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The Neuron Metaphor

• Neurons
• accept information from multiple inputs, 
• transmit information to other neurons.

• Multiply inputs by weights along edges
• Apply some function to the set of inputs at each node
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Artificial Neural Networks (ANN)
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Artificial Neural Networks (ANN)
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• Model is an assembly of inter-connected 
nodes and weighted links

• Output node sums up each of its input 
value according to the weights of its links

• Compare output node against some 
threshold t (also named bias b)

å

å

=

=

=

-=

d

i
ii

d

i
ii

Xwsign

tXwsignY

0

1

)(   

)(



Characterizing the Artificial Neuron

• Input/Output signal may be.
• Real value.
• Unipolar {0, 1}.
• Bipolar {-1, +1}.

• Weight (w or sigma): θij – strength of connection from unit j to unit i
• Learning amounts to adjusting the weights θij by means of an 

optimization algorithm aiming to minimize a cost function, i.e., as in 
biological systems training a perceptron model amounts to adapting 
the weights of the links until they fit the input output relationships of 
the underlying data.

6



Characterizing the Artificial Neuron

• The bias b is a constant that can be written as θi0x0 with x0 = 1
and θ i0 = b such that 

• The function f(𝑛𝑒𝑡!(x))  is the unit’s activation function. In the 
simplest case, f is the identity function, and the unit’s output is 
just its net input. This is called a linear unit. Otherwise we can 
have a sign unit, or a logistic unit.
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The Perceptron Classifier



A Simple Linear Neuron
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Linear Threshold Unit (a.k.a. Perceptron)
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The Logistic Neuron
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Perceptron

• Single layer network
• Contains only input and output nodes

• Activation function:  f = sign(w•x)

• Applying model is straightforward

• X1 = 1, X2 = 0, X3 =1 => y = sign(0.2) = 1
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Learning Iterative Procedure

• During the training phase the weight parameters are adjusted until the 
outputs of the perceptron become consistent with the true outputs of the 
training examples.
• Initialize the weights (w0, w1, …, wm)
• Repeat
• For each training example (xi, yi)
• Compute f(w(k), xi)
• Update the weights: 

• Until stopping condition is met
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Perceptron Learning Rule

• Weight update formula:

• Intuition:
• Update weight based on error:  
• If y=f(x,w), e=0: no update needed
• If y>f(x,w), e=2: weight must be increased so that f(x,w) will increase
• If y<f(x,w), e=-2: weight must be decreased so that f(x,w) will decrease
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The Learning Rate

• Is a parameter with value between 0 and 1 used to control the 
amount of adjustment made in each iteration.
• If is close to 0 the new weight is mostly influenced by the value of the 

old weight.
• If it is close to 1, then the new weight is mostly influenced by the 

current adjustment.
• The learning rate can be adaptive: initially moderately large and the 

gradually decreases in subsequent iterations.



Example of Perceptron Learning

X1 X2 X3 Y
1 0 0 -1
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 -1
0 1 0 -1
0 1 1 1
0 0 0 -1
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Epoch w0 w1 w2 w3
0 0 0 0 0
1 -0.2 0 0.2 0.2
2 -0.2 0 0.4 0.2
3 -0.4 0 0.4 0.2
4 -0.4 0.2 0.4 0.4
5 -0.6 0.2 0.4 0.2
6 -0.6 0.4 0.4 0.2

1.0=l
 w0 w1 w2 w3
0 0 0 0 0
1 -0.2 -0.2 0 0
2 0 0 0 0.2
3 0 0 0 0.2
4 0 0 0 0.2
5 -0.2 0 0 0
6 -0.2 0 0 0
7 0 0 0.2 0.2
8 -0.2 0 0.2 0.2



Nonlinearly Separable Data

• Since f(w,x) is a linear 
combination of input variables, 
decision boundary is linear.
• For nonlinearly separable 

problems, the perceptron fails 
because no linear hyperplane can 
separate the data perfectly.
• An example of nonlinearly 

separable data is the XOR 
function.

x1 x2 y
0 0 -1
1 0 1
0 1 1
1 1 -1

21 xxy Å=
XOR Data



Multilayer Neural Network



Multilayer Neural Network

• Hidden Layers: intermediary layers between 
input and output layers.
• More general activation functions (sigmoid, 

linear, hyperbolic tangent, etc.).

• Multi-layer neural network can solve any type 
of classification task involving nonlinear 
decision surfaces.
• Perceptron is single layer.
• We can think to each hidden node  as a 

perceptron that tries to construct one 
hyperplane, while the output node combines 
the results to return the decision boundary.
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General Structure of ANN

Activation
function
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Training ANN means learning 
the weights of the neurons



Artificial Neural Networks (ANN)

• Various types of neural network topology
• single-layered network (perceptron) versus 

multi-layered network
• Feed-forward versus recurrent network

• Various types of 
activation functions (f)
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Activation Functions
• A new change: modifying the nonlinearity
• The logistic is not widely used in modern ANNs

Alternative 1: 
tanh

Like logistic function but shifted 
to range [-1, +1]



Activation Functions

Alternative 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient 
when you pass zero)



Activation Functions

Alternative 3: soft exponential linear unit

Soft version: log(exp(x)+1)

Doesn’t saturate (at one end)
Sparsifies outputs
Helps with vanishing gradient 

Slide from William Cohen



Activation Functions Summary

Hyperbolic Tangent

𝑓 𝑥 = )0 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

𝑓 𝑥 = 𝑥 𝑓 𝑥 =
1

1 + 𝑒!"
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Learning Multi-layer Neural Network

• Can we apply perceptron learning to each node, including hidden nodes?
• Perceptron computes error e = y-f(w,x) and updates weights accordingly
• Problem: how to determine the true value of y for hidden nodes?
• Approximate error in hidden nodes by error in the output nodes
• Problems: 
• Not clear how adjustment in the hidden nodes affect overall error 
• No guarantee of convergence to optimal solution



Gradient Descent for Multilayer NN

• Error function to minimize:

• Weight update:

• Activation function f must be differentiable

• For sigmoid function:

• Stochastic Gradient Descent (update the weight immediately)
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Gradient Descent for Multilayer NN

• Weights are updated in the 
opposite direction of the 
gradient of the loss function.

• Gradient direction is the 
direction of uphill of the error 
function.
• By taking the negative we are 

going downhill.
• Hopefully to a minimum of the 

error.
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Gradient Descent for Multilayer NN
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Hidden layer
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Hidden layer
k

Hidden layer
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• For output neurons, weight update 
formula is the same as before (gradient 
descent for perceptron)

• For hidden neurons:
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Training Multilayer NN
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Training Multilayer NN
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How do we update these weights 
given the loss is available only at
the output unit?
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Error Backpropagation

…

…

Output

Input

Hidden Layer

E(𝑦, 𝑦∗)

Error is computed at the output 
and propagated back to the input 
by chain rule to compute the 
contribution of each weight 
(a.k.a. derivative) to the loss

A 2-step process
1. Forward pass - Compute the 

network output
2. Backward pass – Compute the loss

function gradients and update

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


Backpropagation in other words

• In order to get the loss of a node 
(e.g. Z0), we multiply the value of its 
corresponding f’(z) by the loss of the 
node it is connected to in the next 
layer (delta_1), by the weight of the 
link connecting both nodes.
• We do the delta calculation step at 

every unit, back-propagating the loss 
into the neural net, and finding out 
what loss every node/unit is 
responsible for.

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7


On the Key Importance of Error Functions

• The error/loss/cost function reduces all the various good and bad 
aspects of a possibly complex system down to a single number, a 
scalar value, which allows candidate solutions to be compared.
• It is important, therefore, that the function faithfully represent our 

design goals. 
• If we choose a poor error function and obtain unsatisfactory results, 

the fault is ours for badly specifying the goal of the search.



Objective Functions for NN

• Regression: A problem where you predict a real-value quantity.
• Output Layer: One node with a linear activation unit.
• Loss Function: Quadratic Loss (Mean Squared Error (MSE))

• Classification: Classify an example as belonging to one of K classes
• Output Layer: 

• One node with a sigmoid activation unit (K=2)
• K output nodes in a softmax layer (K>2)

• Loss function: Cross-entropy (i.e. negative log likelihood)
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Design Issues in ANN

• Number of nodes in input layer 
• One input node per binary/continuous attribute
• k or log2k nodes for each categorical attribute with k values

• Number of nodes in output layer
• One output for binary class problem
• k or log2k nodes for k-class problem

• Number of nodes in hidden layer
• Initial weights and biases



Characteristics of ANN

• Multilayer ANN are universal approximators but could suffer from overfitting if 
the network is too large.
• Gradient descent may converge to local minimum.
• Model building can be very time consuming, but testing can be very fast. 
• Can handle redundant attributes because weights are automatically learnt.
• Sensitive to noise in training data.
• Difficult to handle missing attributes.



Tips and Tricks of NN Training



Dataset Should Normally be Split Into

• Training set: use to update the weights. Records in this set are 
repeatedly in random order. The weight update equation are applied 
after a certain number of records.

• Validation set: use to decide when to stop training only by 
monitoring the error and to select the best model configuration

• Test set: use to test the performance of the neural network. It should 
not be used as part of the neural network development and model 
selection cycle



Before Starting: Weight Initialization

• Choice of initial weight values is important as this decides starting 
position in weight space. That is, how far away from global minimum
• Aim is to select weight values which produce midrange function signals 
• Select weight values randomly from uniform probability distribution
• Normalize weight values so number of weighted connections per unit 

produces midrange function signal

• Try different random initialization to
• Assess robustness
• Have more opportunities to find optimal results



Two learning fashion (plus one)

• Sequential mode  (on-line, stochastic, or per-pattern) 
• Weights updated after each records is presented
• Many weight updates, can quicker convergence but also make learning less stable

• Batch mode (off-line or per-epoch) 
• Weights updated after all records are presented
• Can be very slow and lead to trapping in early local minima

• Minibatch mode (a blend of the two above) 
• Weights updated after a few records (from tens to thousands) are presented 
• Best of both (and good for GPU)



Convergence Criteria

• Learning is obtained by repeatedly supplying training data and 
adjusting by backpropagation
• Typically 1 training set presentation = 1 epoch

• We need a stopping criteria to define convergence
• Euclidean norm of the gradient vector reaches a sufficiently small value
• Absolute rate of change in the average squared error per epoch is 

sufficiently small 
• Validation for generalization performance: stop when generalization 

performance reaches a peak



Early Stopping

• Running too many epochs may overtrain the network and result in 
overfitting and perform poorly in generalization
• Keep a hold-out validation set and test accuracy after every epoch. 

Maintain weights for best performing network on the validation set 
and stop training when error increases beyond this
• Always let the network run for some epochs before deciding to stop 

(patience parameter), then backtrack to best result

44
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Model Selection

• Too few hidden units prevent the network from learning adequately fitting the 
data and learning the concept. 
• Too many hidden units leads to overfitting, unless you regularize heavily (e.g. 

dropout, weight decay, weight penalties)
• Cross validation should be used to determine an appropriate number of hidden 

units by using the optimal validation error to select the model with optimal 
number of hidden layers and nodes.
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Regularization

• Constrain the learning model to avoid overfitting and help improving 
generalization.
• Add penalization terms to the loss function that punish the model for 

excessive use of resources
• Limit the amount of weights that is used to learn a task
• Limit the total activation of neurons in the network  

𝐸" = 𝐸 𝑦, 𝑦∗ + 𝜆𝑅(⋅)

𝑅(𝑊#)

𝑅(𝑍)

Hyperparameter to be 
chosen in model selection

Penalty on parameters

Penalty on activations



Common penalty terms (norms)

• 1-norm ||𝐴||$ = ∑%& |𝑎%&|
• Parameters: 𝑅 𝑊6 = ||𝑊6||78

• Activations:  𝑅 𝑍(𝑋) = ||𝑍 𝑋 ||78 (Z hidden unit activation)

• 2-norm ||𝐴||' = ∑%& 𝑎%&'

• Parameters: 𝑅 𝑊6 = ||𝑊6||88

• Activations:  𝑅 𝑍(𝑋) = ||𝑍 𝑋 ||88 (Z hidden unit activation)

• Any p-norm and more…



Dropout Regularization

… …

Randomly disconnect units from the network during training



Dropout Regularization

… …

Randomly disconnect units from the network during training



Dropout Regularization

… …

Randomly disconnect units from the network during training



Dropout Regularization
Randomly disconnect units from the network during training

• Regulated by unit dropping 
hyperparameter

• Prevents unit coadaptation
• Committee machine effect
• Need to adapt prediction phase
• Used at prediction time gives 

predictions with confidence 
intervals

You can also drop single 
connections (dropconnect)

… …
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x
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Choosing the Optimization Algorithm

• Standard Stochastic Gradient Descent (SGD)
• Easy and efficient
• Difficult to pick up the best learning rate
• Unstable convergence
• Often used with momentum (exponentially weighted history of previous weights changes)

• RMSprop
• Adaptive learning rate method (reduces it using a moving average of the squared gradient)
• Fastens convergence by having quicker gradients when necessary

• Adagrad
• Like RMSprop with element-wise scaling of the gradient

• ADAM
• Like Adagrad but adds an exponentially decaying average of past gradients like momentum



Momentum

• Adding a term to weight update equation to store an exponentially 
weight history of previous weights changes

• Reducing problems of instability while increasing the rate of convergence
• If weight changes tend to have same sign momentum term increases 

and gradient decrease speed up convergence on shallow gradient
• If weight changes tend  have opposing signs momentum term 

decreases and gradient descent slows to reduce oscillations 
(stabilizes) 

• Can help escape being trapped in local minima
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