DATA MINING 1 Instance-based Classifiers

Dino Pedreschi, Riccardo Guidotti

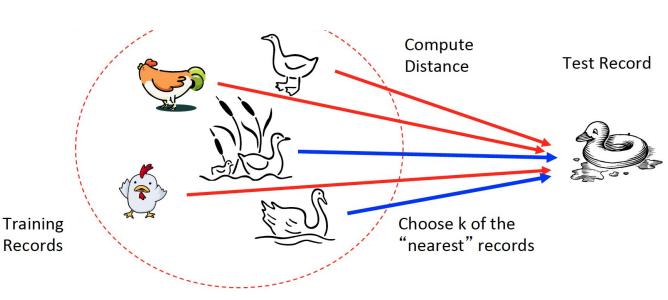
Slides edited from Tan, Steinbach, Kumar, Introduction to Data Mining

Nearest-Neighbor Classifier (K-NN)

Basic idea: If it walks like a duck, quacks like a duck, then it's probably a duck.

Requires three things

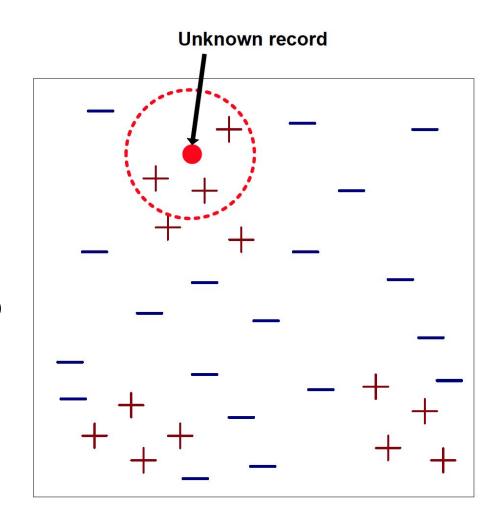
- 1. Training set of stored records
- 2. Distance metric to compute distance between records
- **3.** The value of k, the number of nearest neighbors to retrieve



Nearest-Neighbor Classifier (K-NN)

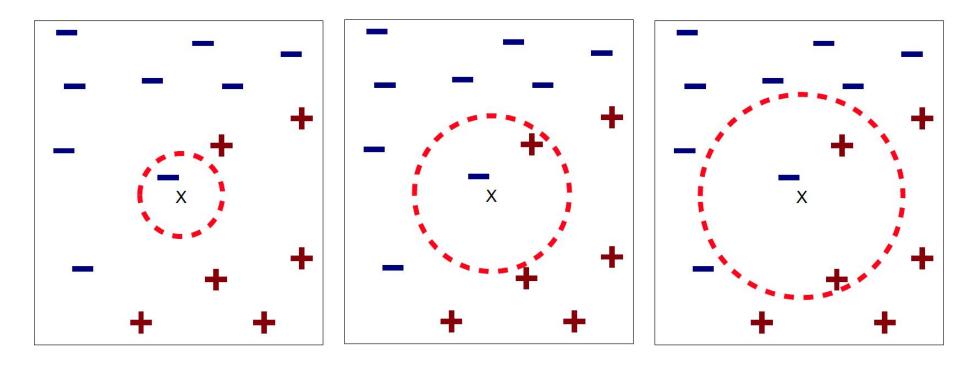
Given a set of training records (memory), and a test record:

- Compute the distances from the records in the training to the test.
- 2. Identify the k "nearest" records.
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote).



Definition of Nearest Neighbor

• *K*-nearest neighbors of a record *x* are data points that have the *k* smallest distance to *x*.



(a) 1-nearest neighbor

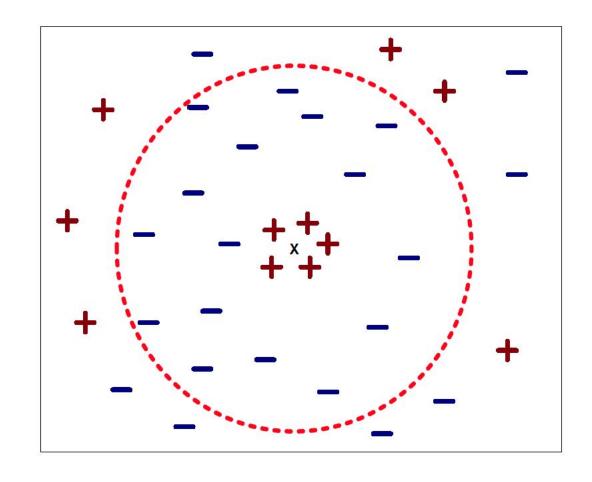
(b) 2-nearest neighbor

(c) 3-nearest neighbor

Choosing the Value of K

- If k is too small, it is sensitive to noise points and it can lead to overfitting to the noise in the training set.
- If k is too large, the neighborhood may include points from other classes.

 General practice k = sqrt(N) where N is the number of samples in the training dataset.



Nearest Neighbor Classification

Compute distance between two points:

• Euclidean distance $d(p,q) = \sqrt{\sum_i (p_i - q_i)^2}$

Determine the class from nearest neighbors

- take the majority vote of class labels among the k nearest neighbors
- weigh the vote according to distance (e.g. weight factor, $w = 1/d^2$)

Dimensionality and Scaling Issues

- Problem with Euclidean measure: high dimensional data can cause curse of dimensionality.
 - Solution: normalize the vectors to unit length
- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes.
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 10km to 200kg
 - income of a person may vary from \$10K to \$1M

Instance-based Classifiers

- Instead of performing explicit generalization, compare new instances with instances seen in training, which have been stored in memory.
- Sometimes called memory-based learning.

Advantages

 Adapt its model to previously unseen data by storing a new instance or throwing an old instance away.

Disadvantages

- Lazy learner: it does not build a model explicitly.
- Classifying unknown records is relatively expensive: in the worst case, given n training items, the complexity of classifying a single instance is O(n).

Parallel Exemplar-Based Learning System (PEBLS)

- PEBLS is a nearest-neighbor learning system (k=1) designed for applications where the instances have symbolic feature values.
- Works with both continuous and nominal features.
- For nominal features, the distance between two nominal values is computed using Modified Value Difference Metric (MVDM)

•
$$d(V_1, V_2) = \sum_i \left| \frac{n_{1i}}{n_1} - \frac{n_{2i}}{n_2} \right|$$

• Where n_1 is the number of records that consists of nominal attribute value V_1 and n_{1i} is the number of records whose target label is class i.

Distance Between Nominal Attribute Values

- d(Status=Single, Status=Married) = |2/4 0/4| + |2/4 4/4| = 1
- d(Status=Single, Status=Divorced) = |2/4 1/2| + |2/4 1/2| = 0
- d(Status=Married, Status=Divorced) = |0/4 1/2| + |4/4 1/2| = 1
- d(Refund=Yes, Refund=No) = |0/3 3/7| + |3/3 4/7| = 6/7

Class	Marital Status			
Class	Single	Married	Divorced	
Yes	2	0	1	
No	2	4	1	

Olasas	Refund		
Class	Yes	No	
Yes	0	3	
No	3	4	

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Distance Between Records

•
$$\delta(X,Y) = w_X w_Y \sum_{i=0}^d d(X_i,Y_i)$$

- Each record X is assigned a weight $w_X = \frac{N_{X_{predict}}}{N_{X_{predict}}}$, which represents its reliability
- $N_{X_{predict}}$ is the number of times X is used for prediction
- $N_{X_{predict}^{correct}}$ is the number of times the prediction using X is correct
- If $w_X \cong 1$ X makes accurate prediction most of the time
- If $w_X > 1$, then X is not reliable for making predictions. High $w_X > 1$ would result in high distance, which makes it less possible to use X to make predictions.

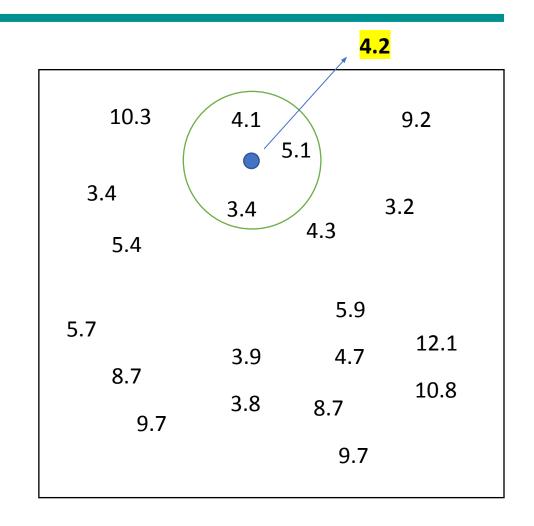
Characteristics of Nearest Neighbor Classifiers

- Instance-based learner: makes predictions without maintaining abstraction,
 i.e., building a model like decision trees.
- It is a lazy learner: classifying a test example can be expensive because need to compute the proximity values between test and training examples.
- In contrast eager learners spend time in building the model but then the classification is fast.
- Make their prediction on local information and for low k they are susceptible to noise.
- Can produce wrong predictions if inappropriate distance functions and/or preprocessing steps are performed.

k-NN for Regression

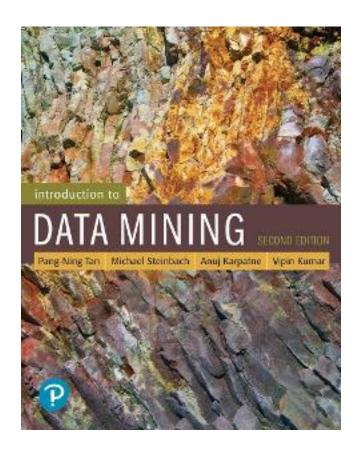
Given a set of training records (memory), and a test record:

- Compute the distances from the records in the training to the test.
- 2. Identify the k "nearest" records.
- 3. Use target value of nearest neighbors to *determine the value* of unknown record (e.g., by averaging the values).



References

• Nearest Neighbor classifiers. Chapter 5.2. Introduction to Data Mining.

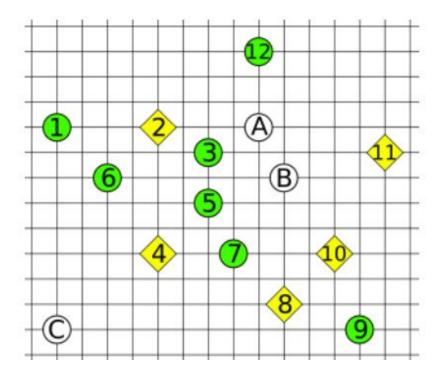


Exercises - kNN

b) k-NN (3 points)

Given the training set on the right, composed of elements numbered from 1 to 12, and labelled as circles and diamonds, use it to classify the remaining 3 elements (letters A, B and C) using a k-NN classifier with k=3. For each point to classify, list the points of the dataset that belong to its k-NN set.

Notice: A, B and C belong to the test set, not to the training set. Also, the Euclidean distance should be used.



b) k-NN (3 points)

Given the training set on the right, composed of elements numbered from 1 to 12, and labelled as circles and diamonds, use it to classify the remaining 3 elements (letters A, B and C) using a k-NN classifier with k=3. For each point to classify, list the points of the dataset that belong to its k-NN set.

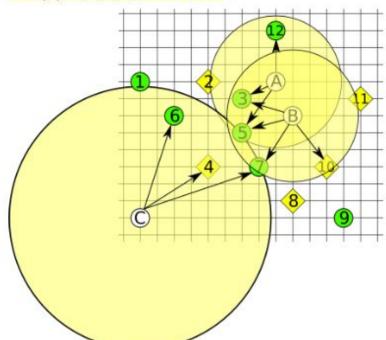
Notice: A, B and C belong to the test set, not to the training set. Also, the Euclidean distance should be used.

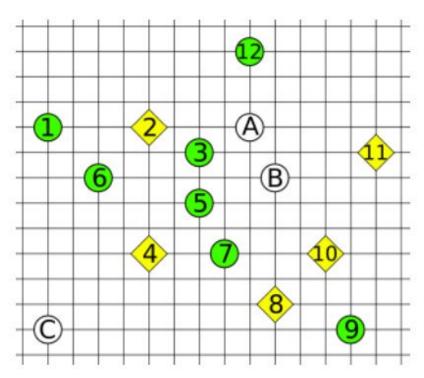
Answer:

 $kNN(A) = \{3, 5, 12\} \rightarrow CIRCLE$

 $kNN(B) = \{3, 5, 7, 10\} \rightarrow CIRCLE$

 $kNN(C) = \{4, 6, 7\} \rightarrow CIRCLE$

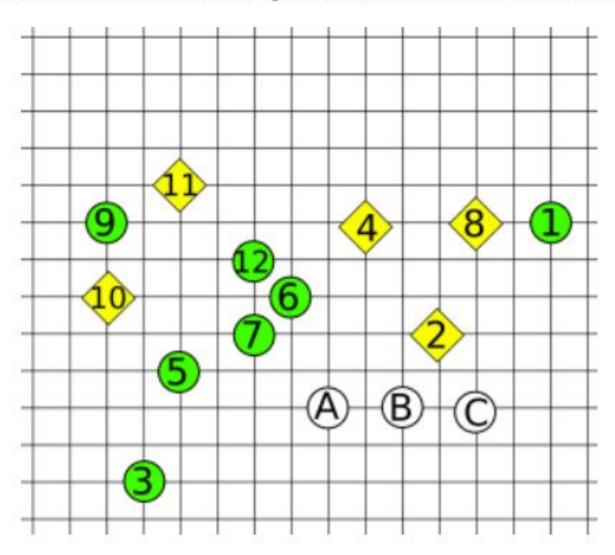




Given the training set on the right, composed of elements numbered from 1 to 12, and labelled as circles and diamonds, use it to classify the remaining 3 elements (letters A, B and C) using a k-NN classifier with k=3.

For each point to classify, list the points of the dataset that belong to its k-NN set.

Notice: A, B and C belong to the test set, not to the training set. Also, the Euclidean distance should be used.



k-Nearest Neighbor Classifier

A medical expert is going to build up a case-based reasoning system for diagnosis tasks. Cases correspond to individual persons where the case problem parts are made up of a number of features describing possible symptoms and the solution parts represent the diagnosis (classification of disease). The case base contains the seven cases provided in the table below.

Training	Fever	Vomiting	Diarrhea	Shivering	Classification
<i>c</i> ₁	no	no	no	no	healty (H)
c ₂	average	no	no	no	influenza (I)
C3	high	no	no	yes	influenza (I)
C ₄	high	yes	yes	no	salmonella poisoning (S)
<i>C</i> 5	average	no	yes	no	salmonella poisoning (S)
<i>c</i> ₆	no	yes	yes	no	bowel inflammation (B)
C7	average	yes	yes	no	bowel inflammation (B)

Similarity provided by an expert

Siiii _F			
qc	no	avg	high
no	1.0	0.7	0.2
avg	0.5	1.0	0.8
high	0.0	0.3	1.0

cim

$sim_v = sim_D = sim_S$			
q	yes	no	
yes	1.0	0.0	
no	0.2	1.0	

Weights

$$w_r=0.3$$

 $w_v=0.2$
 $W_D=0.2$
 $w_{sh}=0.3$

Classify the new instance q = (high; no; no; no) by applying the KNN algorithm with K=1,2,3

Calculate the similarity between all cases from the case base and the new instance q = (high; no; no; no)

c1 = (no; no; no; no):

$$Sim(q; c1) = 0.3*0.0 + 0.2*1.0 + 0.2*1.0 + 0.3*1.0 = 0.70$$

c2 = (average; no; no; no):

$$Sim(q; c2) = 0.3*0.3 + 0.2*1.0 + 0.2*1.0 + 0.3*1.0 = 0.79$$

c3 = (high; no; no; yes)

$$Sim(q; c3) = 0.3*1.0 + 0.2*1.0 + 0.2*1.0 + 0.3*0.2 = 0.76$$

c4 = (high; yes; yes; no):

$$Sim(q; c4) = 0.3*1.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.68$$

c5 = (average; no; yes; no):

$$Sim(q; c5) = 0.3*0.3 + 0.2*1.0 + 0.2*0.2 + 0.3*1.0 = 0.63$$

c6 = (no; yes; yes; no):

$$Sim(q; c6) = 0.3*0.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.28$$

c7 = (average; yes; yes; no):

$$Sim(q; c7) = 0.3*0.3 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.47$$

sim_F

qc	no	avg	high
no		0.7	0.2
avg	0.5	1.0	8.0
avg high	0.0	0.3	1.0

$$\mathrm{sim}_{\mathrm{V}} \mathrm{=} \mathrm{sim}_{\mathrm{D}} \mathrm{=} \mathrm{sim}_{\mathrm{Sh}}$$

q	yes	no
yes	1.0	0.0
no	0.2	1.0

$$W_{F} = 0.3$$

$$w_{v} = 0.2$$

$$W_D = 0.2$$

$$W_{Sh} = 0.3$$

KNN Classification for K=1

c1 = (no; no; no; no):

$$Sim(q; c1) = 0.3*0.0 + 0.2*1.0 + 0.2*1.0 + 0.3*1.0 = 0.70$$

c2 = (average; no; no; no):

$$Sim(q; c2) = 0.3*0.3 + 0.2*1.0 + 0.2*1.0 + 0.3*1.0 = 0.79$$

c3 = (high; no; no; yes)

$$Sim(q; c3) = 0.3*1.0 + 0.2*1.0 + 0.2*1.0 + 0.3*0.2 = 0.76$$

c4 = (high; yes; yes; no):

$$Sim(q; c4) = 0.3*1.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.68$$

c5 = (average; no; yes; no):

$$Sim(q; c5) = 0.3*0.3 + 0.2*1.0 + 0.2*0.2 + 0.3*1.0 = 0.63$$

c6 = (no; yes; yes; no):

$$Sim(q; c6) = 0.3*0.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.28$$

c7 = (average; yes; yes; no):

$$Sim(q; c7) = 0.3*0.3 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.47$$

sim_F

g high
7 0.2
0.8
3 1.0

Weights $w_F = 0.3$ $w_V = 0.2$ $W_D = 0.2$ $w_{Sh} = 0.3$

Class: Influenza

KNN Classification for K=2

c1 = (no; no; no; no):

$$Sim(q; c1) = 0.3*0.0 + 0.2*1.0 + 0.2*1.0 + 0.3*1.0 = 0.70$$

c2 = (average; no; no; no):

$$Sim(q; c2) = 0.3*0.3 + 0.2*1.0 + 0.2*1.0 + 0.3*1.0 = 0.79$$

$$Sim(q; c3) = 0.3*1.0 + 0.2*1.0 + 0.2*1.0 + 0.3*0.2 = 0.76$$

c4 = (high; yes; yes; no):

$$Sim(q; c4) = 0.3*1.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.68$$

c5 = (average; no; yes; no):

$$Sim(q; c5) = 0.3*0.3 + 0.2*1.0 + 0.2*0.2 + 0.3*1.0 = 0.63$$

c6 = (no; yes; yes; no):

$$Sim(q; c6) = 0.3*0.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.28$$

c7 = (average; yes; yes; no):

$$Sim(q; c7) = 0.3*0.3 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.47$$

sim_F

qc	no	avg	high
no	1.0	0.7	0.2
avg	0.5	1.0	0.8
avg high	0.0	0.3	1.0

Weights $w_F = 0.3$ $w_V = 0.2$ $W_D = 0.2$ $w_{Sh} = 0.3$

C2: Influenza

C3: Influenza

KNN Classification for K=3

c1 = (no; no; no; no):

$$Sim(q; c1) = 0.3*0.0 + 0.2*1.0 + 0.2*1.0 + 0.3*1.0 = 0.70$$

c2 = (average; no; no; no):

$$Sim(q; c2) = 0.3*0.3 + 0.2*1.0 + 0.2*1.0 + 0.3*1.0 = 0.79$$

c3 = (high; no; no; yes):

$$Sim(q; c3) = 0.3*1.0 + 0.2*1.0 + 0.2*1.0 + 0.3*0.2 = 0.76$$

c4 = (high; yes; yes; no):

$$Sim(q; c4) = 0.3*1.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.68$$

c5 = (average; no; yes; no):

$$Sim(q; c5) = 0.3*0.3 + 0.2*1.0 + 0.2*0.2 + 0.3*1.0 = 0.63$$

c6 = (no; yes; yes; no):

$$Sim(q; c6) = 0.3*0.0 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.28$$

c7 = (average; yes; yes; no):

$$Sim(q; c7) = 0.3*0.3 + 0.2*0.2 + 0.2*0.2 + 0.3*1.0 = 0.47$$

sim_F

qc	no	avg	high
no		0.7	0.2
avg	0.5	1.0	0.8
high	0.0	0.3	1.0

Weights

 $W_{F}=0.3$

 $w_{v} = 0.2$

 $W_D = 0.2$

 $W_{Sh} = 0.3$

C1: healty

C2: Influenza

C3: Influenza

Class: Influenza