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What is Cluster Analysis?

• Finding groups of objects such that the objects in a group will be similar (or 
related) to one another and different from (or unrelated to) the objects in other 
groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



DBSCAN



DBSCAN

• DBSCAN is a density-based algorithm.
• Density = number of points within a specified radius (Eps)
• A point is a core point if it has at least a specified number of points 

(MinPts) within Eps 
• These are points that are at the interior of a cluster
• Counts the point itself

• A border point is not a core point, but is in the neighborhood of a core 
point

• A noise point is any point that is not a core point or a border point 



DBSCAN: Core, Border, and Noise Points
MinPts = 7



DBSCAN Algorithm
• Eliminate noise points

• Perform clustering on the remaining points



DBSCAN: Core, Border and Noise Points

Original Points Point types: core, 
border and noise

Eps = 10, MinPts = 4



When DBSCAN Works Well

Original Points
Clusters

• Resistant to Noise
• Can handle clusters of different shapes and sizes



When DBSCAN Does NOT Work Well

Original Points
(MinPts=4, Eps=9.75). 

 (MinPts=4, Eps=9.92)

• Varying densities
• High-dimensional data



DBSCAN: Determining EPS and MinPts

• Idea is that for points in a cluster, their kth nearest neighbors are at roughly the 
same distance

• Noise points have the kth nearest neighbor at farther distance
• So, plot sorted distance of every point to its kth nearest neighbor



DBSCAN Evolution

OPTICS



When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes



When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.92). 

 (MinPts=4, Eps=9.75)

• Varying densities

• High-dimensional data



OPTICS

•OPTICS: Ordering Points To Identify the Clustering Structure
•Produces a special order of the dataset wrt its density-based 

clustering structure.  
•This cluster-ordering contains info equivalent to the density-based 

clusterings corresponding to a broad range of parameter settings.
•Good for both automatic and interactive cluster analysis, including 

finding intrinsic clustering structure.
•Can be represented graphically or using visualization techniques.



OPTICS: Extension from DBSCAN

• OPTICS requires two parameters: 

• ε, which describes the maximum distance 
(radius) to consider,

• MinPts, describing the number of points 
required to form a cluster

• Core point. A point p is a core point if at least 
MinPts points are found within its 
ε-neighborhood.

• Core Distance. It is the minimum value of 
radius required to classify a given point as a 
core point. If the given point is not a Core 
point, then it’s Core Distance is undefined. 



OPTICS: Extension from DBSCAN

• Reachability Distance. The reachability 
distance between a point p and q is the 
maximum of the Core Distance of p and the 
Distance between p and q. 

• The Reachability Distance is not defined if q 
is not a Core point. Below is the example of 
the Reachability Distance.

• In other words, if q is within the core 
distance of p then use the core distance, 
otherwise the real distance.

5mm

5mm

7mm

Reachability_Distance(v,p) = 7mm

v



OPTICS Pseudo-Code

• For each point p in the dataset

• Initialize the reachability distance of p as undefined

• For each unprocessed point p in the dataset

• Get the neighbors N of p

• Mark p as processed and output to the ordered list

• If p is a core point

• Initialize a priority queue Q to get the closest point to p in terms of reachability

• Call the function update(N, p, Q)

• For each point q in Q

• Get the neighbors N’ of q

• Mark q as processed and output to the ordered list

• If q is a core point Call the function update(N’, q, Q)



OPTICS Pseudo-Code

• Function update(N, p, Q)
• Calculate the core distance for p
• For each neighbor q in N (update the reachability)

• If q is not processed
• new_rd = reachability distance between p and q

• If q is not in Q
• Q.insert(q, new_rd)

• Else
• If new_rd < q.rd

• Q.move_up(q, new_rd)



OPTICS Output

•OPTICS outputs the points in a particular ordering, annotated with 
their smallest reachability distance.

•A reachability-plot (a special kind of dendrogram), the hierarchical 
structure of the clusters can be obtained easily. 

• x-axis: the ordering of the points as processed by OPTICS 

• y-axis: the reachability distance 

•Points belonging to a cluster have a low reachability distance to their 
nearest neighbor, the clusters show up as valleys in the reachability 
plot. The deeper the valley, the denser the cluster.



OPTICS Output



OPTICS Output

•Clusters are extracted 
1. by selecting a range on the x-axis after visual inspection, 
2. by selecting a threshold on the y-axis
3. by different algorithms that try to detect the valleys by steepness, knee 

detection, or local maxima. Clustering obtained this way usually are 
hierarchical, and cannot be achieved by a single DBSCAN run.

https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py

https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py


Reachability
-distance

Cluster-order
of the objects

undefined

‘



OPTICS: The Radius Parameter

• Both core-distance and reachability-distance are undefined if no sufficiently 
dense cluster (w.r.t. ε) is available. 
• Given a sufficiently large ε, this never happens, but then every 
ε-neighborhood query returns the entire database. 
• Hence, the ε parameter is required to cut off the density of clusters that are 

no longer interesting, and to speed up the algorithm.
• The parameter ε is, strictly speaking, not necessary. 
• It can simply be set to the maximum possible value. 
•When a spatial index is available, however, it does play a practical role with 

regards to complexity. 
•OPTICS abstracts from DBSCAN by removing this parameter, at least to the 

extent of only having to give the maximum value.



DBSCAN Evolution

HDBSCAN



HDBSCAN

•HDBSCAN extends DBSCAN by converting it into a hierarchical 
clustering algorithm, but it also extracts a flat clustering.

•HDBSCAN bypass the choice of the Eps parameter

•HDBSCAN scans all possible solution with all values of Eps



HDBSCAN Main Steps

1. Transform the space according to the density/sparsity

2. Build the minimum spanning tree of the distance weighted graph

3. Construct a cluster hierarchy of connected components.

4. Condense the cluster hierarchy based on minimum cluster size.

5. Extract the stable clusters from the condensed tree.



How HDBSCAN Works



Step 1: Transform The Space

• Goal: Prepare the data for a single linkage clustering (real data is noisy 
and single linkage is not robust!)

• Idea: Push sparse points away from the rest of the data before clustering

•How do we evaluate density ?
• Need an inexpensive density estimate ⇒ k-NN is the simplest
• Call it the core distance for parameters k and point x
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Recall
Core point. A point p is a core point if at least MinPts points are found within its ε-neighborhood.

Core Distance. It is the minimum value of radius required to classify a given point as a core point. 
If the given point is not a Core point, then it’s Core Distance is undefined. 



Step 1: Mutual Reachability Distance

• Goal: We need a way to spread apart points with low density 
(correspondingly high core distance).
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• Objectives: connect points that are
• close enough to each other : d(x

i ,
x

j
)

• in a dense enough region : core
k
(x

i
)

•With this metric dense points (with low core distance) remain the 
same distance from each other, but sparser points are pushed away to 
be at least their core distance away from any other point.



Step 1: Mutual Reachability Distance



Step 1: Mutual Reachability Distance



Step 1: Mutual Reachability Distance



Step 1: Mutual Reachability Distance



Step 1: Mutual Reachability Distance



Step 1: Mutual Reachability Distance



Step 2 : The Minimum Spanning Tree

• Goal: Prepare the data for clustering using d
mreach

• Ideas:
• Construct a graph that connects all points
• Points are the vertices and the edges are weighted by d

mreach

• Start disconnecting points by lowering a threshold
• Among n2 possible edges identify with the minimum spanning tree a 

threshold such that there is no lower weight edge that could connect the 
components

• Prim’s algorithm: build the tree one edge at a time, always adding the lowest 
weight edge that connects the current tree to a vertex not yet in the tree



Step 2 : The Minimum Spanning Tree



Step 3: Build the Cluster Hierarchy

• Goal: Given the minimal spanning tree, the next step is to convert 
that into the hierarchy of connected components.

• Idea: Sort the edges of the tree by distance (in increasing order) and 
then iterate through, creating a new merged cluster for each edge, 
i.e., run single linkage hierarchical cluster.ing algorithm



Step 3: Build the Cluster Hierarchy



Step 4 : Condense the Cluster Tree

• Goal: Condensing the large and complicated cluster hierarchy into a smaller 
tree with a little more data attached to each node.

• Idea: Use a notion of minimum cluster size which we take as a parameter 
to HDBSCAN.
• Walk through the hierarchy top down and at each split ask if one of the new clusters 

created by the split has fewer points than the minimum cluster size. 

• If it is the case, declare it to be ‘points falling out of a cluster’ and have the larger 
cluster retain the cluster identity of the parent, marking down which points ‘fell out 
of the cluster’, i.e., noise points, and at what distance value that happened. 

• On the other hand, if the split is into two clusters each at least as large as the 
minimum cluster size then we consider that a true cluster split and let that split 
persist in the tree. 



Step 4 : Condense the Cluster Tree



Step 5: Extract the Stable Clusters

• Goal: Choose clusters that persist and have a longer lifetime (short 
clusters are probably artifacts of single linkage)

• Idea: Looking at the previous plot we could say that we want to 
choose those clusters that have the greatest area of ink in the plot

• Requirement: if you select a cluster, then you cannot select any 
cluster that is a descendant of it



Step 5: Extract the Stable Clusters



Step 5: Extract the Stable Clusters (details)

• Use λ = 1/distance
• For a given cluster we have λ

start
, λ

end  
to identify the cluster boundaries

• For a given cluster, the value λ
p 
∈ [λ

start
, λ

end
] defines at which value a point 

“fell out of the cluster”
• Compute the stability of a cluster as ∑

p ∈ C 
(λ

p
- λ

start
)

• Declare all leaf nodes to be clusters. 
• Now work bottom up through the tree. 

• If the sum of the stabilities of the child clusters is greater than the stability of the 
cluster, then set the cluster stability to be the sum of the child stabilities. 

• If, on the other hand, the cluster’s stability is greater than the sum of its children 
then we declare the cluster to be a selected cluster and unselect all its descendants. 

• Once at the root node all the set of selected clusters is the flat clustering returned.



HDBSCAN Result



DBSCAN vs HDBSCAN
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