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K-Means



K-Means Clustering
• Partitional clustering approach 
• Number of clusters, K, must be specified
• Each cluster is associated with a centroid (center point) 
• Each point is assigned to the cluster with the closest centroid
• The basic algorithm is very simple



Example of K-Means Clustering
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Example of K-Means Clustering
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K-Means Clustering – Details
• Initial centroids are often chosen randomly.

• Clusters produced vary from one run to another.
• The centroid is (typically) the mean of the points in the cluster.
• ‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.
• K-means will converge for common similarity measures mentioned above.
• Most of the convergence happens in the first few iterations.

• Often the stopping condition is changed to ‘Until relatively few points change clusters’
• Complexity is O( n * K * I * d )

• n = number of points, K = number of clusters, 
I = number of iterations, d = number of attributes



Evaluating K-Means Clusters
• Most common measure is Sum of Squared Error (SSE)

• For each point, the error is the distance to the nearest cluster
• To get SSE, we square these errors and sum them.

• x is a data point in cluster Ci and mi is the representative point for cluster Ci 
• can show that mi corresponds to the center (mean) of the cluster

• Given two sets of clusters, we prefer the one with the smallest error
• One easy way to reduce SSE is to increase K, the number of clusters

• A good clustering with smaller K can have a lower SSE than a poor clustering 
with higher K
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Two different K-Means Clusterings
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Limitations of K-Means

• K-Means has problems when clusters are of differing 
• Sizes
• Densities
• Non-globular shapes

• K-Means has problems when the data contains outliers.



Limitations of K-Means: Differing Sizes

Original Points K-means (3 Clusters)



Overcoming K-Means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.



Limitations of K-Means: Differing Density

Original Points K-means (3 Clusters)



Overcoming K-Means Limitations

Original Points K-means Clusters



Limitations of K-Means: Non-globular Shapes

Original Points K-means (2 Clusters)



Overcoming K-Means Limitations

Original Points K-means Clusters



Pre-processing and Post-processing

• Pre-processing
• Normalize the data
• Eliminate outliers

• Post-processing
• Eliminate small clusters that may represent outliers
• Split ‘loose’ clusters, i.e., clusters with relatively high SSE
• Merge clusters that are ‘close’ and that have relatively low SSE
• Can use these steps during the clustering process

• ISODATA



Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids …
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Importance of Choosing Initial Centroids …
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters



10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other 
have only one.
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

• Multiple runs
• Helps, but probability is not on your side

• Sample and use hierarchical clustering to determine initial centroids
• Select more than k initial centroids and then select among these initial centroids

• Select most widely separated

• Postprocessing
• Generate a larger number of clusters and then perform a hierarchical clustering
• Bisecting K-means

• Not as susceptible to initialization issues



K-Means Extensions

Bisecting K-Means



Bisecting K-means

• Variant of K-Means that can produce a hierarchical clustering
• The number of clusters K must be specified.
• Start with a unique cluster containing all the points.

2-Means

Select the cluster with the highest SSE to the list of clusters

Add the two clusters from the bisection to the list of clusters.



Bisecting K-means Limitations

• The algorithm can be also exhaustive and terminating at a singleton 
clusters if K is not specified.
• Terminating at singleton clusters 
• Is time consuming
• Singleton clusters are meaningless (i.e., over-splitting)
• Intermediate clusters are more likely to correspond to real classes

• Bisecting K-Means do not use any criterion for stopping bisections 
before singleton clusters are reached.



K-Means Extensions 

X-Means



Bayesian Information Criterion (BIC) 

• A strategy to stop the Bisecting algorithm 
when meaningful clusters are reached to 
avoid over-splitting.
• The BIC can be adopted as splitting 

criterion of a cluster in order to decide 
whether a cluster should split or no.
• BIC measures the improvement of the 

cluster structure between a cluster and its 
two children clusters.
• If the BIC of the parent is less than BIC of 

the children than we accept the bisection.

Two resulting
clusters:
BIC(K=2)=2245

1C Parent cluster:
BIC(K=1)=1980 

1C 2C

C



X-Means

For k in a given range [r1,rmax]: 
1. Improve Params: run K-Means with with the current k.
2. Improve Structure: recursively split each cluster in two (Bisecting 2-

Means) and use local BIC to decide to keep the split. Stop if the 
current structure does not respect local BIC or the number of 
clusters is higher than rmax.

3. Store the actual configuration with a global BIC calculated on the 
whole configuration

4. If k > rmax stop and return the best model w.r.t. the global BIC.



X-Means
1. K-means with k=3

2. Split each centroid in 2 children 
moved a distance proportional to 
the region size in opposite 
direction (random) 

3. Run 2-means in 
each region locally 4. Compare BIC of parent 

and children
4. Only centroids with 
higher BIC survives



BIC Formula in X-Means

• The  BIC score of a data collection is defined as (Kass and Wasserman, 1995):

• is the log-likelihood of the dataset D

• pj is a function of the number of independent parameters: centroids coordinates, 
variance estimation. 

• R is the number of points of a cluster, M is the number of dimensions

• Approximate the probability that the clustering in Mj is describing the real 
clusters in the data

BIC(M
j
)= l̂

j
D⎛
⎝
⎜

⎞
⎠
⎟−
p
j

2
logR

( )ĵl D



BIC Formula in X-Means

• Adjusted Log-likelihood of the model.
• The likelihood that the data is “explained by” the clusters according to the 

spherical-Gaussian assumption of K-Means

• Focusing on the set Dn of points which belong to centroid n

• It estimates how closely to the centroid are the points of the cluster.

BIC(M
j
)= l̂

j
D⎛
⎝
⎜

⎞
⎠
⎟−
p
j

2
logR



K-Means Origins 

Expectation Maximization



Model-based Clustering (probabilistic)

• In order to understand our data, we will assume that there is a 
generative process (a model) that creates/describes the data, and we 
will try to find the model that best fits the data.
• Models of different complexity can be defined, but we will assume that our 

model is a distribution from which data points are sampled
• Example: the data is the height of all people in Greece

• In most cases, a single distribution is not good enough to describe all 
data points: different parts of the data follow a different distribution
• Example: the data is the height of all people in Greece and China
• We need a mixture model
• Different distributions correspond to different clusters in the data.



Expectation Maximization Algorithm

• Initialize the values of the parameters in Θ to some random values
• Repeat until convergence
• E-Step: Given the parameters Θ estimate the membership probabilities P 𝐺! 𝑥"
• M-Step: Given the probabilities P 𝐺! 𝑥" , calculate the parameter values Θ that 

(in expectation) maximize the data likelihood

• Examples
• E-Step: Assignment of points to clusters 

• K-Means: hard assignment, EM: soft assignment
• M-Step: Parameters estimation

• K-Means: Computation of centroids, EM: Computation of the new model parameters



EM in K-Means

• Initialize the values of the parameters in Θ to some random values 
(randomly select the centroids) 
• Repeat until convergence
• E-Step: Given the parameters Θ (given the centroids) estimate the 

membership probabilities P 𝐺! 𝑥" (assign points to clusters based on 
distances with the centroids)
• M-Step: Given the probabilities P 𝐺! 𝑥" (given the membership of points to 

clusters, i.e., 100% probability of belonging to a cluster) calculate the 
parameter values Θ that (in expectation) maximize the data likelihood 
(calculate the new centroids as mean values, i.e., those that minimize the 
distances with the other points in the cluster)

centroids



Expectation Maximization Algorithm



K-Means Brother 

K-Modes



K-Modes

• X = { X1 ,…, Xn } is the dataset of objects.
• Xi = [ x1 ,…, xm ] is an object i.e., a vector of m categorical attributes 

• W is a matrix n × k, with wi,l equal to 1 if Xi belongs to Cluster l, 0 otherwise.
• Q = { Q1 ,…, Qk } is the set of representative objects (mode) for the k clusters.

• d( Xi , Ql ) is a distance function for objects in the data



K-Modes: Distance

• K-Means as distance uses 
Euclidean distance 

• K-Modes as distance uses the 
number of mismatches between 
the attributes of two objects.

d(X,Y ) = (xi − yi )
2

i=1

m

∑



K-Modes: Mode

• K-Modes uses the mode as representative object of a cluster
• Given the set of objects in the cluster Cl the mode is get computing 

the max frequency for each attribute

n
n

XcAf klc
ljljr

,)|( , ==



K-Modes: Algorithm

1. Randomly select the initial objects as modes
2. Scan of the data to assign each object to the 

closer cluster identified by the mode 
3. Re-compute the mode of each cluster 
4. Repeat the steps 2 and 3 until no object 

changes the assigned cluster



K-Means Brother 

Mixture Gaussian Model



Gaussian Distribution

• Example: the data is the height of all people in Greece
• Experience has shown that this data follows a 

Gaussian (Normal) distribution



Mixture Gaussian Model

• What is a model?
• A Gaussian distribution is defined by the mean 𝜇 and the standard deviation 𝜎
• We define our model as the pair of parameters 𝜃 = (𝜇, 𝜎)

• More generally, a model is defined as a vector of parameters 𝜃

• We want to find the normal distribution 𝑁(𝜇, 𝜎) that best fits our data
• Find the best values for 𝜇 and 𝜎
• But what does “best fit” mean?



Maximum Likelihood Estimation (MLE)
• Suppose that we have a vector 𝑋 = {𝑥!, … , 𝑥"} of values
• We want to fit a Gaussian model 𝑁(𝜇, 𝜎) to the data 
• Probability of observing a point 𝑥#

• Probability of observing all points (we assume independence)

• We want to find the parameters 𝜃 = (𝜇, 𝜎) that maximizes the 
probability 𝑃 𝑋 𝜃



Maximum Likelihood Estimation (MLE)

• The probability 𝑃 𝑋 𝜃 as a function of 𝜃 is the Likelihood function

• It is usually easier to work with the Log-Likelihood function

• Thus, the Maximum Likelihood Estimation for the Gaussian Model 
consists in finding the parameters 𝜇, 𝜎 that maximize 𝐿𝐿(𝜃)



Maximum Likelihood Estimation (MLE)

• Note: these are also the most likely parameters given the data.

• If we have no prior information about 𝜃, or 𝑋, then maximizing 
𝑃 𝜃 𝑋 is the same as maximizing 𝑃 𝑋 𝜃 .  



Mixture of Gaussians

• Suppose that you have the heights of people from Greece and China 
and the distribution looks like the figure below (dramatization)



Mixture of Gaussians

• In this case the data is the result of the mixture of two Gaussians 
• One for Greek people, and one for Chinese people
• Identifying for each value which Gaussian is most likely to have generated it 

will give us a clustering.



Mixture Model

• A value 𝑥# is generated according to the 
following process:
• First select the nationality
• With probability 𝜋#select Greek, with 

probability 𝜋$ select China (𝜋# + 𝜋$ = 1)

• Given the nationality, generate the point 
from the corresponding Gaussian
• 𝑃 𝑥" 𝜃# ~𝑁(𝜇# , 𝜎#) if Greece
• 𝑃 𝑥" 𝜃$ ~𝑁(𝜇$ , 𝜎$) if China



Mixture Model

• Our model has the following parameters

• For value 𝑥!, we have:

• For all values 𝑋 = {𝑥%, … , 𝑥&}

• We want to estimate the parameters that maximize the Likelihood

Assign a point to a 
cluster. In K-Means they 
are the membership: 
hard assignment.

Describe a cluster. 
In K-Means they 
are the centroids.



Mixture Model

• Once we have the parameters 𝜃 = (𝜋$ , 𝜋% , 𝜇$ , 𝜎$ , 𝜇% , 𝜎%), 
we can estimate the membership probabilities 
𝑃(𝐺|𝑥#) and 𝑃(𝐶|𝑥#) for each point 𝑥#:

• This is the probability that point 𝑥# belongs to the Greek or 
the Chinese population (cluster)



Mixture of Gaussians as EM

• Initialize the values of the parameters in 𝜃 to some random values
• Repeat until convergence
• E-Step: Given the parameters Θ estimate the membership probabilities 
P 𝐺 𝑥" and P 𝐶 𝑥" .
• M-Step: Calculate the parameter values Θ that (in expectation) maximize the 

data likelihood.
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