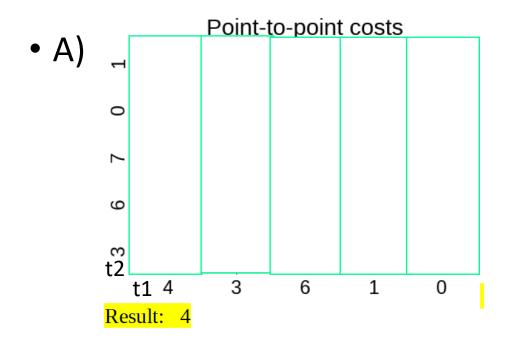
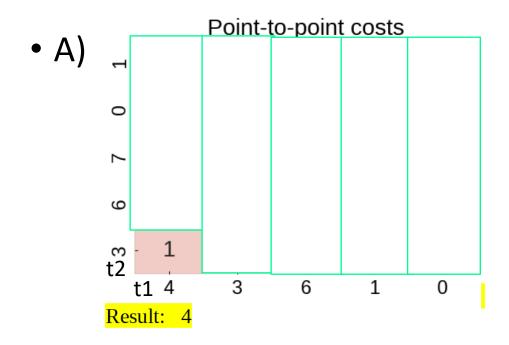
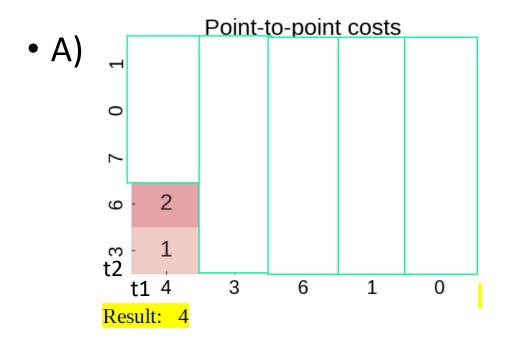
DATA MINING 2 Exercises – Time Series

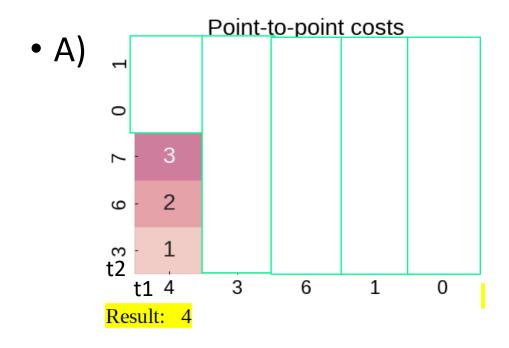
Riccardo Guidotti

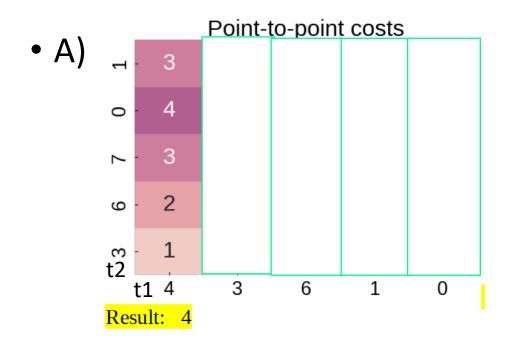
a.a. 2019/2020

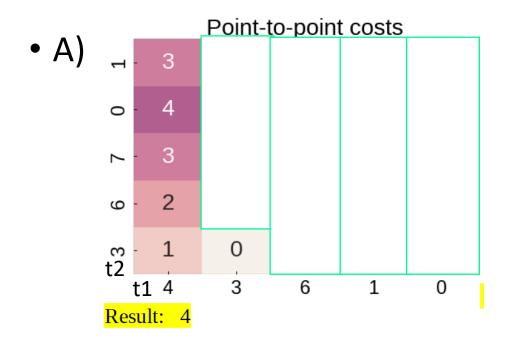

Dynamic Time Warping

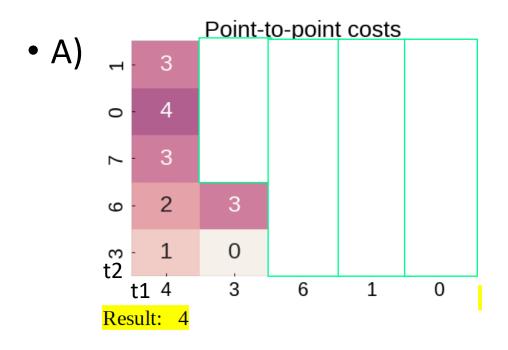

DTW – Exercise 1

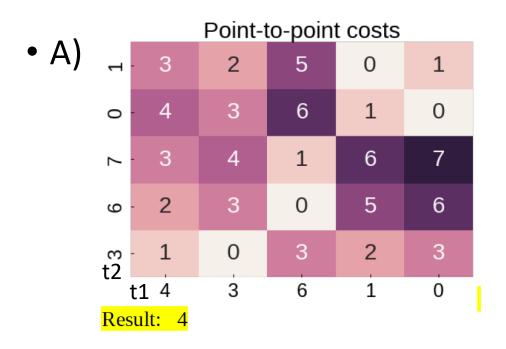

• Given the following input time series:

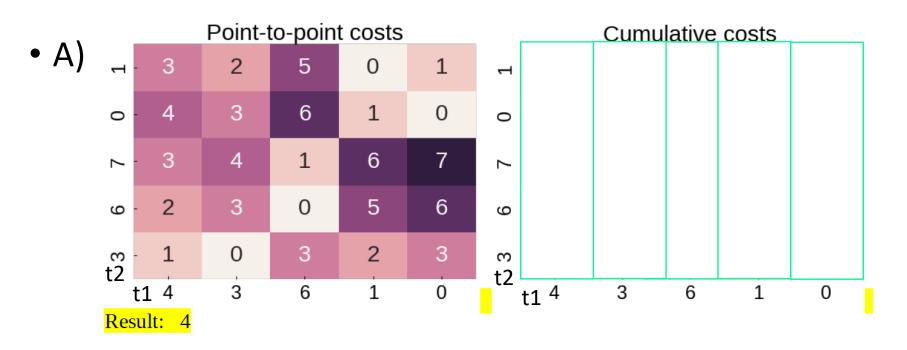

- A) Compute the distance between "t1" and "t2", using the DTW with distance between points computed as d(x,y) = |x y|.
- B) If we repeat the computation of point (A) above, this time with a Sakoe-Chiba band of size r=1, does the result change? Why?
- C) If we compute DTW(T1,T2), where T1 is equal to t1 in reverse order (namely T1=<0,1,6,3,4>) and similarly for T2 (namely T2=<1,0,7,6,3>), is it true that DTW(T1,T2) = DTW(t1,t2)? Discuss the problem without providing any computation.

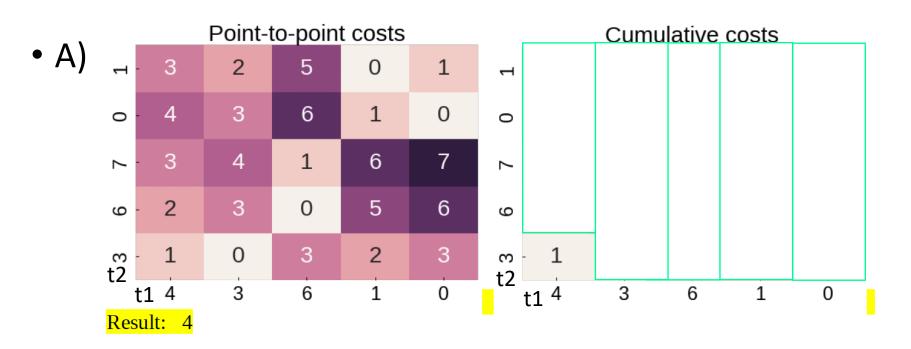

t1	< 4, 3, 6, 1, 0 >
t2	< 3, 6, 7, 0, 1 >

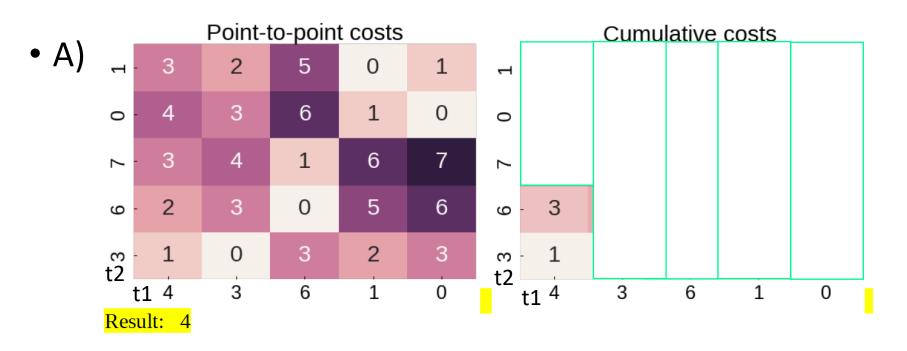


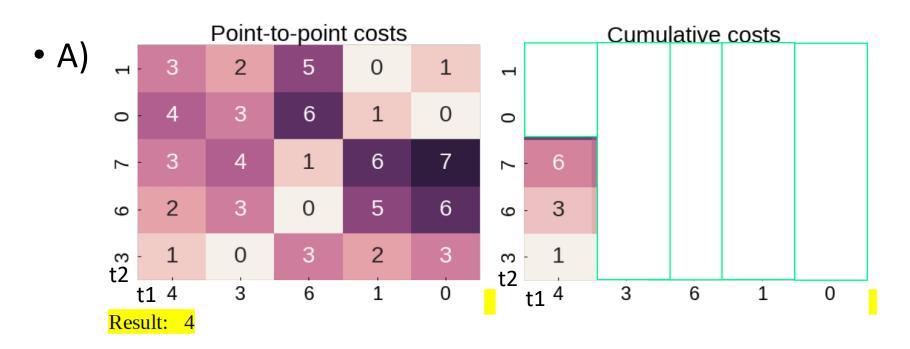


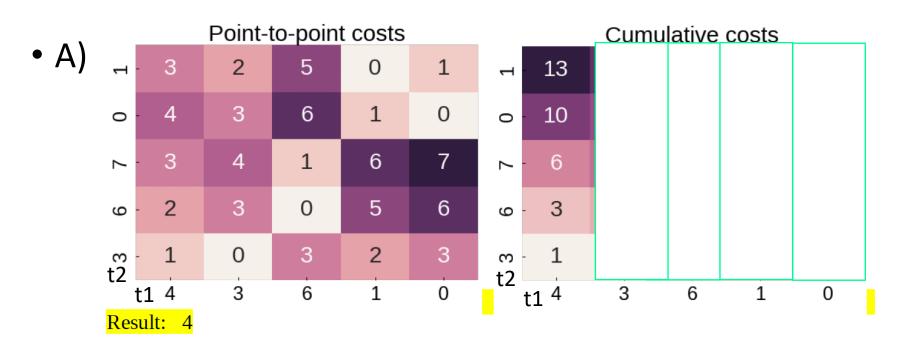


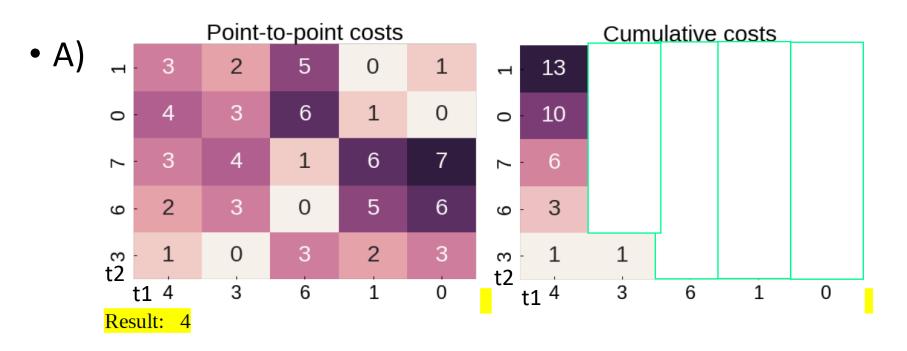


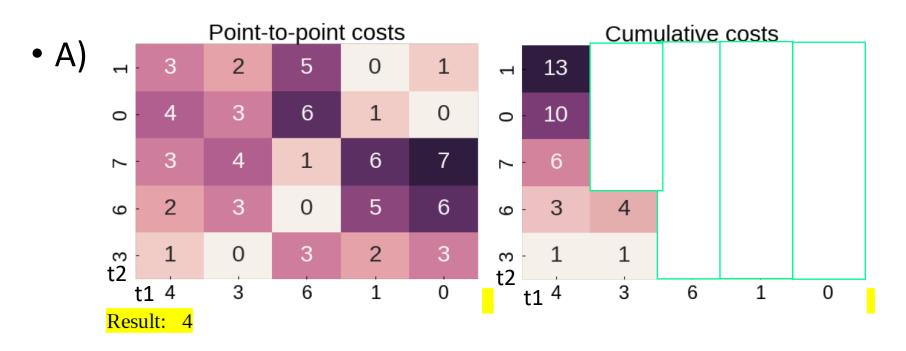


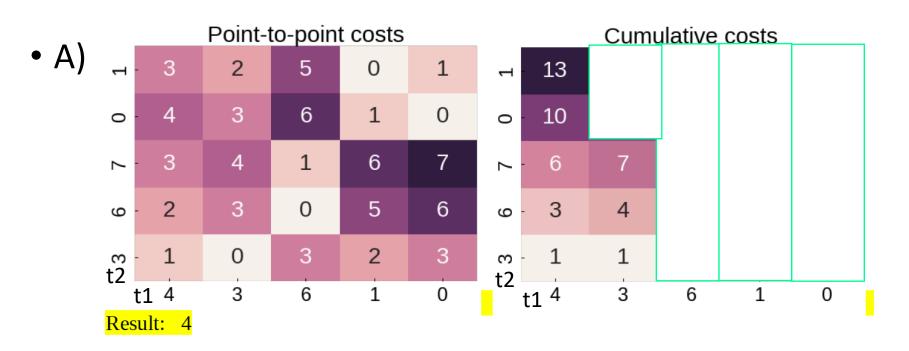


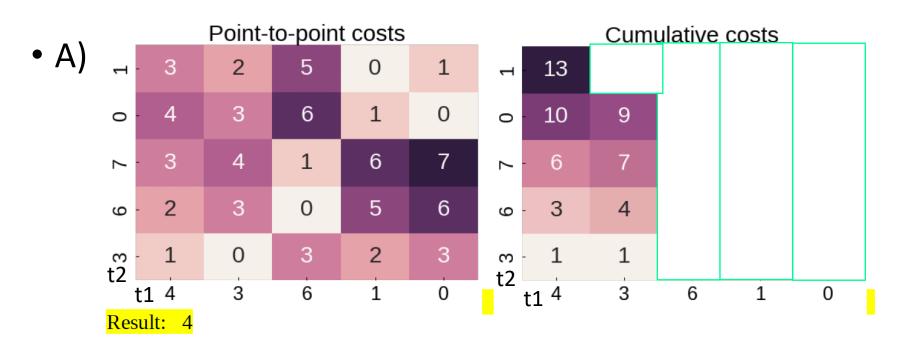

$$\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$$

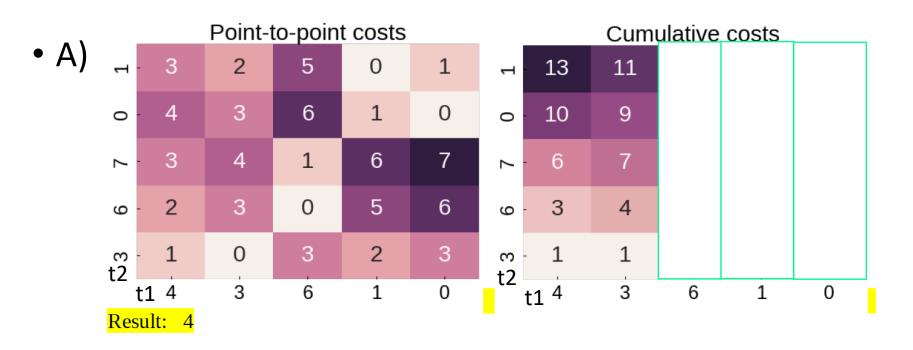

$$\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$$

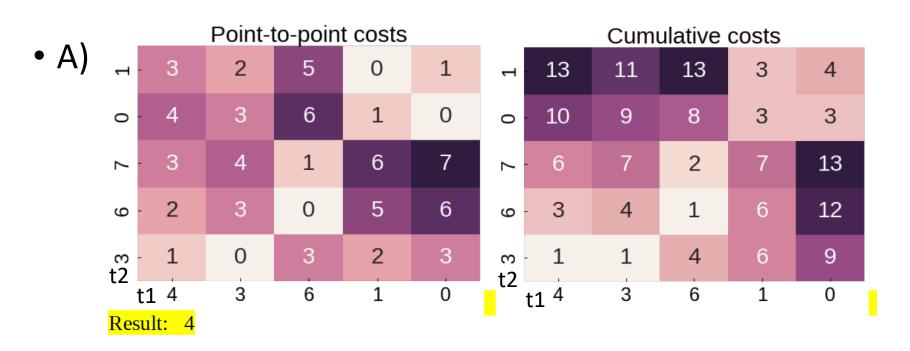

$$\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$$

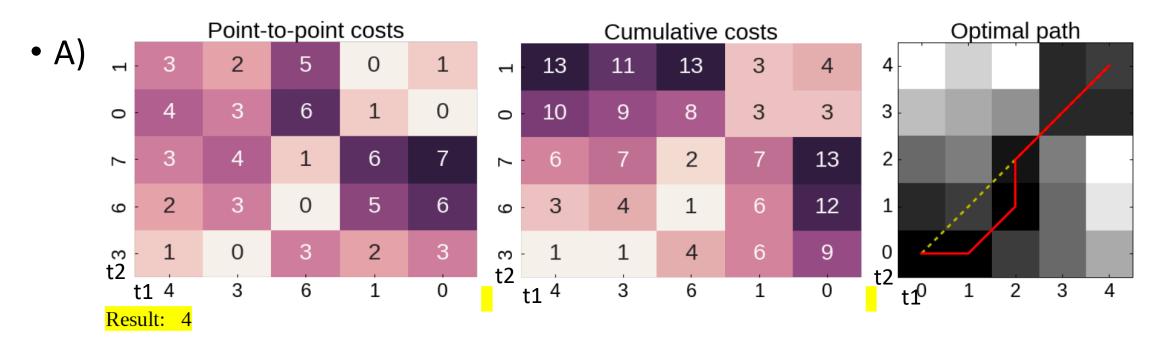

$$\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$$


$$\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$$


$$\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$$


$$\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$$


$$\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$$

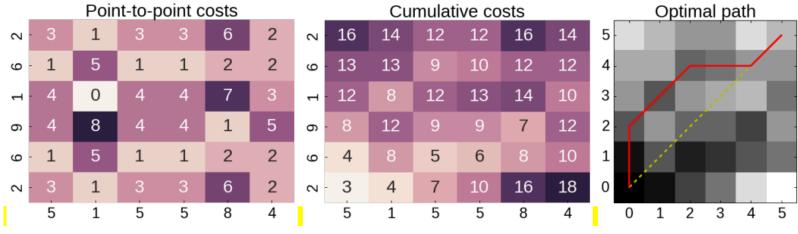

$$\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$$

$$\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$$

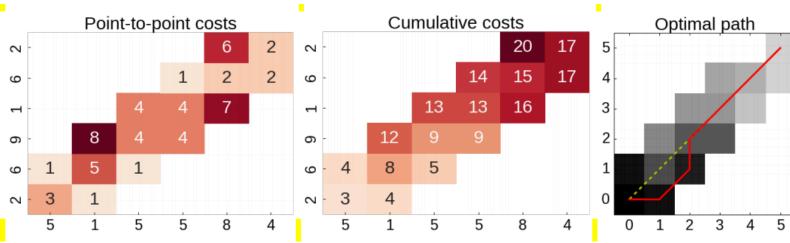
$$\gamma(i,j) = d(q_i,c_j) + \min\{\gamma(i-1,j-1), \gamma(i-1,j), \gamma(i,j-1)\}$$

- B) No. Because the DTW optimal path remains inside the band of size r=1
- C) Yes. The optimal path in one direction is the same in the opposite direction. Though, the cumulative costs matrix might look different.

DTW – Exercise 2


• Given the following time series:

compute


- (i) their Manhattan and Euclidean distance,
- (ii) their DTW, and (iii) their DTW with Sakoe-Chiba band of size r=1 (i.e. all cells at distance <= 1 from the diagonal are allowed).
- For points (ii) and (iii) show the cost matrix and the optimal path found.

• Euclidean = sqrt(74) = 8.6, Manhattan = 20

• DTW = 14

• DTW r=1 = 17

DTW – Exercise 3

• Given the following time series:

ID	Time series
W	< 6, 11, 13, 15 >
X	< 10, 7, 7, 12, 14, 17 >
Υ	< 9, 11, 14, 13, 20 >

• Compute the distances among all pairs of time series adopting a Dynamic Time Warping distance, and computing the distances between single points as d(x,y) = |x - y|. For each pair of time series compared also show the matrix used to compute the final result.

ID	Time series
W	< 6, 11, 13, 15 >
X	< 10, 7, 7, 12, 14, 17 >
Υ	< 9, 11, 14, 13, 20 >

١	N	_	X

Г	1		1
L	_	,	_

[2,] [3,]

[4,]

[,1]	[,2]			[,3]		[,4]		[,5]		[,6]	
	(4) 4	(1)	5	(1)	 6	(6)	12	(8)	20	(11)	31
	(1) 5	(4)	8	(4)	9	(1)	7	(3)	10	(6)	16
	(3) 8	(5)	11	(5)	14	(1)	8	(1)	8	(4)	12
	(5) 13	(8)	16	(8)	19	(3)	11	(4)	9	(2)	10

W - Y

[1,]

[2,]

[3,]

[4,]

[,1]	[,2]			[,3]		[,4]		[,5]		
	(3)	3	(5)	8	(8)	16	(7)	23	(14)	37
	(2)	5	(0)	3	(3)	6	(2)	8	(9)	17
	(5)	9	(2)	5	(1)	4	(0)	4	(7)	11
	(6)	15	(4)	9	(1)	5	(2)	6	(5)	9

X - Y

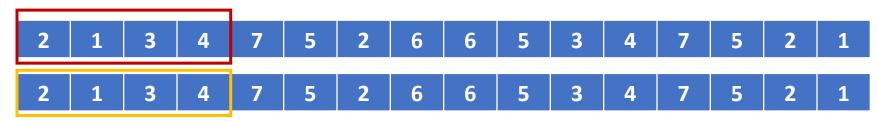
[1,]

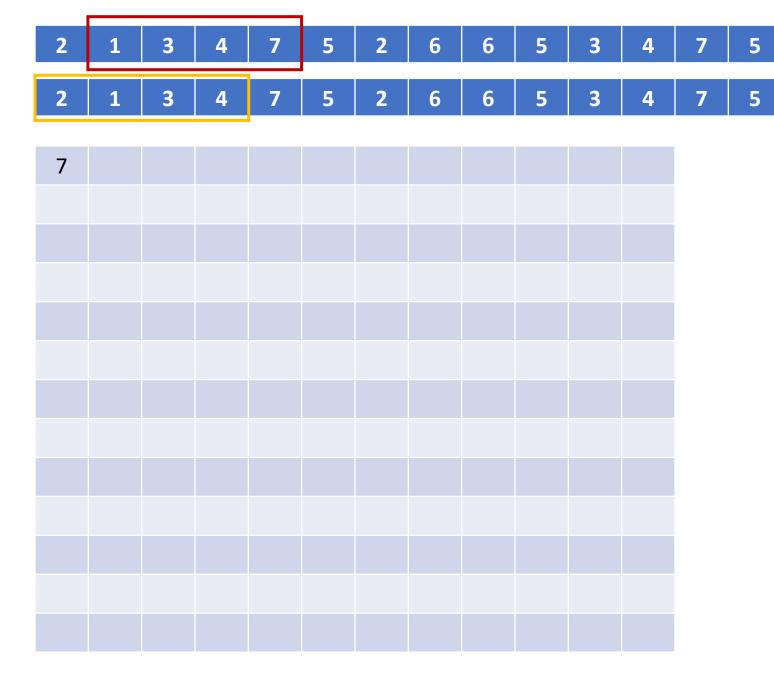
[3,]

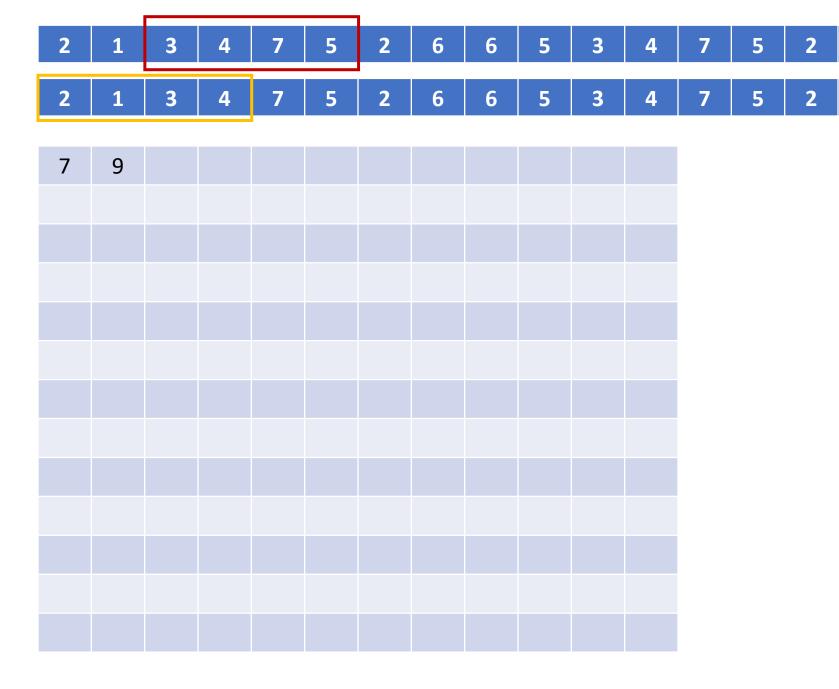
[5,]

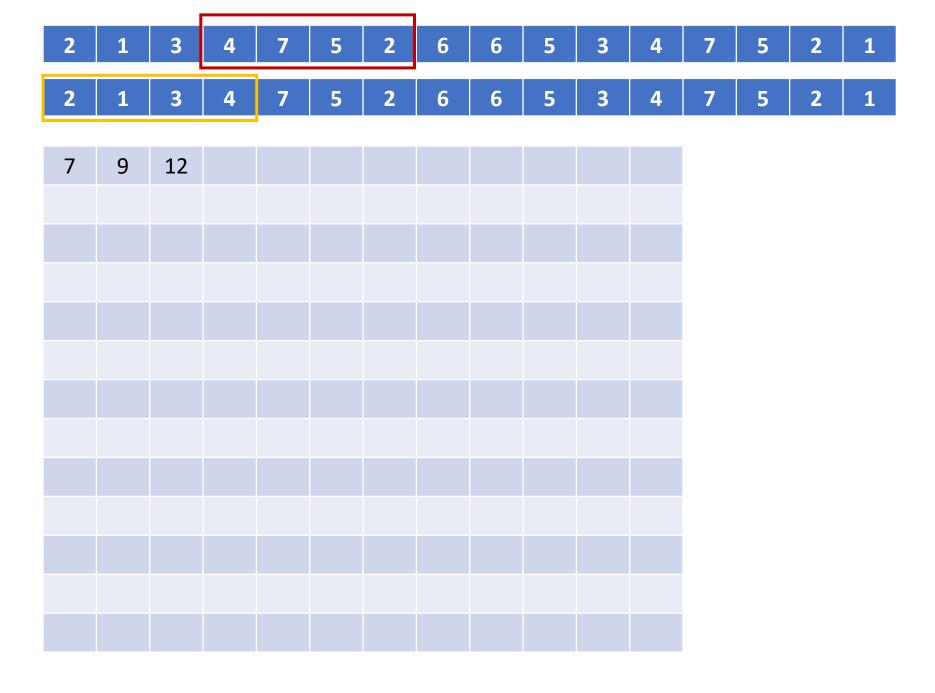
[6,]

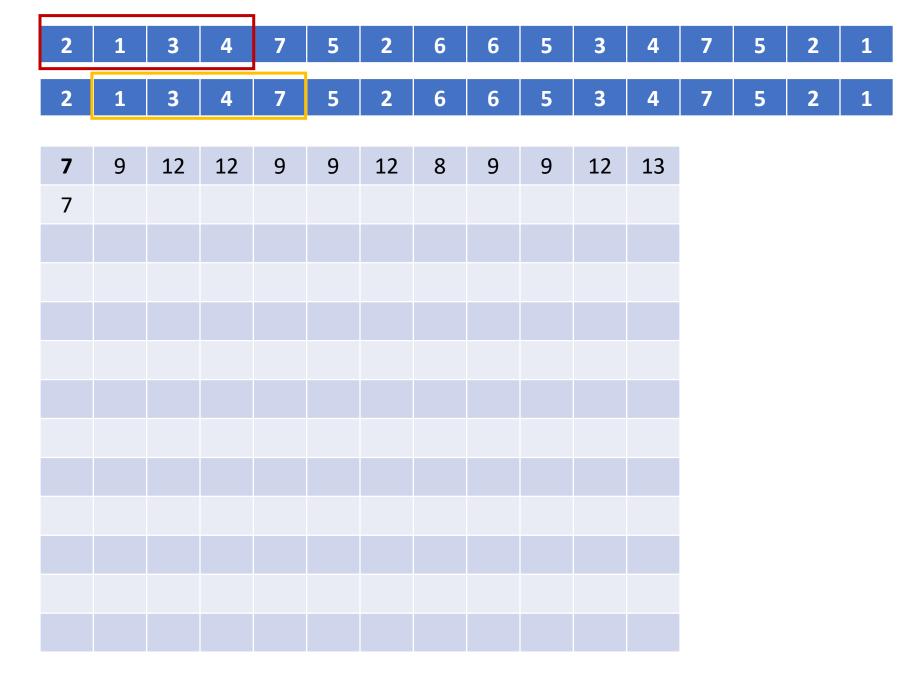
[,1]	ا	[,2]		[,3]		[,4]		[,5]		
(1)	1	(1)	2	(4)	6	(3)	9	(10)	19	
(2)	3	(4)	5	(7)	9	(6)	12	(13)	22	
(2)	5	(4)	7	(7)	12	(6)	15	(13)	25	
(3)	8	(1)	6	(2)	8	(1)	9	(8)	17	
(5)	13	(3)	9	(0)	6	(1)	7	(6)	13	
(8)	21	(6)	15	(3)	9	(4)	10	(3)	10	

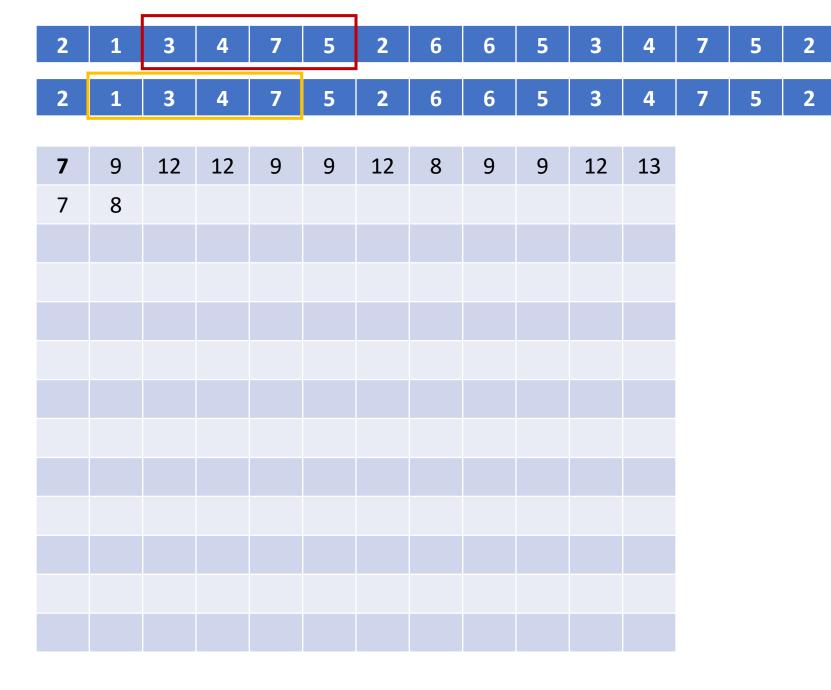

Matrix Profile

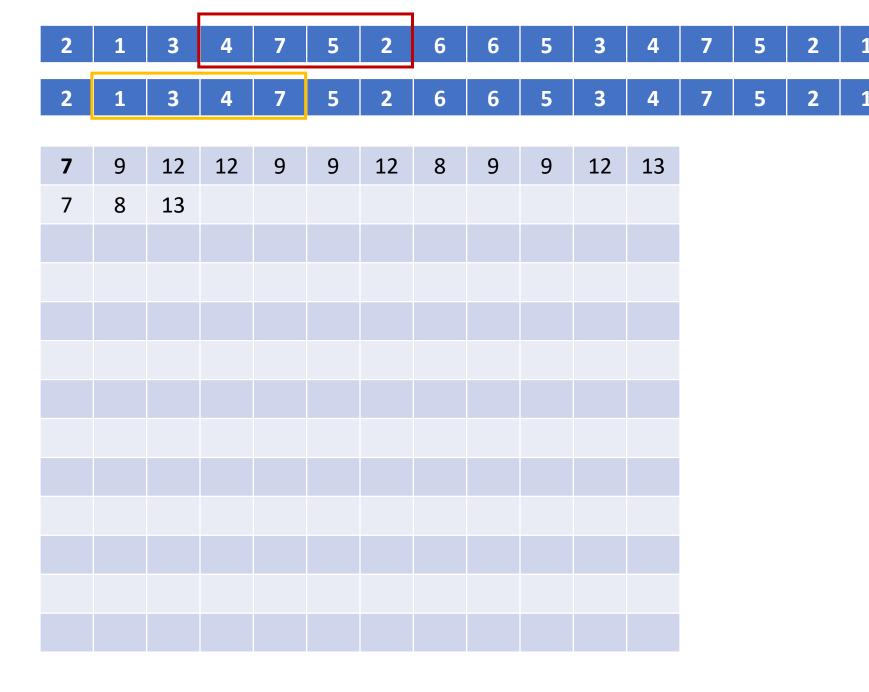

Matrix Profile


Given the TS $x = \langle 2,1,3,4,7,5,2,6,6,5,3,4,7,5,2,1 \rangle$ and the


- 1. Build the Matrix Profile for x with m=4 using the Manahttan distance as distance function between subsequences.
- 2. Draw the Matrix Profile
- 3. Identify the motifs with distance equals 0 and length equals to m
- 4. Which is a correct value for m that would have retrieved less motifs with distance equals to 0?



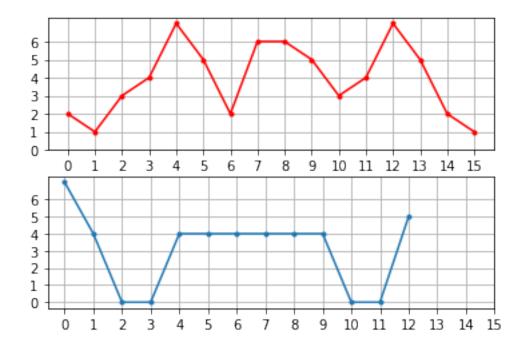




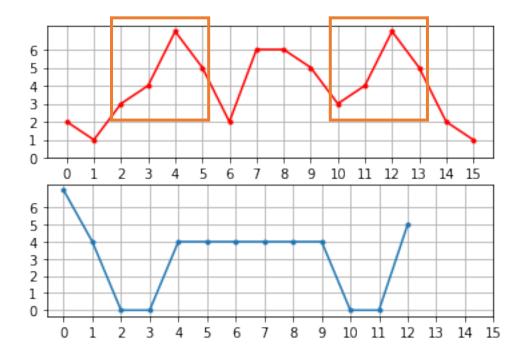
2	1	3	4	7	5	2	6	6	5	3	4	7	5	2	1
2	1	3	4	7	5	2	6	6	5	3	4	7	5	2	1
7	9	12	12	9	9	12	8	9	9	12	13				
,	3	12	12	3	3	12	J			12	13				

2	1	3	4	7	5	2	6	6	5	3	4	7	5	2	
2	1	3	4	7	5	2	6	6	5	3	4	7	5	2	
				•											
7	9	12	12	9	9	12	8	9	9	12	13				

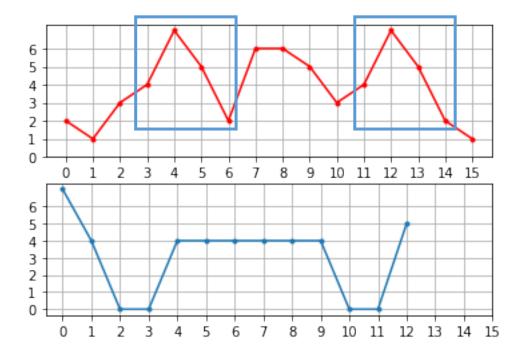
2	1	3	4	7	5	2	6	6	5	3	4	7	5	2	1
2	1	3	4	7	5	2	6	6	5	3	4	7	5	2	1
7	9	12	12	9	9	12	8	9	9	12	13				
7	8	13	11												
												l			

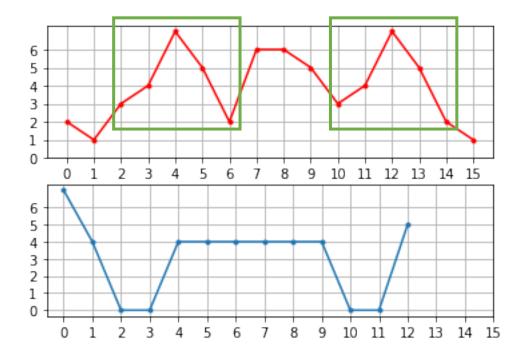

2	1	3	4	7	5	2	6	6	5	3	4	7
2	1	3	4	7	5	2	6	6	5	3	4	
7	9	12	12	9	9	12	8	9	9	12	13	
7	8	13	11	8	8	13	11	4	8	13	16	

2	1	3	4	7	5	2	6	6	5	3	4	7	5	2	1
2	1	3	4	7	5	2	6	6	5	3	4	7	5	2	1
												ı			
7	9	12	12	9	9	12	8	9	9	12	13				
7	8	13	11	8	8	13	11	4	8	13	16				

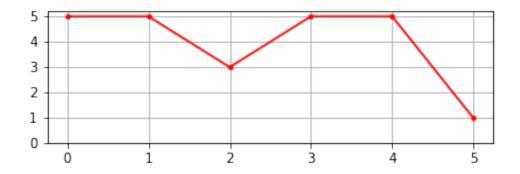

2	1	3	4	7	5	2	6	6	5	3	4	7	5	2	1
2	1	3	4	7	5	2	6	6	5	3	4	7	5	2	1
7	0	12	12	0	0	12	0	0	0	12	12				
7	9	12	12	9	9	12	8	9	9	12	13				
7	8	13	11	8	8	13	11	4	8	13	16				
9															

2	1	3	4	7	5	2	6	6	5	3	4	7	5	2	
2	1	3	4	7	5	2	6	6	5	3	4	7	5	2	
7	9	12	12	9	9	12	8	9	9	12	13				
7	8	13	11	8	8	13	11	4	8	13	16				
9	8	9	11	6	4	9	9	8	0						


- $x = \langle 2, 1, 3, 4, 7, 5, 2, 6, 6, 5, 3, 4, 7, 5, 2, 1 \rangle$
- mp = < 7, 4, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 5 >


- $x = \langle 2, 1, 3, 4, 7, 5, 2, 6, 6, 5, 3, 4, 7, 5, 2, 1 \rangle$
- mp = < 7, 4, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 5 >

- $x = \langle 2, 1, 3, 4, 7, 5, 2, 6, 6, 5, 3, 4, 7, 5, 2, 1 \rangle$
- mp = < 7, 4, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 5 >


- $x = \langle 2, 1, 3, 4, 7, 5, 2, 6, 6, 5, 3, 4, 7, 5, 2, 1 \rangle$
- mp = < 7, 4, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 5 >

with m = 5

Given the TS x = <5,5,3,5,5,1> and the

- 1. Build the Matrix Profile for x with m=2 using the Manahttan distance as distance function between subsequences.
- 2. Draw the Matrix Profile
- 3. Identify the motifs with distance equals 0 and length equals to m

