
DATA MINING 2
Neural Networks
Riccardo Guidotti

a.a. 2019/2020

The Neuron Metaphor

• Neurons
• accept information from multiple inputs,
• transmit information to other neurons.

• Multiply inputs by weights along edges
• Apply some function to the set of inputs at each node

2

Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 -1
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 -1
0 1 0 -1
0 1 1 1
0 0 0 -1

X1

X2

X3

Y

Black box

Output

Input

Output Y is 1 if at least two of the three inputs are equal to 1.

Artificial Neural Networks (ANN)

X1 X2 X3 Y
1 0 0 -1
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 -1
0 1 0 -1
0 1 1 1
0 0 0 -1

S

X1

X2

X3

Y

Black box

0.3

0.3

0.3 t=0.4

Output
node

Input
nodes

î
í
ì

<-
³

=

-++=

 0 if1
0 if1

)(where

)4.03.03.03.0(321

x
x

xsign

XXXsignY

Artificial Neural Networks (ANN)

S

X1

X2

X3

Y

Black box

w1

t

Output
node

Input
nodes

w2

w3

• Model is an assembly of inter-connected
nodes and weighted links

• Output node sums up each of its input
value according to the weights of its links

• Compare output node against some
threshold t (also named bias b)

å

å

=

=

=

-=

d

i
ii

d

i
ii

Xwsign

tXwsignY

0

1

)(

)(

Characterizing the Artificial Neuron

• Input/Output signal may be.
• Real value.
• Unipolar {0, 1}.
• Bipolar {-1, +1}.

• Weight (w or sigma): θij – strength of connection from unit j to unit i
• Learning amounts to adjusting the weights θij by means of an

optimization algorithm aiming to minimize a cost function, i.e., as in
biological systems training a perceptron model amounts to adapting
the weights of the links until they fit the input output relationships of
the underlying data.

6

Characterizing the Artificial Neuron

• The bias b is a constant that can be written as θi0x0 with x0 = 1
and θ i0 = b such that

• The function f(𝑛𝑒𝑡!(x)) is the unit’s activation function. In the
simplest case, f is the identity function, and the unit’s output is
just its net input. This is called a linear unit. Otherwise we can
have a sign unit, or a logistic unit.

𝑛𝑒𝑡! =%
"#$

%

θ!"𝑥"

The Perceptron Classifier

A Simple Linear Neuron

…

Output

Input

θ1 θ2 θ3 θM

θ0

Bias unit

weights

Linear activation
functionnet

y = h�(x) = �(�T x)

����� �(a) = a

Linear Threshold Unit (a.k.a. Perceptron)

…

Output

Input

θ1 θ2 θ3 θM

θ0

Bias unit

weights

Sign activation
functiony = h�(x) = �(�T x)

����� �(a) =
1

1 + 2tT(�a)𝜎 𝑎 =)+1 𝑎 ≥ 0
−1 𝑎 < 0

net

where

The Logistic Neuron

…

Output

Input

θ1 θ2 θ3 θM

θ0

Bias unit

weights

Sigmoid logistic
activation functiony = h�(x) = �(�T x)

����� �(a) =
1

1 + 2tT(�a)

net

Perceptron

• Single layer network
• Contains only input and output nodes

• Activation function: f = sign(w•x)

• Applying model is straightforward

• X1 = 1, X2 = 0, X3 =1 => y = sign(0.2) = 1
î
í
ì

<-
³

=

-++=

 0 if1
0 if1

)(where

)4.03.03.03.0(321

x
x

xsign

XXXsignY

Learning Iterative Procedure

• During the training phase the weight parameters are adjusted until the
outputs of the perceptron become consistent with the true outputs of the
training examples.
• Initialize the weights (w0, w1, …, wm)
• Repeat
• For each training example (xi, yi)
• Compute f(w(k), xi)
• Update the weights:

• Until stopping condition is met
[] ii

k
i

kk xxwfyww),()()()1(-+=+ l

Iteration index

Learning rate

Perceptron Learning Rule

• Weight update formula:

• Intuition:
• Update weight based on error:
• If y=f(x,w), e=0: no update needed
• If y>f(x,w), e=2: weight must be increased so that f(x,w) will increase
• If y<f(x,w), e=-2: weight must be decreased so that f(x,w) will decrease

[] rate learning : ;),()()()1(ll ii
k

i
kk xxwfyww -+=+

[]),()(
i

k
i xwfye -=

The Learning Rate

• Is a parameter with value between 0 and 1 used to control the
amount of adjustment made in each iteration.
• If is close to 0 the new weight is mostly influenced by the value of the

old weight.
• If it is close to 1, then the new weight is mostly influenced by the

current adjustment.
• The learning rate can be adaptive: initially moderately large and the

gradually decreases in subsequent iterations.

Example of Perceptron Learning

X1 X2 X3 Y
1 0 0 -1
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 -1
0 1 0 -1
0 1 1 1
0 0 0 -1

[] ii
k

i
kk xxwfyww),()()()1(-+=+ l

å
=

=
d

i
ii XwsignY

0
)(

Epoch w0 w1 w2 w3
0 0 0 0 0
1 -0.2 0 0.2 0.2
2 -0.2 0 0.4 0.2
3 -0.4 0 0.4 0.2
4 -0.4 0.2 0.4 0.4
5 -0.6 0.2 0.4 0.2
6 -0.6 0.4 0.4 0.2

1.0=l
 w0 w1 w2 w3
0 0 0 0 0
1 -0.2 -0.2 0 0
2 0 0 0 0.2
3 0 0 0 0.2
4 0 0 0 0.2
5 -0.2 0 0 0
6 -0.2 0 0 0
7 0 0 0.2 0.2
8 -0.2 0 0.2 0.2

Nonlinearly Separable Data

• Since f(w,x) is a linear
combination of input variables,
decision boundary is linear.
• For nonlinearly separable

problems, the perceptron fails
because no linear hyperplane can
separate the data perfectly.
• An example of nonlinearly

separable data is the XOR
function.

x1 x2 y
0 0 -1
1 0 1
0 1 1
1 1 -1

21 xxy Å=
XOR Data

Multilayer Neural Network

Multilayer Neural Network

• Hidden Layers: intermediary layers between
input and output layers.
• More general activation functions (sigmoid,

linear, hyperbolic tangent, etc.).

• Multi-layer neural network can solve any type
of classification task involving nonlinear
decision surfaces.
• Perceptron is single layer.
• We can think to each hidden node as a

perceptron that tries to construct one
hyperplane, while the output node combines
the results to return the decision boundary.

n1

n2

n3

n4

n5

x1

x2

Input
Layer

Hidden
Layer

Output
Layer

y

w31

w32

w41

w42

w53

w54

XOR Data

General Structure of ANN

Activation
function

g(Si)
Si Oi

I1

I2

I3

wi1

wi2

wi3

Oi

Neuron iInput Output

threshold, t

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

Training ANN means learning
the weights of the neurons

Artificial Neural Networks (ANN)

• Various types of neural network topology
• single-layered network (perceptron) versus

multi-layered network
• Feed-forward versus recurrent network

• Various types of
activation functions (f)

)(å=
i

ii XwfY

Activation Functions
• A new change: modifying the nonlinearity
• The logistic is not widely used in modern ANNs

Alternative 1:
tanh

Like logistic function but shifted
to range [-1, +1]

Activation Functions

Alternative 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient
when you pass zero)

Activation Functions

Alternative 3: soft exponential linear unit

Soft version: log(exp(x)+1)

Doesn’t saturate (at one end)
Sparsifies outputs
Helps with vanishing gradient

Slide from William Cohen

Activation Functions Summary

Hyperbolic Tangent

𝑓 𝑥 =)0 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

𝑓 𝑥 = 𝑥 𝑓 𝑥 =
1

1 + 𝑒!"

𝑓 𝑥 =
𝑒" − 𝑒!"

𝑒" + 𝑒!" 𝑓 𝑥 =)0 (𝑜𝑟 𝜖) 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

𝑓 𝑥" =
𝑒#!

∑$ 𝑒#"
Softmax Function

Learning Multi-layer Neural Network

• Can we apply perceptron learning to each node, including hidden nodes?
• Perceptron computes error e = y-f(w,x) and updates weights accordingly
• Problem: how to determine the true value of y for hidden nodes?
• Approximate error in hidden nodes by error in the output nodes
• Problems:
• Not clear how adjustment in the hidden nodes affect overall error
• No guarantee of convergence to optimal solution

Gradient Descent for Multilayer NN

• Error function to minimize:

• Weight update:

• Activation function f must be differentiable

• For sigmoid function:

• Stochastic Gradient Descent (update the weight immediately)

j

k
j

k
j w

Eww
¶
¶

-=+ l)()1(

å å
=

÷÷
ø

ö
çç
è

æ
-=

N

i j
ijji xwftE

1
)(

2
1

å --+=+

i
ijiiii

k
j

k
j xoootww)1()()()1(l

yi

Quadratic function from
which we can find a global

minimum solution

yi

Gradient Descent for Multilayer NN

• Weights are updated in the
opposite direction of the
gradient of the loss function.

• Gradient direction is the
direction of uphill of the error
function.
• By taking the negative we are

going downhill.
• Hopefully to a minimum of the

error.

j

k
j

k
j w

Eww
¶
¶

-=+ l)()1(

Gradient direction

w(k)

w(k+1)

Gradient Descent for Multilayer NN

wpi

wqi

Neuron i

Neuron p

Neuron q

Neuron x

Neuron y

wix

wiy

Hidden layer
k-1

Hidden layer
k

Hidden layer
k+1

• For output neurons, weight update
formula is the same as before (gradient
descent for perceptron)

• For hidden neurons:

å

å

FÎ

FÎ

+

-=

--=

-+=

j

i

k
jkkjjj

jjjjj

j
piijjii

k
pi

k
pi

woo

otoo

xwooww

dd

d

dl

)1(:neurons Hidden

))(1(:neuronsOutput

)1()()1(

Training Multilayer NN

…

…

Output

Input

Hidden Layer

ȋ	Ȍ ����
J = 1

2 (y � y(d))2

ȋ�Ȍ ������ ȋ�������Ȍ
y = 1

1+2tT(�b)

ȋ�Ȍ ������ ȋ������Ȍ
b =

�D
j=0 �jzj

ȋ�Ȍ ������ ȋ�������Ȍ
zj = 1

1+2tT(�aj)
, �j

ȋ�Ȍ ������ ȋ������Ȍ
aj =

�M
i=0 �jixi, �j

ȋ�Ȍ �����

���� xi, �i

Training Multilayer NN

…

…

Output

Input

Hidden Layer

ȋ	Ȍ ����
J = 1

2 (y � y�)2

ȋ�Ȍ ������ ȋ�������Ȍ
y = 1

1+2tT(�b)

ȋ�Ȍ ������ ȋ������Ȍ
b =

�D
j=0 �jzj

ȋ�Ȍ ������ ȋ�������Ȍ
zj = 1

1+2tT(�aj)
, �j

ȋ�Ȍ ������ ȋ������Ȍ
aj =

�M
i=0 �jixi, �j

ȋ�Ȍ �����

���� xi, �i

E(𝑦, 𝑦∗)

How do we update these weights
given the loss is available only at
the output unit?

E

Error Backpropagation

…

…

Output

Input

Hidden Layer

E(𝑦, 𝑦∗)

Error is computed at the output
and propagated back to the input
by chain rule to compute the
contribution of each weight
(a.k.a. derivative) to the loss

A 2-step process
1. Forward pass - Compute the

network output
2. Backward pass – Compute the loss

function gradients and update

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Backpropagation in other words

• In order to get the loss of a node
(e.g. Z0), we multiply the value of its
corresponding f’(z) by the loss of the
node it is connected to in the next
layer (delta_1), by the weight of the
link connecting both nodes.
• We do the delta calculation step at

every unit, back-propagating the loss
into the neural net, and finding out
what loss every node/unit is
responsible for.

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7

On the Key Importance of Error Functions

• The error/loss/cost function reduces all the various good and bad
aspects of a possibly complex system down to a single number, a
scalar value, which allows candidate solutions to be compared.
• It is important, therefore, that the function faithfully represent our

design goals.
• If we choose a poor error function and obtain unsatisfactory results,

the fault is ours for badly specifying the goal of the search.

Objective Functions for NN

• Regression: A problem where you predict a real-value quantity.
• Output Layer: One node with a linear activation unit.
• Loss Function: Quadratic Loss (Mean Squared Error (MSE))

• Classification: Classify an example as belonging to one of K classes
• Output Layer:

• One node with a sigmoid activation unit (K=2)
• K output nodes in a softmax layer (K>2)

• Loss function: Cross-entropy (i.e. negative log likelihood)

35

	������ ��������

��������� J =
1

2
(y � y�)2

dJ

dy
= y � y�

����� ������� J = y� HQ;(y) + (1 � y�) HQ;(1 � y)
dJ

dy
= y� 1

y
+ (1 � y�)

1

y � 1

J = E

Design Issues in ANN

• Number of nodes in input layer
• One input node per binary/continuous attribute
• k or log2k nodes for each categorical attribute with k values

• Number of nodes in output layer
• One output for binary class problem
• k or log2k nodes for k-class problem

• Number of nodes in hidden layer
• Initial weights and biases

Characteristics of ANN

• Multilayer ANN are universal approximators but could suffer from overfitting if
the network is too large.
• Gradient descent may converge to local minimum.
• Model building can be very time consuming, but testing can be very fast.
• Can handle redundant attributes because weights are automatically learnt.
• Sensitive to noise in training data.
• Difficult to handle missing attributes.

Tips and Tricks of NN Training

Dataset Should Normally be Split Into

• Training set: use to update the weights. Records in this set are
repeatedly in random order. The weight update equation are applied
after a certain number of records.

• Validation set: use to decide when to stop training only by
monitoring the error and to select the best model configuration

• Test set: use to test the performance of the neural network. It should
not be used as part of the neural network development and model
selection cycle

Before Starting: Weight Initialization

• Choice of initial weight values is important as this decides starting
position in weight space. That is, how far away from global minimum
• Aim is to select weight values which produce midrange function signals
• Select weight values randomly from uniform probability distribution
• Normalize weight values so number of weighted connections per unit

produces midrange function signal

• Try different random initialization to
• Assess robustness
• Have more opportunities to find optimal results

Two learning fashion (plus one)

• Sequential mode (on-line, stochastic, or per-pattern)
• Weights updated after each records is presented
• Many weight updates, can quicker convergence but also make learning less stable

• Batch mode (off-line or per-epoch)
• Weights updated after all records are presented
• Can be very slow and lead to trapping in early local minima

• Minibatch mode (a blend of the two above)
• Weights updated after a few records (from tens to thousands) are presented
• Best of both (and good for GPU)

Convergence Criteria

• Learning is obtained by repeatedly supplying training data and
adjusting by backpropagation
• Typically 1 training set presentation = 1 epoch

• We need a stopping criteria to define convergence
• Euclidean norm of the gradient vector reaches a sufficiently small value
• Absolute rate of change in the average squared error per epoch is

sufficiently small
• Validation for generalization performance: stop when generalization

performance reaches a peak

Early Stopping

• Running too many epochs may overtrain the network and result in
overfitting and perform poorly in generalization
• Keep a hold-out validation set and test accuracy after every epoch.

Maintain weights for best performing network on the validation set
and stop training when error increases beyond this
• Always let the network run for some epochs before deciding to stop

(patience parameter), then backtrack to best result

44
No. of epochs

error
Training set

Validation set

Model Selection

• Too few hidden units prevent the network from learning adequately fitting the
data and learning the concept.
• Too many hidden units leads to overfitting, unless you regularize heavily (e.g.

dropout, weight decay, weight penalties)
• Cross validation should be used to determine an appropriate number of hidden

units by using the optimal validation error to select the model with optimal
number of hidden layers and nodes.

45

No. of epochs

error
Training set

Validation set

Regularization

• Constrain the learning model to avoid overfitting and help improving
generalization.
• Add penalization terms to the loss function that punish the model for

excessive use of resources
• Limit the amount of weights that is used to learn a task
• Limit the total activation of neurons in the network

𝐸" = 𝐸 𝑦, 𝑦∗ + 𝜆𝑅(⋅)

𝑅(𝑊#)

𝑅(𝑍)

Hyperparameter to be
chosen in model selection

Penalty on parameters

Penalty on activations

Common penalty terms (norms)

• 1-norm ||𝐴||$ = ∑%& |𝑎%&|
• Parameters: 𝑅 𝑊6 = ||𝑊6||78

• Activations: 𝑅 𝑍(𝑋) = ||𝑍 𝑋 ||78 (Z hidden unit activation)

• 2-norm ||𝐴||' = ∑%& 𝑎%&'

• Parameters: 𝑅 𝑊6 = ||𝑊6||88

• Activations: 𝑅 𝑍(𝑋) = ||𝑍 𝑋 ||88 (Z hidden unit activation)

• Any p-norm and more…

Dropout Regularization

… …

Randomly disconnect units from the network during training

Dropout Regularization

… …

Randomly disconnect units from the network during training

Dropout Regularization

… …

Randomly disconnect units from the network during training

Dropout Regularization
Randomly disconnect units from the network during training

• Regulated by unit dropping
hyperparameter

• Prevents unit coadaptation
• Committee machine effect
• Need to adapt prediction phase
• Used at prediction time gives

predictions with confidence
intervals

You can also drop single
connections (dropconnect)

… …

x

x

x

x

x

Choosing the Optimization Algorithm

• Standard Stochastic Gradient Descent (SGD)
• Easy and efficient
• Difficult to pick up the best learning rate
• Unstable convergence
• Often used with momentum (exponentially weighted history of previous weights changes)

• RMSprop
• Adaptive learning rate method (reduces it using a moving average of the squared gradient)
• Fastens convergence by having quicker gradients when necessary

• Adagrad
• Like RMSprop with element-wise scaling of the gradient

• ADAM
• Like Adagrad but adds an exponentially decaying average of past gradients like momentum

Momentum

• Adding a term to weight update equation to store an exponentially
weight history of previous weights changes

• Reducing problems of instability while increasing the rate of convergence
• If weight changes tend to have same sign momentum term increases

and gradient decrease speed up convergence on shallow gradient
• If weight changes tend have opposing signs momentum term

decreases and gradient descent slows to reduce oscillations
(stabilizes)

• Can help escape being trapped in local minima

References

• Artificial Neural Network. Chapter 5.4 and
5.5. Introduction to Data Mining.
• Hands-on Machine Learning with Scikit-

Learn, Keras & Tensorflow. A practical
handbook to start wrestling with Machine
Learning models (2nd ed).
• Deep Learning. Ian Goodfellow, Yoshua

Bengio, and Aaron Courville. The
reference book for deep learning models.

