Accuracy = (a + d)/N

Cost-Sensitive Measures

Precision (p) =
$$\frac{TP}{TP + FP}$$

Recall (r) = $\frac{TP}{TP + FN}$
F-measure (F) = $\frac{2rp}{r + p} = \frac{2TP}{2TP + FN + FP}$

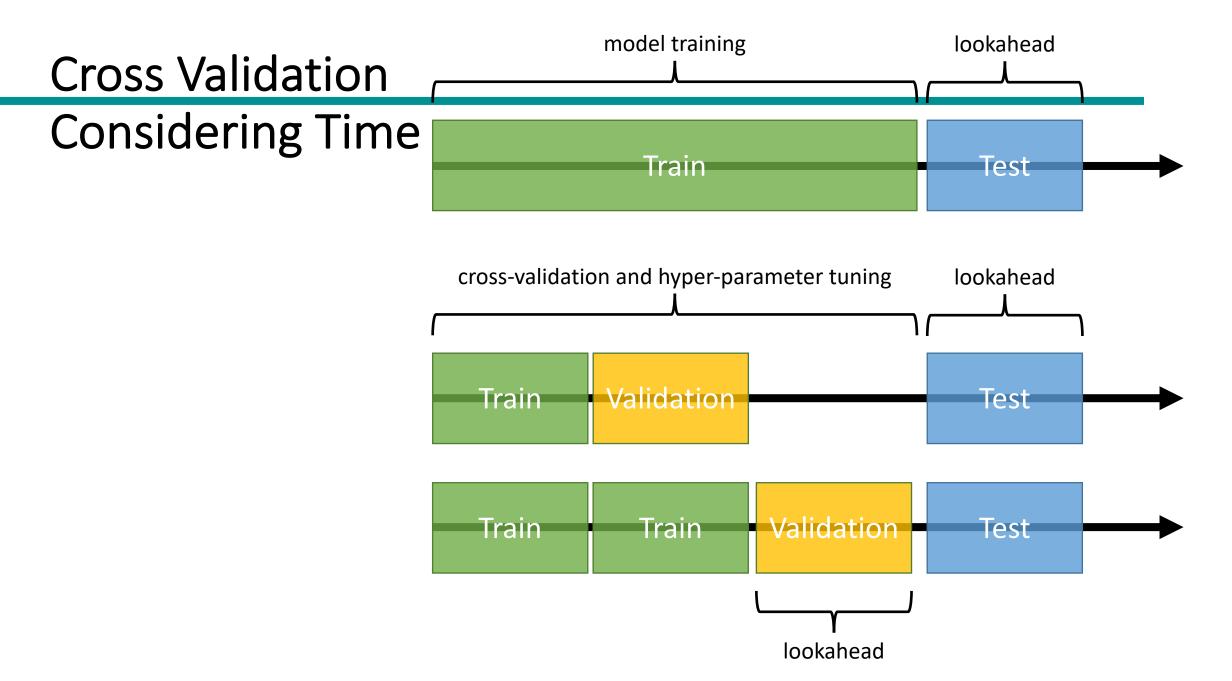
- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Data Partitioning

Datase	t		
Train	Test	Holdout (e.g.70/30)	
Train the model for final testing			
Train	Validation	Test	
Train the model for parameter selection	Validate the model (early stopping, parameter selection, etc.)	 Test the model Compare difference models once parameters hav been selected 	
Cross Validation (shock potential data)		Test	

Cross Validation (check potential dataset bias)

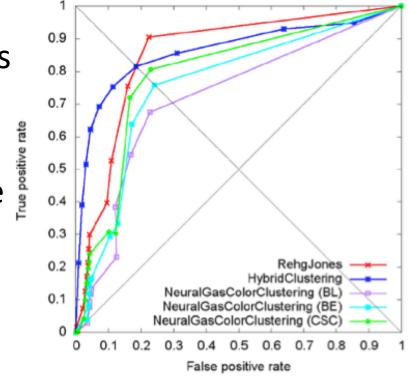


ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

Receiver Operating Characteristic Curve

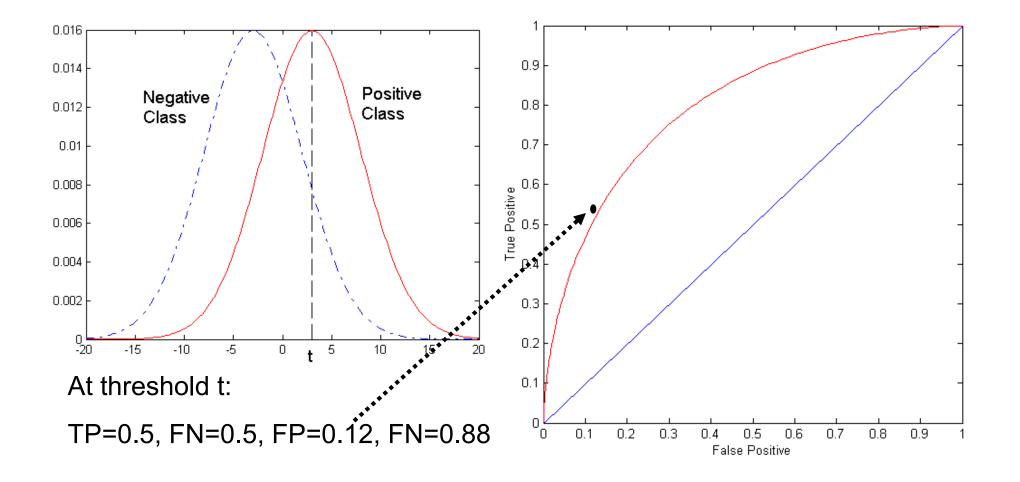
- It illustrates the ability of a binary classifier as its discrimination threshold THR is varied.
- The *ROC* curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various THR.
- The TPR = TP / (TP + FN) is also known as sensitivity, recall or probability of detection.
- The FPR = FP / (TN + FP) is also known as probability of *false alarm* and can be calculated as (1 – specificity).



ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)

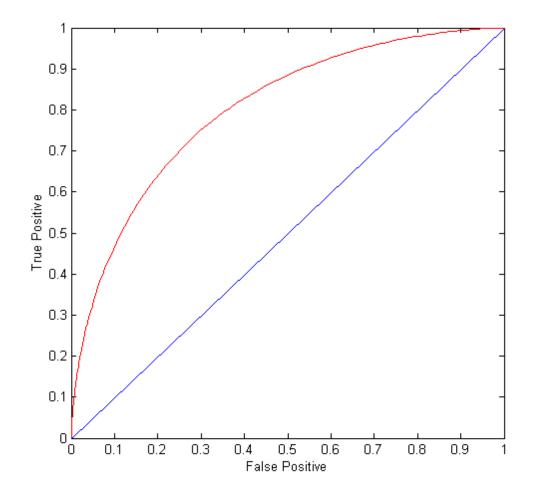
- any points located at x > t is classified as positive



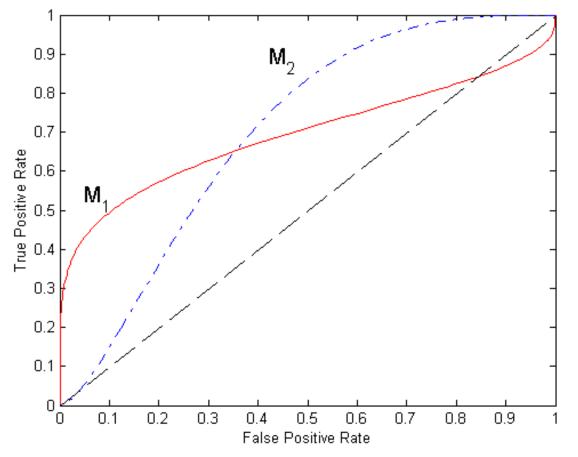
ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (0,1): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class



Using ROC for Model Comparison



- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC curve

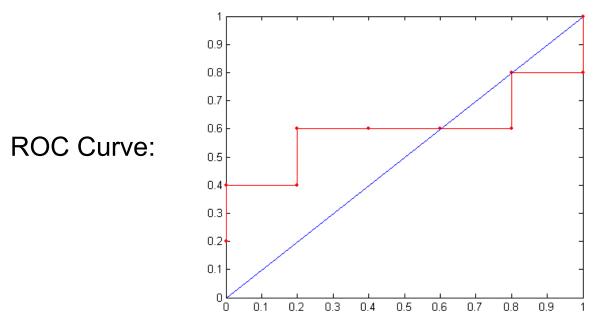
Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

• Use classifier that produces posterior probability for each test instance P(+|A)

- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	ТР	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
\rightarrow	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
\rightarrow	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0



- The lift curve is a popular technique in direct marketing.
- The input is a dataset that has been "scored" by appending to each case the estimated probability that it will belong to a given class.
- The cumulative *lift chart* (also called *gains chart*) is constructed with the cumulative number of cases (descending order of probability) on the x-axis and the cumulative number of true positives on the y-axis.
- The dashed line is a reference line. For any given number of cases (the x-axis value), it represents the expected number of positives we would predict if we did not have a model but simply selected cases at random. It provides a benchmark against which we can see performance of the model.

Notice: "Lift chart" is a rather general term, often used to identify also other kinds of plots. Don't get confused!

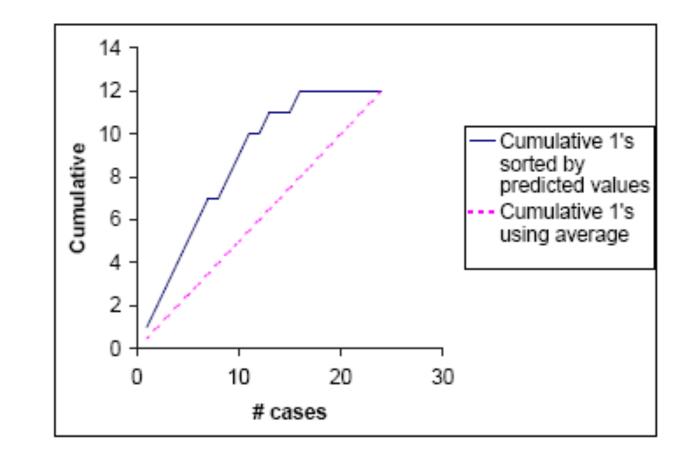
Lift Chart – Example

 Serial no.
 Predicted prob of 1
 Actual Class
 Cumulative Actual class

 1
 0.995976726
 1
 1

 2
 0.987533139
 1
 2

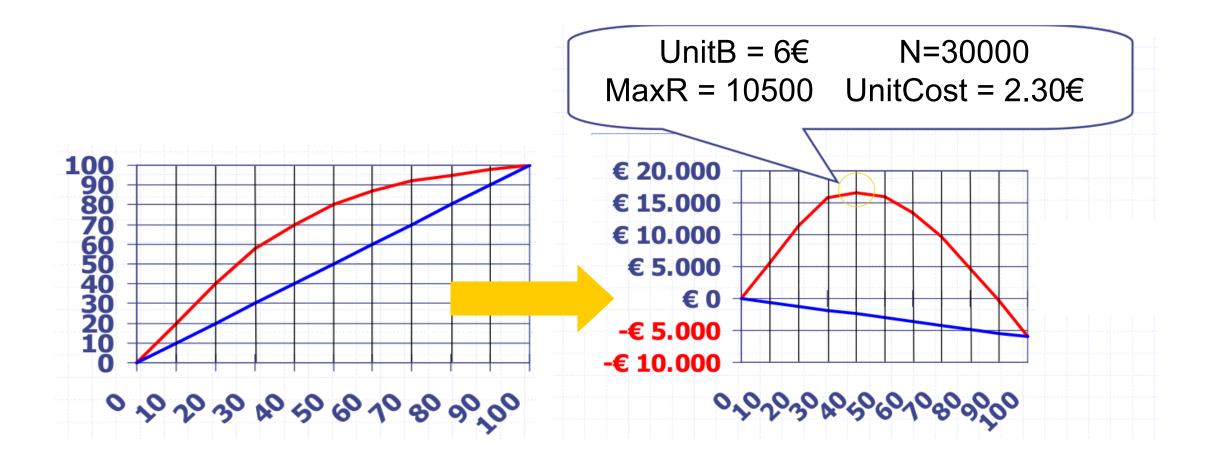
2	0.987533139	1	
3	0.984456382	1	
4	0.980439587	1	
5	0.948110638	1	
6	0.889297203	1	
7	0.847631864	1	
8	0.762806287	0	
9	0.706991915	1	
10	0.680754087	1	
11	0.656343749	1	
12	0.622419543	0	
13	0.505506928	1	
14	0.47134045	0	
15	0.337117362	0	
16	0.21796781	1	
17	0.199240432	0	
18	0.149482655	0	
19	0.047962588	0	
20	0.038341401	0	
21	0.024850999	0	
22	0.021806029	0	
23	0.016129906	0	
24	0.003559986	0	



Lift Chart – Application Example

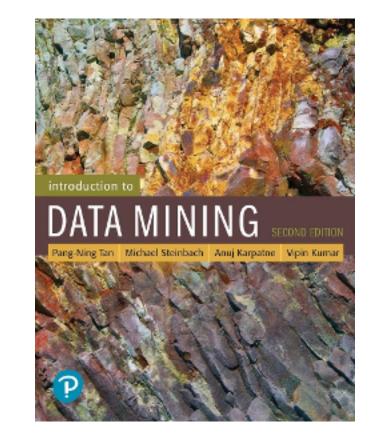
- From Lift chart we can easily derive an "economical value" plot, e.g. in target marketing.
- Given our predictive model, how many customers should we target to maximize income?
- Profit = UnitB*MaxR*Lift(X) UnitCost*N*X/100
- UnitB = unit benefit, UnitCost = unit postal cost
- N = total customers
- MaxR = expected potential respondents in all population (N)
- Lift(X) = lift chart value for X, in [0,..,1]

Lift Chart – Application Example



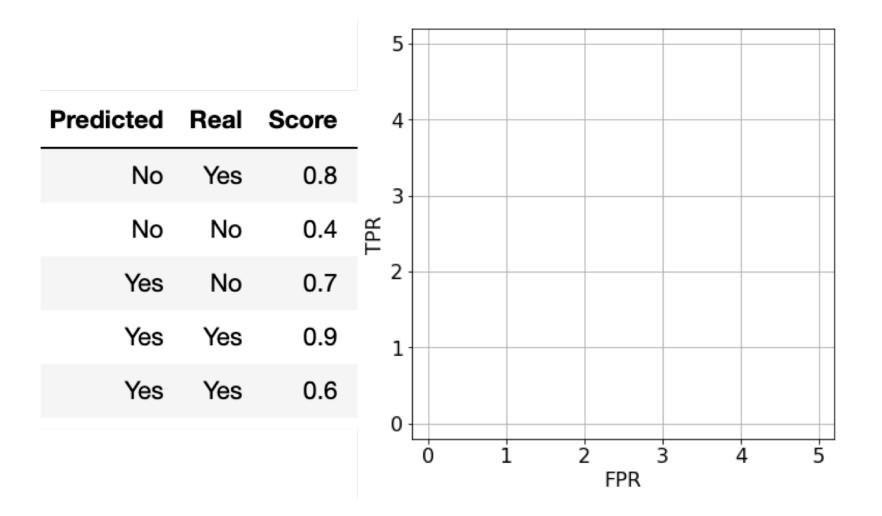
References

• Chapter 3. Classification: Basic Concepts and Techniques.

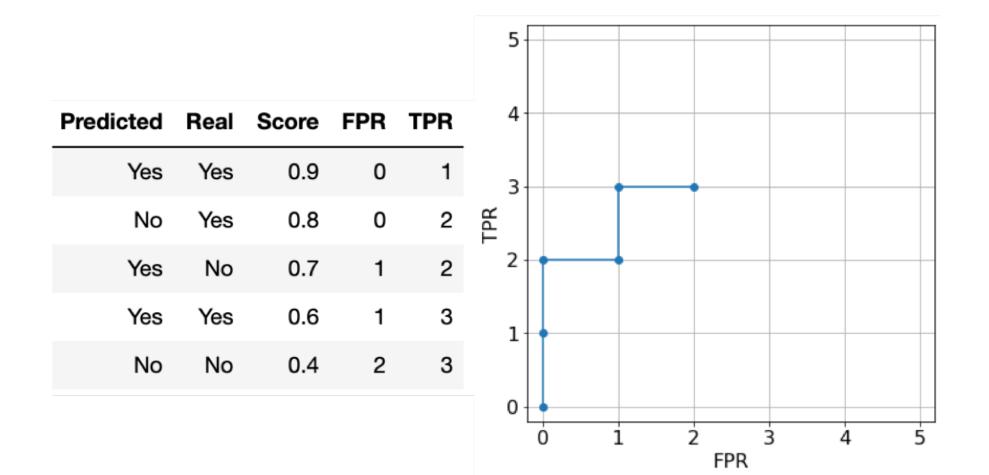


Exercises – ROC & Lift Chart

ROC Exercise



ROC Exercise Solution



Lift Exercise

Lift Exercise Solution

