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Example of a Decision Tree

ID Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Splitting Attributes

Training Data Model:  Decision Tree

Consider the problem of predicting whether a loan borrower will repay the 
loan or default on the loan payments.



Another Example of Decision Tree
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There could be more than one tree that 
fits the same data!

ID Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 



Apply Model to Test Data

Home 
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MarSt

Income
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Owner 
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Defaulted 
Borrower 

No Married 80K ? 
10 

 

Test Data
Start from the root of tree.
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MarSt

Income

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

No Married 80K ? 
10 

 

Test Data

Home 
Owner



Apply Model to Test Data

MarSt

Income

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

 No Married 80K ? 
10 

 

Test Data

Home 
Owner



Apply Model to Test Data

MarSt

Income

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

No Married 80K ? 
10 

 

Test Data

Home 
Owner



Apply Model to Test Data

MarSt

Income

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

No Married 80K ? 
10 

 

Test Data

Home 
Owner



Apply Model to Test Data

MarSt

Income

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

No Married 80K ? 
10 

 

Test Data

Assign Defaulted to
“No”

Home 
Owner



Decision Tree Classification Task

Apply 
Model

Induction

Deduction

Learn 
Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 
Test Set

Tree
Induction
algorithm

Training Set

Decision 
Tree



Decision Tree Induction

• Many Algorithms:
• Hunt’s Algorithm (one of the earliest)
• CART
• ID3, C4.5
• SLIQ,SPRINT



General Structure of Hunt’s Algorithm

• Let Dt be the set of training records that reach a node t

• General Procedure:
• If Dt contains records that belong the same class yt, 

then t is a leaf node labeled as yt
• If Dt contains records that belong to more than 

one class, use an attribute test to split the data 
into smaller subsets. Recursively apply the 
procedure to each subset.

ID Home 
Owner 

Marital 
Status 

Annual 
Income 

Defaulted 
Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Hunt’s Algorithm
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Design Issues of Decision Tree Induction

• Greedy strategy: 
• the number of possible decision trees can be very large, many decision tree 

algorithms employ a heuristic-based approach to guide their search in the 
vast hypothesis space.

• Split the records based on an attribute test that optimizes certain criterion.



Tree Induction

• How should training records be split?
• Method for specifying test condition depending on attribute types
• Measure for evaluating the goodness of a test condition

• How should the splitting procedure stop?
• Stop splitting if all the records belong to the same class or have identical 

attribute values
• Early termination 



Methods for Expressing Test Conditions

• Depends on attribute types
• Binary
• Nominal
• Ordinal
• Continuous

• Depends on number of ways to split
• 2-way split
• Multi-way split



Test Condition for Nominal Attributes

• Multi-way split:
• Use as many partitions as distinct values. 

• Binary split:
• Divides values into two subsets

Marital
Status

Single Divorced Married

{Single} {Married,
Divorced}

Marital
Status

{Married} {Single,
Divorced}

Marital
Status

OR OR

{Single,
Married}

Marital
Status

{Divorced}



Test Condition for Ordinal Attributes

• Multi-way split:
• Use as many partitions as 

distinct values

• Binary split:
• Divides values into two subsets
• Preserve order property among 

attribute values

Large

Shirt
Size

Medium Extra LargeSmall

{Medium, Large,
Extra Large}

Shirt
Size

{Small}{Large,
Extra Large}

Shirt
Size

{Small,
Medium}

{Medium,
Extra Large}

Shirt
Size

{Small,
Large}

This grouping 
violates order 
property



Test Condition for Continuous Attributes

Annual
Income
> 80K?

Yes No

Annual
Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K



Splitting Based on Continuous Attributes

• Different ways of handling
• Discretization to form an ordinal categorical attribute

Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), 
or clustering.

• Static – discretize once at the beginning
• Dynamic – repeat at each node

• Binary Decision: (A < v) or (A ³ v)
• consider all possible splits and finds the best cut
• can be more compute intensive



How to determine the Best Split

Gender

C0: 6
C1: 4

C0: 4
C1: 6

C0: 1
C1: 3

C0: 8
C1: 0

C0: 1
C1: 7

Car
Type

C0: 1
C1: 0

C0: 1
C1: 0

C0: 0
C1: 1

Customer
ID

...

Yes No Family

Sports

Luxury c1 c10

c20

C0: 0
C1: 1

...

c11

Before Splitting: 10 records of class 0,
10 records of class 1

Which test condition is the best?



How to determine the Best Split

• Greedy approach: 
• Nodes with purer / homogeneous class distribution are preferred

• Need a measure of node impurity:

C0: 5
C1: 5

C0: 9
C1: 1

High degree of impurity,

Non-homogeneous

Low degree of impurity,

Homogeneous



Measures of Node Impurity

• Gini Index

• Entropy

• Misclassification Error
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Finding the Best Split

1. Compute impurity measure (P) before splitting
2. Compute impurity measure (M) after splitting

• Compute impurity measure of each child node
• M is the weighted impurity of children

3. Choose the attribute test condition that produces the highest gain (Gain 
= P-M) or equivalently, lowest impurity measure after splitting (M) 



Finding the Best Split

B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting:

C0 N10 
C1 N11 

 

 

C0 N20 
C1 N21 

 

 

C0 N30 
C1 N31 

 

 

C0 N40 
C1 N41 

 

 

C0 N00 
C1 N01 

 

 

P

M11 M12 M21 M22

M1 M2
Gain = P – M1    vs      P – M2



Measure of Impurity: GINI

• Gini Index for a given node t :

(NOTE: p( j | t) is the relative frequency of class j at node t).

• Maximum (1 - 1/nc) when records are equally distributed among all classes, 
implying least interesting information

• Minimum (0.0) when all records belong to one class, implying most 
interesting information

å-=
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tjptGINI 2)]|([1)(



Measure of Impurity: GINI

• Gini Index for a given node t :

(NOTE: p( j | t) is the relative frequency of class j at node t).

• For 2-class problem (p, 1 – p):
• GINI = 1 – p2 – (1 – p)2 = 2p (1-p)

å-=
j

tjptGINI 2)]|([1)(

C1 0
C2 6
Gini=0.000

C1 2
C2 4
Gini=0.444

C1 3
C2 3
Gini=0.500

C1 1
C2 5
Gini=0.278



Computing Gini Index of a Single Node

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0 

å-=
j

tjptGINI 2)]|([1)(

P(C1) = 1/6          P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6          P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444



Gini Index for a Collection of Nodes

• When a node p is split into k partitions (children)

where, ni = number of records at child i,
n = number of records at parent node p.

• Choose the attribute that minimizes weighted average Gini index of the children

• Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT
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Binary Attributes: Computing GINI Index

• Splits into two partitions
• Effect of Weighing partitions: 

• Larger and Purer Partitions are sought for.

B?

Yes No

Node N1 Node N2

 Parent 
C1 7 
C2 5 

Gini = 0.486 
 

 N1 N2 
C1 5 2 
C2 1 4 
Gini=0.361 

 

 

Gini(N1) 
= 1 – (5/6)2 – (1/6)2

= 0.278 

Gini(N2) 
= 1 – (2/6)2 – (4/6)2

= 0.444

Weighted Gini of N1 N2
= 6/12 * 0.278 + 

6/12 * 0.444
= 0.361

Gain = 0.486 – 0.361 = 0.125



Categorical Attributes: Computing Gini Index

• For each distinct value, gather counts for each class in the dataset
• Use the count matrix to make decisions

 CarType 
 {Sports, 

Luxury} {Family} 

C1 9 1 
C2 7 3 

Gini 0.468 
 

 

 CarType 
 {Sports}  {Family,

Luxury} 
C1 8 2 
C2 0 10 

Gini 0.167 
 

 

 CarType 
 Family Sports Luxury 

C1 1 8 1 
C2 3 0 7 

Gini 0.163 
 

 

Multi-way split Two-way split 
(find best partition of values)

Which of these is the best?



Continuous Attributes: Computing Gini Index

• Use Binary Decisions based on one value
• Several Choices for the splitting value

• Number of possible splitting values = Number 
of distinct values

• Each splitting value has a count matrix 
associated with it
• Class counts in each of the partitions, A < v 

and A >= v
• Simple method to choose best v

• For each v, scan the database to gather count 
matrix and compute its Gini index

• Computationally Inefficient! (O(N2)) 
Repetition of work.

ID Home 
Owner 

Marital 
Status 

Annual 
Income Defaulted 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

≤ 80 > 80

Defaulted Yes 0 3

Defaulted No 3 4

Annual Income ?



Cheat No No No Yes Yes Yes No No No No 

Annual Income  

60 70 75 85 90 95 100 120 125 220 

55 65 72 80 87 92 97 110 122 172 230  

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= > 

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0 

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0 

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420 
 

Continuous Attributes: Computing Gini Index...

 For efficient computation O(N log N): for each attribute,
– Sort the attribute on values
– Linearly scan these values, each time updating the count matrix and computing gini index
– Choose the split position that has the least Gini index

Split Positions
Sorted Values
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Measure of Impurity: Entropy

• Entropy at a given node t:

(NOTE: p( j | t) is the relative frequency of class j at node t).

• Maximum (log nc) when records are equally distributed among all classes implying least 
information

• Minimum (0.0) when all records belong to one class, implying most information

• Entropy based computations are quite similar to the GINI index computations

å-=
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Computing Entropy of a Single Node

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0 

P(C1) = 1/6          P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65

P(C1) = 2/6          P(C2) = 4/6

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92
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Computing Information Gain After Splitting

• Information Gain: 

Parent Node, p is split into k partitions;
ni is number of records in partition i

• Measures Reduction in Entropy achieved because of the split. Choose the 
split that achieves most reduction (maximizes GAIN)

• Used in the ID3 and C4.5 decision tree algorithms
• Disadvantage: Tends to prefer splits that result in large number of partitions, 

each being small but pure.

÷
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Problem with large number of partitions

• Node impurity measures tend to prefer splits that result in large 
number of partitions, each being small but pure

• Customer ID has highest information gain because entropy for all the children is zero
• Can we use such a test condition on new test instances?

Gender

C0: 6
C1: 4

C0: 4
C1: 6

C0: 1
C1: 3

C0: 8
C1: 0

C0: 1
C1: 7

Car
Type

C0: 1
C1: 0

C0: 1
C1: 0

C0: 0
C1: 1

Customer
ID

...

Yes No Family

Sports

Luxury c1 c10

c20

C0: 0
C1: 1

...

c11



Solution

• A low impurity value alone is insufficient to find a good attribute test condition 
for a node 

• Solution: Consider the number of children produced by the splitting attribute in 
the identification of the best split 

• High number of child nodes implies more complexity

• Method 1: Generate only binary decision trees
• This strategy is employed by decision tree classifiers such as CART

• Method 2: Modify the splitting criterion to take into account the number of 
partitions produced by the attribute 



Gain Ratio

• Gain Ratio: 

Parent Node, p is split into k partitions
ni is the number of records in partition i

• Adjusts Information Gain by the entropy of the partitioning (SplitINFO). 
• Higher entropy partitioning (large number of small partitions) is penalized!

• Used in C4.5 algorithm
• Designed to overcome the disadvantage of Information Gain

SplitINFO
GAIN

GainRATIO Split

split
= å

=
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n
n

n
nSplitINFO
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Gain Ratio

• Gain Ratio: 

Parent Node, p is split into k partitions
ni is the number of records in partition i

SplitINFO
GAIN

GainRATIO Split

split
= å

=
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k

i

ii

n
n

n
nSplitINFO
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log

 CarType 
 {Sports, 

Luxury} {Family} 

C1 9 1 
C2 7 3 

Gini 0.468 
 

 

 CarType 
 {Sports}  {Family,

Luxury} 
C1 8 2 
C2 0 10 

Gini 0.167 
 

 

 CarType 
 Family Sports Luxury 

C1 1 8 1 
C2 3 0 7 

Gini 0.163 
 

 

SplitINFO = 1.52 SplitINFO = 0.72 SplitINFO = 0.97



Measure of Impurity: Classification Error

• Classification error at a node t :

• Maximum (1 - 1/nc) when records are equally distributed among all classes, 
implying least interesting information

• Minimum (0) when all records belong to one class, implying most interesting 
information

)|(max1)( tiPtError
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Computing Error of a Single Node

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Error = 1 – max (0, 1) = 1 – 1 = 0 

P(C1) = 1/6          P(C2) = 5/6

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 2/6          P(C2) = 4/6

Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3

)|(max1)( tiPtError
i

-=



Comparison among Impurity Measures

For a 2-class problem:

Consistency among the impurity mesures
• if a node N1 has lower entropy than node

N2, then the Gini index and error rate of N1 
will also be lower than that of N2

The attribute chosen as splitting criterion by 
the impurity measures can still be different!



Misclassification Error vs Gini Index

A?

Yes No

Node N1 Node N2

 Parent 
C1 7 
C2 3 
Gini = 0.42 

 

 N1 N2 
C1 3 4 
C2 0 3 
Gini=0.342 

 

 

Gini(N1) 
= 1 – (3/3)2 – (0/3)2

= 0 

Gini(N2) 
= 1 – (4/7)2 – (3/7)2

= 0.489

Gini(Children) 
= 3/10 * 0 
+ 7/10 * 0.489
= 0.342

Gini improves but 
error remains the 
same!!



Misclassification Error vs Gini Index

A?

Yes No

Node N1 Node N2

 Parent 
C1 7 
C2 3 
Gini = 0.42 

 

 N1 N2 
C1 3 4 
C2 0 3 
Gini=0.342 

 

 

 N1 N2 
C1 3 4 
C2 1 2 
Gini=0.416 

 

 

Misclassification error for all three cases = 0.3 ! 



Stopping Criteria for Tree Induction

• Stop expanding a node when all the 
records belong to the same class

• Stop expanding a node when all the 
records have similar attribute 
values

• Early termination (discussed later)

MarSt

Income

YN

Y

N

Yes No

Single, Divorced

< 80K > 80K

Home 
Owner

Y, Y, Y, N



Algorithms: ID3, C4.5, C5.0, CART 

• ID3 uses the Hunt’s algorithm with information 
gain criterion and gain ratio

• C4.5 improves ID3
• Needs entire data to fit in memory
• Handles missing attributes and continuous attributes
• Performs tree post-pruning
• C5.0 is the current commercial successor of C4.5 
• Unsuitable for Large Datasets

• CART builds multivariate decision (binary) trees



Advantages of Decision Tree

• Easy to interpret for small-sized trees
• Accuracy is comparable to other classification techniques for many 

simple data sets
• Robust to noise (especially when methods to avoid overfitting are 

employed)
• Can easily handle redundant or irrelevant attributes
• Inexpensive to construct
• Extremely fast at classifying unknown record
• Handle Missing Values



Irrelevant Attributes

• Irrelevant attributes are poorly associated with the target class labels, so they 
have little or no gain in purity

• In case of a large number of irrelevant attributes, some of them may be 
accidentally chosen during the tree-growing process 

• Feature selection techniques can help to eliminate the irrelevant attributes 
during preprocessing



Redundant Attributes 

• Decision trees can handle the presence of redundant attributes 

• An attribute is redundant if it is strongly correlated with another 
attribute in the data

• Since redundant attributes show similar gains in purity if they are 
selected for splitting, only one of them will be selected as an attribute 
test condition in the decision tree algorithm. 



Advantages of Decision Tree

• Easy to interpret for small-sized trees
• Accuracy is comparable to other classification techniques for many 

simple data sets
• Robust to noise (especially when methods to avoid overfitting are 

employed)
• Can easily handle redundant or irrelevant attributes
• Inexpensive to construct
• Extremely fast at classifying unknown record
• Handle Missing Values



Computational Complexity 

• Finding an optimal decision tree is NP-hard

• Hunt’s Algorithm uses a greedy, top-down, recursive partitioning strategy for 
growing a decision tree

• Such techniques quickly construct a reasonably good decision tree even when the 
training set size is very large. 

• Construction DT Complexity: O(M N log N) where M=n. attributes, N=n. instances

• Once a decision tree has been built, classifying a test record is extremely fast, 
with a worst-case complexity of O(w), where w is the maximum depth of the 
tree. 



Handling Missing Attribute Values

•Missing values affect decision tree construction in three 
different ways:

• Affects how impurity measures are computed
• Affects how to distribute instance with missing value to child nodes
• Affects how a test instance with missing value is classified



Computing Impurity Measure
Tid Refund Marital 

Status 
Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 ? Single 90K Yes 
10 

 

 Class 
= Yes 

Class 
= No 

Refund=Yes 0 3 
Refund=No 2 4 

 

Refund=? 1 0 
 

Split on Refund:

Entropy(Refund=Yes) = 0

Entropy(Refund=No) 
= -(2/6)log(2/6) – (4/6)log(4/6) = 0.9183

Entropy(Children) 
= 0.3 (0) + 0.6 (0.9183) = 0.551

Gain = 0.9 ´ (0.8813 – 0.551) = 0.3303

Missing 
value

Before Splitting:
Entropy(Parent) 
= -0.3 log(0.3)-(0.7)log(0.7) = 0.8813



Distribute Instances
Tid Refund Marital 

Status 
Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 
10 

 

Refund
Yes No

Class=Yes 0 

Class=No 3 
 

 

Cheat=Yes 2 

Cheat=No 4 
 

 

Refund
Yes

Tid Refund Marital 
Status 

Taxable 
Income Class 

10 ? Single 90K Yes 
10 

 

No

Class=Yes 2 + 6/9 

Class=No 4 
 

 

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with 
weight = 3/9 and to the right child with 
weight = 6/9

Class=Yes 0 + 3/9 

Class=No 3 
 

 



Classify Instances

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, 
Divorced

< 80K > 80K

Married Single Divorced Total

Class=No 3 1 0 4

Class=Yes 6/9 1 1 2.67

Total 3.67 2 1 6.67

Tid Refund Marital 
Status 

Taxable 
Income Class 

11 No ? 85K ? 
10 

 

New record:

Probability that Marital Status 
= Married is 3.67/6.67

Probability that Marital Status 
={Single,Divorced} is 3/6.67

Probabilistic split method (C4.5)



Disadvantages

• Space of possible decision trees is exponentially large. Greedy approaches are 
often unable to find the best tree.

• Does not take into account interactions between attributes

• Each decision boundary involves only a single attribute



Decision Boundary

y < 0.33?

     : 0
     : 3

     : 4
     : 0

y < 0.47?

    : 4
    : 0

     : 0
     : 4

x < 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

• Border line between two neighboring regions of different 
classes is known as decision boundary

• Decision boundary is parallel to axes because test 
condition involves a single attribute at-a-time



Oblique Decision Trees

x + y < 1

Class = + Class =     

• Test condition may involve multiple attributes

• More expressive representation

• Finding optimal test condition is computationally expensive



Limitations of single attribute-based decision boundaries

Both positive (+) and 
negative (o) classes 
generated from skewed 
Gaussians with centers 
at (8,8) and (12,12) 
respectively.  

Test Condition
x + y < 20 



Other Issues

• Data Fragmentation
• Tree Replication



Data Fragmentation

• Number of instances gets smaller as you traverse down the tree
• Number of instances at the leaf nodes could be too small to make any 

statistically significant decision



Expressiveness

• Decision tree provides expressive representation for learning discrete-
valued function

• Every discrete-valued function can be represented as an assignment table, 
where every unique combination of discrete attributes is assigned a class 
label. 

• But they do not generalize well to certain types of Boolean functions
• Example: parity function: 

• Class = 1 if there is an even number of Boolean attributes with truth value = True
• Class = 0 if there is an odd number of Boolean attributes with truth value = True

• For accurate modeling, must have a complete tree

• Not expressive enough for modeling continuous variables
• Particularly when test condition involves only a single attribute at-a-time



Tree Replication
P

Q R

S 0 1

0 1

Q

S 0

0 1

Same subtree appears in multiple branches



Practical Issues of Classification

• Underfitting and Overfitting
• Costs of Classification



Classification Errors

• Training errors (apparent errors)
• Errors committed on the training set

• Test errors
• Errors committed on the test set

• Generalization errors
• Expected error of a model over random selection of records from same 

distribution



Underfitting and Overfitting

Overfitting

Underfitting: when model is too simple, both training and test errors are large 



Example Data Set
Two class problem: 
+ : 5200 instances

• 5000 instances generated 
from a Gaussian centered at 
(10,10)

• 200 noisy instances added

o : 5200 instances 
• Generated from a uniform 
distribution

10 % of the data used for 
training and 90% of the 
data used for testing



Increasing number of nodes in Decision Trees



Decision Tree with 4 nodes

Decision Tree

Decision boundaries on Training data



Decision Tree with 50 nodes

Decision TreeDecision Tree

Decision boundaries on Training data



Which tree is better?

Decision Tree with 4 nodes

Decision Tree with 50 nodes

Which tree is better ?



Model Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting: when model is too complex, training error is small but test error is large



Model Overfitting

Using twice the number of data instances

• If training data is under-representative, testing errors increase and training errors 
decrease on increasing number of nodes

• Increasing the size of training data reduces the difference between training and 
testing errors at a given number of nodes



Model Overfitting

Using twice the number of data instances

• If training data is under-representative, testing errors increase and training errors 
decrease on increasing number of nodes

• Increasing the size of training data reduces the difference between training and 
testing errors at a given number of nodes

Decision Tree with 50 nodes Decision Tree with 50 nodes



Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult to 
predict correctly the class labels of that region 

- Insufficient number of training records in the region causes the decision 
tree to predict the test examples using other training records that are 
irrelevant to the classification task



Overfitting due to Noise 

Decision boundary is distorted by noise point



Notes on Overfitting

• Overfitting results in decision trees that are more complex than 
necessary

• Training error no longer provides a good estimate of how well the 
tree will perform on previously unseen records

• Need new ways for estimating errors



Model Selection

• Performed during model building

• Purpose is to ensure that model is not overly complex (to avoid 
overfitting)

• Need to estimate generalization error
• Using Validation Set

• Incorporating Model Complexity

• Estimating Statistical Bounds



Model Selection Using Validation Set

• Divide training data into two parts:
• Training set: 

• use for model building
• Validation set: 

• use for estimating generalization error
• Note: validation set is not the same as test set

• Drawback:
• Less data available for training



Data Partitioning

Dataset

Train Test Holdout (e.g.70/30)

Train TestValidation

Train the model for parameter selection Validate the model 
(early stopping, 

parameter
selection, etc.)

• Test the model
• Compare different

models once 
parameters have
been selected

Cross Validation (check potential dataset bias) 

Test

Train the model for final testing



• Given two models of similar generalization errors, one should prefer 
the simpler model over the more complex model

• For complex models, there is a greater chance that it was fitted 
accidentally by errors in data

• Therefore, one should include model complexity when evaluating a 
model

Occam’s Razor



Model Selection Incorporating Model Complexity

• Rationale: Occam’s Razor
• Given two models of similar generalization errors,  one should prefer the 

simpler model over the more complex model

• A complex model has a greater chance of being fitted accidentally by errors in 
data

• Therefore, one should include model complexity when evaluating a model

Gen. Error(Model) = Train. Error(Model, Train. Data) + 
x Complexity(Model)!



Estimating Generalization Errors

• Re-substitution errors: error on training (S err(t))

• Generalization errors: error on testing (S err’(t))

• Methods for estimating generalization errors:
• Pessimistic approach
• Optimistic approach
• Reduced error pruning (REP):

• uses validation data set to estimate generalization error



Estimating the Complexity of Decision Trees

• Pessimistic Error Estimate of decision tree T with k leaf nodes:

• err(T): error rate on all training records 
• W: Relative cost of adding a leaf node
• k: number of leaf nodes
• Ntrain: total number of training records



Estimating the Complexity of Decision Trees: Example

+: 5
-: 2

+: 1
-: 4

+: 3
-: 0

+: 3
-: 6

+: 3
-: 0

+: 0
-: 5

+: 3
-: 1

+: 1
-: 2

+: 0
-: 2

+: 2
-: 1

+: 3
-: 1

Decision Tree, TL Decision Tree, TR

e(TL) = 4/24

e(TR) = 6/24

W = 1

egen(TL) = 4/24 + 1*7/24 = 11/24 = 0.458

egen(TR) = 6/24 + 1*4/24 = 10/24 = 0.417



Estimating the Complexity of Decision Trees

• Re-substitution Estimate: 
• Using training error as an optimistic estimate of generalization error
• Referred to as optimistic error estimate

+: 5
-: 2

+: 1
-: 4

+: 3
-: 0

+: 3
-: 6

+: 3
-: 0

+: 0
-: 5

+: 3
-: 1

+: 1
-: 2

+: 0
-: 2

+: 2
-: 1

+: 3
-: 1

Decision Tree, TL Decision Tree, TR

e(TL) = 4/24

e(TR) = 6/24



How to Address Overfitting…

• Pre-Pruning (Early Stopping Rule)
• Stop the algorithm before it becomes a fully-grown tree
• Typical stopping conditions for a node:

• Stop if all instances belong to the same class
• Stop if all the attribute values are the same

• More restrictive conditions:
• Stop if number of instances is less than some user-specified threshold
• Stop if class distribution of instances are independent of the available features (e.g., 

using c 2 test)
• Stop if expanding the current node does not improve impurity

measures (e.g., Gini or information gain).
• Stop if estimated generalization error falls below certain threshold



How to Address Overfitting…

• Post-pruning
– Grow decision tree to its entirety
– Trim the nodes of the decision tree in a bottom-up fashion
– If generalization error improves after trimming, replace sub-tree by a leaf 

node.
– Class label of leaf node is determined from majority class of instances in the 

sub-tree
– Can use MDL for post-pruning



Example of Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10
Error = 10/30

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

= (9 + 4 ´ 0.5)/30 = 11/30

PRUNE!

Class = Yes 8
Class = No 4

Class = Yes 3
Class = No 4

Class = Yes 4
Class = No 1

Class = Yes 5
Class = No 1



Decision Trees for Regression

• The same induction and application 
procedures can be used.

• The only differences are:
• When leaves are not pure, the average 

value is returned as prediction
• Different optimization criterion must 

be used such as
• MSE
• MAE

MarSt

Income

4.21.2

3.0

3.8

Yes No

Single, Divorced

< 80K > 80K

Home 
Owner

3.0, 2.0, 4.0, 3.0
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