DATA MINING 2 Exercises – Outliers Detection

Riccardo Guidotti

a.a. 2019/2020

Outlier Detection – Exercise 1

Given the dataset of 10 points below, consider the outlier detection problem for points A and B, adopting the following three methods:

a) Distance-based: DB(ϵ, Π) (2 points) Are A and/or B outliers, if thresholds are forced to $\epsilon = 2.5$ and $\Pi = 0.15$? The point itself should not be counted.

b) Density-based: LOF (2 points) Compute the LOF score for points A and B by taking k=2, i.e. comparing each point with its 2 NNs (not counting the point itself). In order to simplify the calculations, the reachability-distance used by LOF can be replaced by the simple Euclidean distance.

c) Depth-based (2 points) Compute the depth score of all points.

Outlier Detection – Exercise 1 – Solution

Distance-based

• No outliers because within their radius there are 0.4 and 0.5 points for A and B, respectively

Outlier Detection – Exercise 1 – Solution

Density-based

- LRD(A) = 1/ [(1 + 2)/2] = 0.666
- LRD(B) = $1/[(1 + \sqrt{2})/2] = 0.828$
- LRD(6) = 1/ [(2 + 2)/2] = 0.500
- LOF(A) = ([LRD(B) + LRD(6)]/2) / LRD(A) = [(0.828 + 0.500) / 2] / 0.666 = 1.003
- LRD(4) = $1/[(1 + \sqrt{2})/2] = 0.828$
- LOF(B) = ([LRD(A) + LRD(4)]/2) / LRD(B) = [(0.666 + 0.828) / 2] / 0.828 = 0.902
- Both are smaller or very close to 1, so they are most likely no outliers.

Outlier Detection – Exercise 1 – Solution

Depth-based

- A is an outlier for depth = 2
- For depth <= 1 neither A or B are outliers

Outlier Detection – Exercise 2

Given the dataset of 10 points below, consider the outlier detection problem for points A and B, adopting the following three methods:

a) Distance-based: DB(ϵ, π) (2 points) Are A and/or B outliers, if thresholds are forced to ϵ = 2.1 and π = 0.15? The point itself should not be counted.

b) Density-based: LOF (2 points) Compute the LOF score for points A and B by taking k=2, i.e. comparing each point with its 2 NNs (not counting the point itself). In order to simplify the calculations, the reachability-distance used by LOF can be replaced by the simple Euclidean distance.

c) Depth-based (2 points) Compute the depth score of all points. Are A and/or B outliers of depth 1?

Outlier Detection – Exercise 2 – Solution

Outlier Detection – Exercise 3

Given the dataset of 10 points below (A, B, 1, 2, ..., 8), consider the outlier detection problem for points A and B, adopting the following three methods:

a) Distance-based: DB(ε,π) (2 points) Are A and/or B outliers, if thresholds are forced to $\varepsilon = 2.5$ and $\pi = 0.3$? Show the density of the two points. (Notice: in computing the density of a point P, P itself should not be counted as neighbour).

b) Density-based: LOF (3 points) Compute the LOF score for points A and B by taking k=2, i.e. comparing each point with its 2-NNs (not counting the point itself). In order to simplify the calculations, the reachability-distance used by LOF can be replaced by the simple Euclidean distance.

c) Depth-based (1 points) Compute the depth score of all points.

