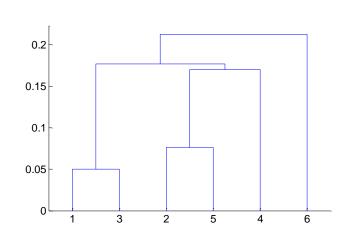
DATA MINING 1 Hierarchical Clustering

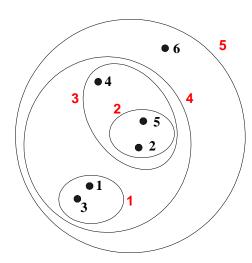
Dino Pedreschi, Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 7 "Introduction to Data Mining", 2nd Edition by Tan, Steinbach, Karpatne, Kumar

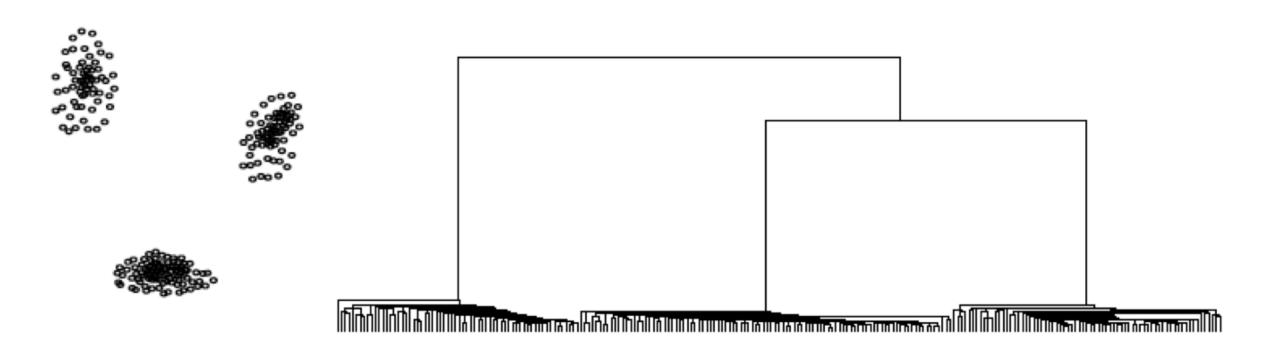
Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

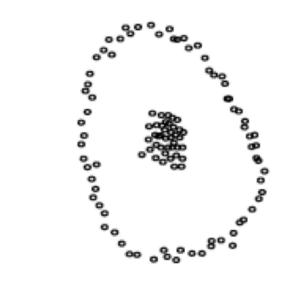


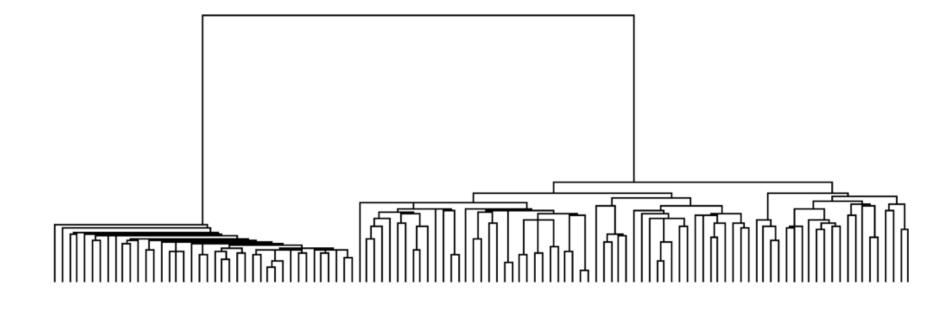


Dendrograms

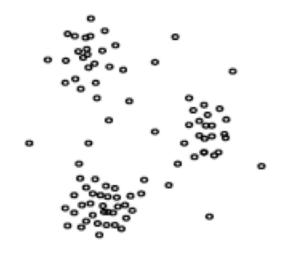


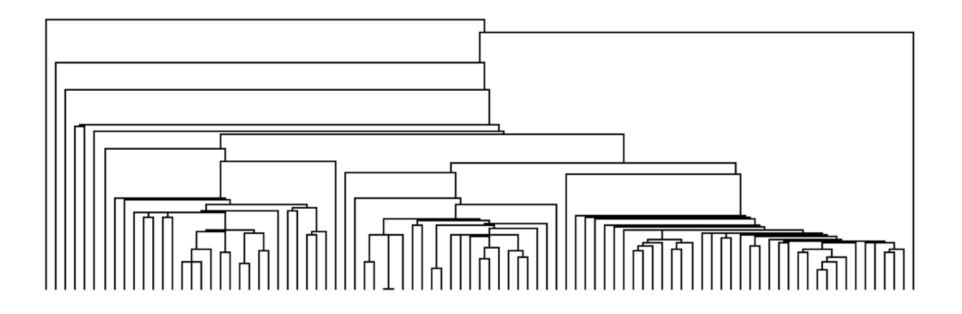
Dendrograms





Dendrograms





Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level

- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

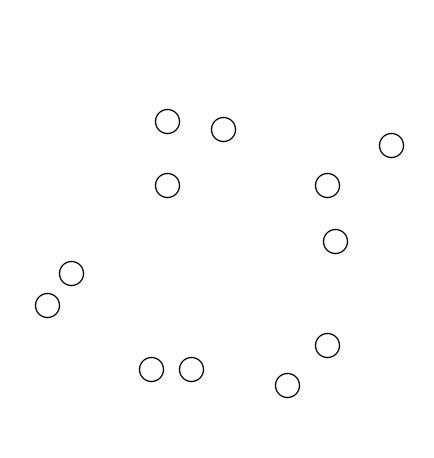
- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains an individual point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

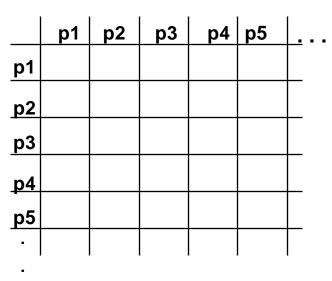
Agglomerative Clustering Algorithm

- Most popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

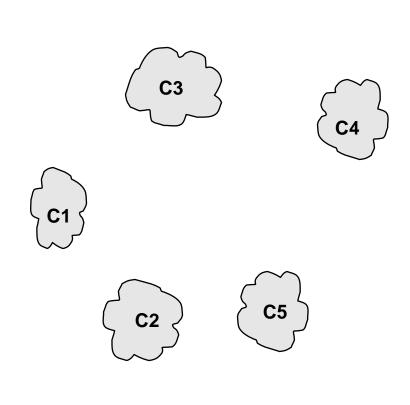
• Start with clusters of individual points and a proximity matrix

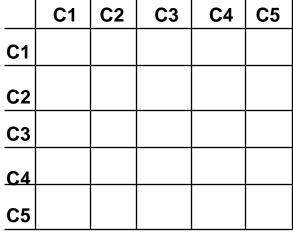




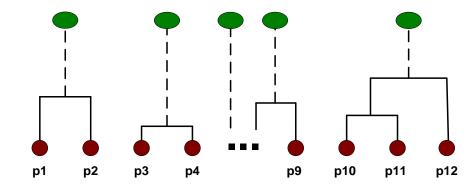
Intermediate Situation

After some merging steps, we have some clusters



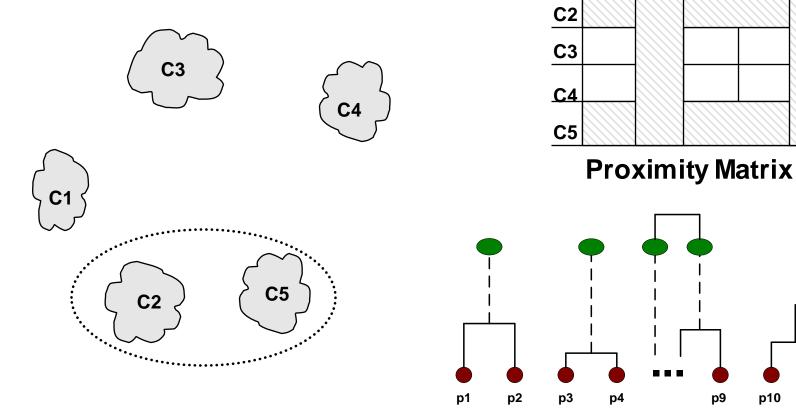


Proximity Matrix



Intermediate Situation

• We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.



C2

C1

C1

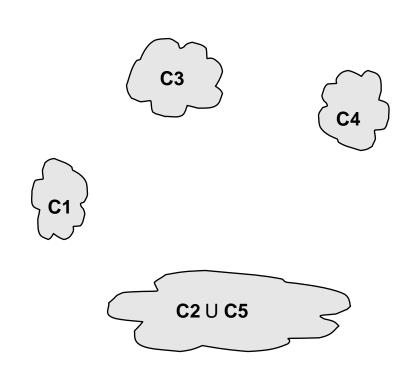
C5

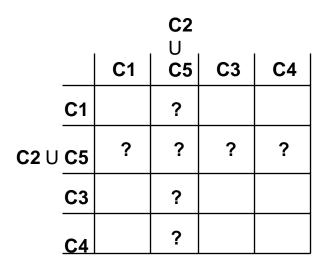
p12

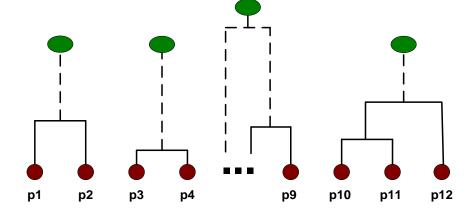
C4

After Merging

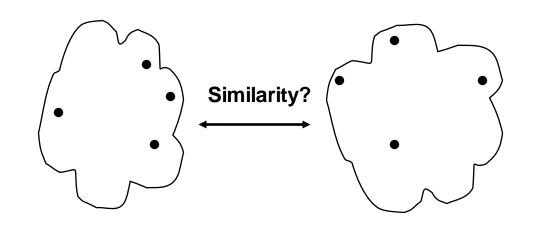
• The question is "How do we update the proximity matrix?"





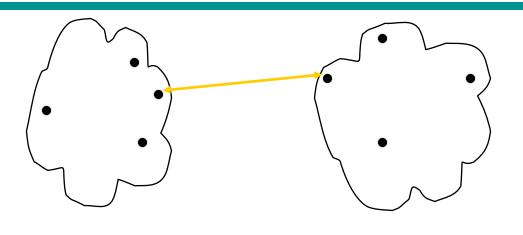


How to Define Inter-Cluster Distance



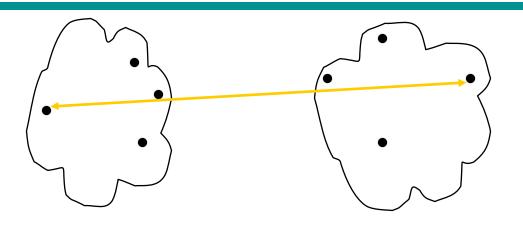
	р1	p2	р3	p4	p 5	
р1						
p2						
р3						
p4						
p5						
_						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



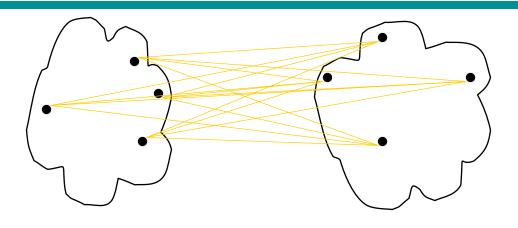
	p1	p2	р3	p4	p5	<u> </u>
р1						
p2						
р3						
p4						
p5						

- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



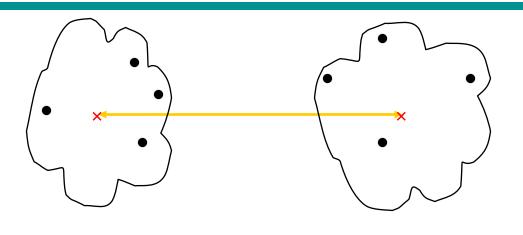
	p 1	p2	р3	p4	р5	<u> </u>
p1						
p2						
p2 p3						
p4						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
<u>р2</u> р3						_
p4						
p5						

- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

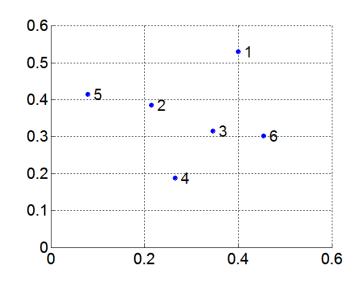


	p 1	p2	р3	p4	р5	L <u>.</u>
р1						
p2						
р3						
p4						
p5						

- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

MIN or Single Link

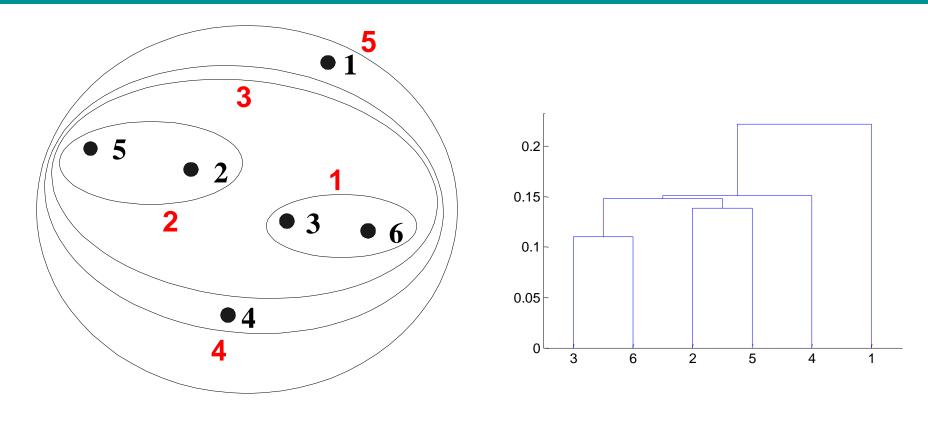
- Proximity of two clusters is based on the two closest points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph
- Example:



Distance Matrix:

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

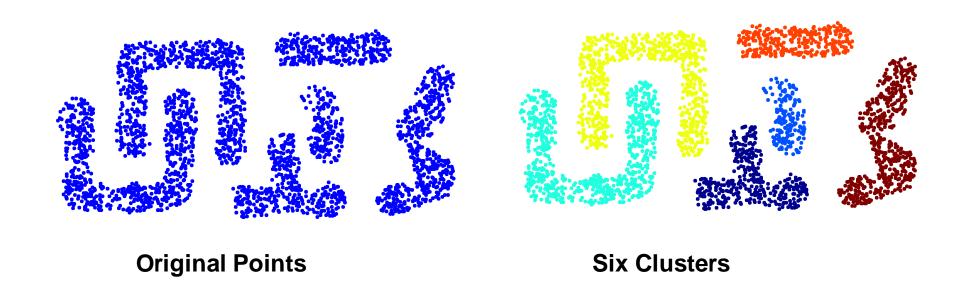
Hierarchical Clustering: MIN



Nested Clusters

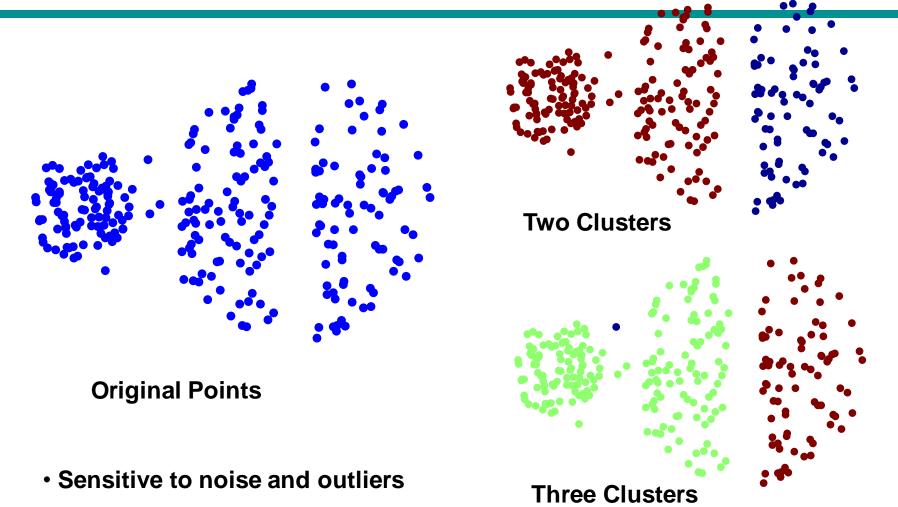
Dendrogram

Strength of MIN



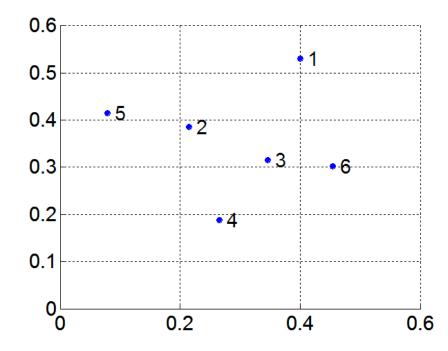
Can handle non-elliptical shapes

Limitations of MIN



MAX or Complete Linkage

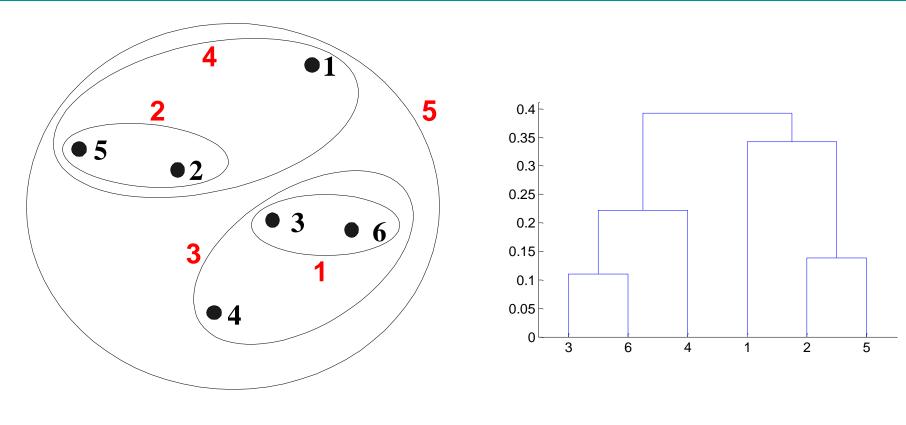
- Proximity of two clusters is based on the two most distant points in the different clusters
 - Determined by all pairs of points in the two clusters



Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

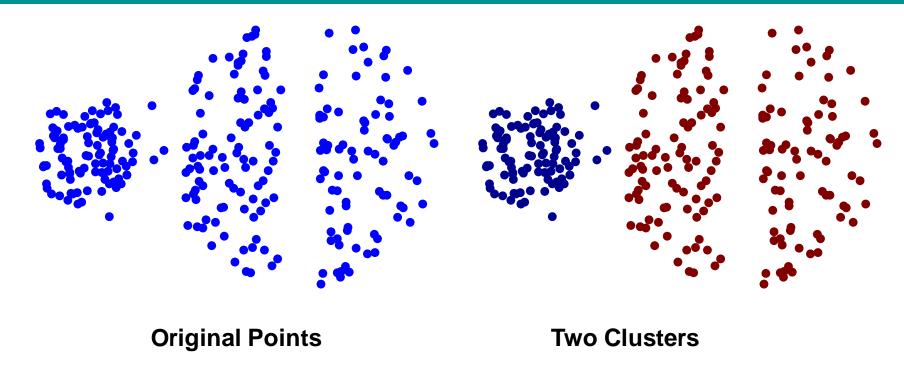
Hierarchical Clustering: MAX



Nested Clusters

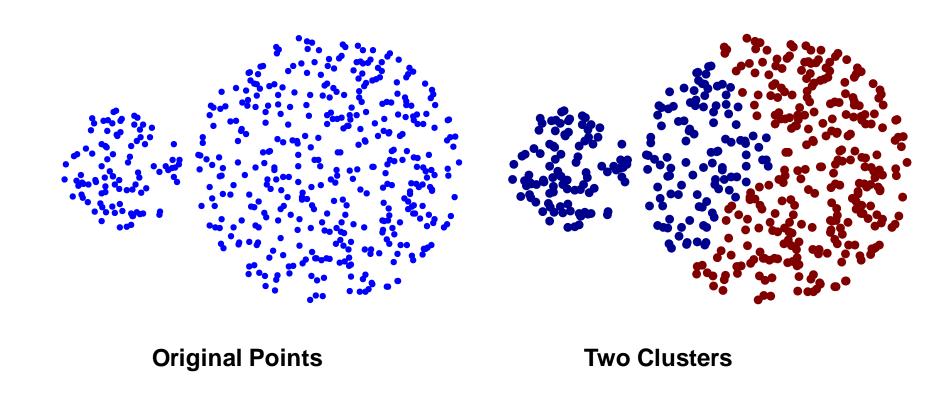
Dendrogram

Strength of MAX



Less susceptible to noise and outliers

Limitations of MAX



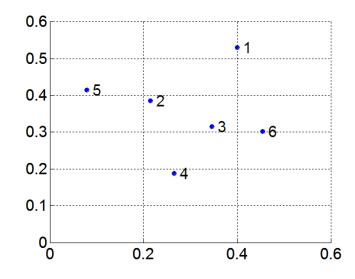
- Tends to break large clusters
- Biased towards globular clusters

Group Average

• Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{j}\\p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| \times |Cluster_{i}|}$$

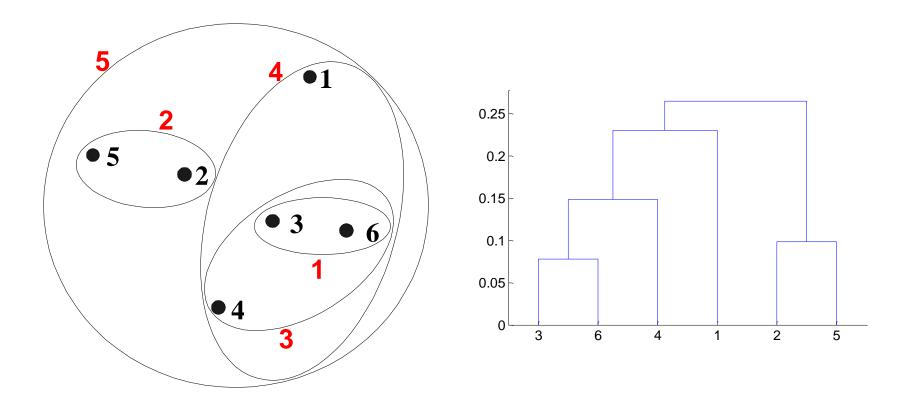
 Need to use average connectivity for scalability since total proximity favors large clusters



Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: Group Average



Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

Compromise between Single and Complete Link

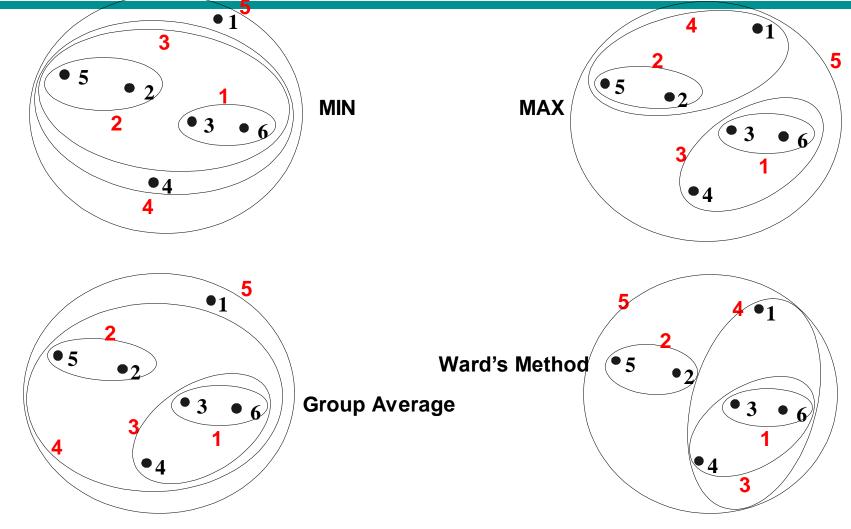
- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Comparison



References

• Clustering. Chapter 7. Introduction to Data Mining.

