DATA MINING 1 Naïve Bayes Classifiers

Dino Pedreschi, Riccardo Guidotti

Slides edited from Tan, Steinbach, Kumar, Introduction to Data Mining

Probability Notions and Bayes Theorem

- A probabilistic framework for solving classification problems.
- Let *P* be a probability function that assigns a number between 0 and 1 to events.
- *X* = *x* an events is happening.
- P(X = x) is the probability that events X = x.
- Joint Probability P(X = x, Y = y)
- Conditional Probability P(Y = y | X = x)
- Relationship: P(X,Y) = P(Y|X) P(X) = P(X|Y) P(Y)
- Bayes Theorem: P(Y|X) = P(X|Y)P(Y) / P(X)
- Another Useful Property: P(X = x) = P(X = x, Y = 0) + P(X = x, Y = 1)

Bayes Theorem: Example

- Consider a football game. Team 0 wins 65% of the time, Team 1 the remaining 35%. Among the game won by Team 1, 75% of them are won playing at home. Among the games won by Team 0, 30% of them are won at Team 1's field.
- If Team 1 is hosting the next match, which team will most likely win?
- Team 0 wins: P(Y = 0) = 0.65
- Team 1 wins: P(Y = 1) = 0.35
- Team 1 hosted the match won by Team 1: P(X = 1 | Y = 1) = 0.75
- Team 1 hosted the match won by Team 0: P(X = 1 | Y = 0) = 0.30
- Objective P(Y = 1 | X = 1)

Bayes Theorem: Example

- P(Y = 1 | X = 1) = P(X = 1 | Y = 1)P(Y = 1) / P(X = 1) =
- = $0.75 \times 0.35 / (P(X = 1, Y = 1) + P(X = 1, Y = 0))$
- = $0.75 \times 0.35 / (P(X = 1 | Y = 1)P(Y=1) + P(X = 1 | Y = 0)P(Y=0))$
- = $0.75 \times 0.35 / (0.75 \times 0.35 + 0.30 \times 0.65)$
- = 0.5738

• Therefore Team 1 has a better chance to win the match

Bayes Theorem for Classification

- X denotes the attribute sets, $X = \{X_1, X_2, \dots, X_d\}$
- Y denotes the class variable
- We treat the relationship probabilistically using P(Y|X)

Bayes Theorem for Classification

- Learn the posterior $P(Y \mid X)$ for every combination of X and Y.
- By knowing these probabilities, a test record X' can be classified by finding the class Y' that maximizes the posterior probability P(Y'|X').
- This is equivalent of choosing the value of Y' that maximizes P(X'|Y')P(Y').
- How to estimate it?

Naïve Bayes Classifier

- It estimates the class-conditional probability by assuming that the attributes are conditionally independent given the class label y.
- The conditional independence is stated as:
- $P(X|Y = y) = \prod_{i=1}^{d} P(X_i|Y = y)$
- where each attribute set $X = \{X_1, X_2, \dots, X_d\}$

Conditional Independence

- Given three variables Y, X₁, X₂ we can say that Y is independent from X₁ given X₂ if the following condition holds:
- $P(Y \mid X_1, X_2) = P(Y \mid X_2)$
- With the conditional independence assumption, instead of computing the class-conditional probability for every combination of X we only have to estimate the conditional probability of each X_i given Y.
- Thus, to classify a record the naive Bayes classifier computes the posterior for each class Y and takes the maximum class as result

•
$$P(Y|X) = P(Y) \prod_{i=1}^{d} P(X_i|Y = y) / P(X)$$

How to estimate ?

How to Estimate Probability From Data

- Class $P(Y) = N_v / N$
- N_v number of records with outcome y
- N number of records
- Categorical attributes
- $P(X = x | Y = y) = N_{xy} / N_{y}$
- N_{xy} records with value x and outcome y
- P(Evade = Yes) = 3/10
- P(Marital Status = Single | Yes) = 2/3

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95 K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

How to Estimate Probability From Data

Continuous attributes

- Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
- Two-way split: (X < v) or (X > v)
 - choose only one of the two splits as new attribute
- Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(X|y)

How to Estimate Probability From Data

Normal distribution

• P(X_i = x_i | Y = y) =
$$\frac{1}{\sqrt{2\pi}\sigma_{ij}}e^{-\frac{(x_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- μ_{ij} can be estimated as the mean of X_i for the records that belongs to class y_i.
- Similarly, σ_{ij} as the standard deviation.
- P(Income = 120 | No) = 0.0072
 - mean = 110
 - std dev = 54.54

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95 K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example

Given X = {Refund = No, Married, Income = 120k}

- P(Refund=Yes|No) = 3/7
- P(Refund=No|No) = 4/7
- P(Refund=Yes|Yes) = 0
- P(Refund=No|Yes) = 1
- P(Marital Status=Single|No) = 2/7
- P(Marital Status=Divorced|No)=1/7
- P(Marital Status=Married | No) = 4/7
- P(Marital Status=Single | Yes) = 2/3
- P(Marital Status=Divorced|Yes)=1/3
- P(Marital Status=Married|Yes) = 0/3 For taxable income:
- If class=No:
 - mean=110, variance=2975
- If class=Yes:
 - mean=90, variance=25

- P(X|Class=No) = P(Refund=No|Class=No) × P(Married|Class=No) × P(Income=120K|Class=No)
 - $= 4/7 \times 4/7 \times 0.0072$
 - = 0.0024

- × P(Married| Class=Yes)
- × P(Income=120K| Class=Yes)
 - $= 1 \times 0 \times 1.2 \times 10-9$

= 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X) => Class = No

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

M-estimate of Conditional Probability

- If one of the conditional probability is zero, then the entire expression becomes zero.
- For example, given X = {Refund = Yes, Divorced, Income = 120k}, if P(Divorced | No) is zero instead of 1/7, then
 - $P(X | No) = 3/7 \times 0 \times 0.00072 = 0$
 - P(X|Yes) = 0 x 1/3 x 10⁻⁹ = 0
- M-estimate P(X|Y) = $\frac{N_{xy}+mp}{N_y+m}$ (if P(X|Y) = $\frac{N_{xy}+1}{N_y+|Y|}$ is Laplacian estimation)
- *m* is a parameter, *p* is a user-specified parameter (e.g. probability of observing x_i among records with class y_j).
- In the example with m = 2 and p = 1/m = 1/2 (i.e., Laplacian estimation) we have
- P(Divorced |Yes) = (0+2x1/2)/(3+2) = 1/5

Naïve Bayes Classifier

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN, not treated in this course)

References

• Bayesian Classifiers. Chapter 5.3. Introduction to Data Mining.

Exercises - NBC

	Rimon .			
Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

P(p) = 9/14	
P(n) = 5/14	

outlook	
P(sunny p) =	P(sunny n) =
P(overcast p) =	P(overcast n) =
P(rain p) =	P(rain n) =
temperature	
P(hot p) =	P(hot n) =
P(mild p) =	P(mild n) =
P(cool p) =	P(cool n) =
humidity	
P(high p) =	P(high n) =
P(normal p) =	P(normal n) =
windy	
P(true p) =	P(true n) =
P(false p) =	P(false n) =

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	P
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	P
sunny	mild	high	false	N
sunny	cool	normal	false	P
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	P
overcast	hot	normal	false	P
rain	mild	high	true	N

P(p) =	
P(n) =	

outlook	
P(sunny p) =	P(sunny n) =
P(overcast p) =	P(overcast n) =
P(rain p) =	P(rain n) =
temperature	
P(hot p) =	P(hot n) =
P(mild p) =	P(mild n) =
P(cool p) =	P(cool n) =
humidity	
P(high p) =	P(high n) =
P(normal p) =	P(normal n) =
windy	
P(true p) =	P(true n) =
P(false p) =	P(false n) =

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	P
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	P
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

P(p) = 9/14	
P(n) = 5/14	

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	P(cool n) = 1/5
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 1/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

P(p) = 9/14	Outlook	Temeprature	Humidity	Windy	Class
P(n) = 5/14	rain	hot	high	false	?

outlook		
P(sunny p) = 2/9	P(sunny n) = 3/5	
P(overcast p) = 4/9	P(overcast n) = 0	
P(rain p) = 3/9	P(rain n) = 2/5] P(X
temperature		
P(hot p) = 2/9	P(hot n) = 2/5	
P(mild p) = 4/9	P(mild n) = 2/5	
P(cool p) = 3/9	P(cool n) = 1/5	
humidity		
P(high p) = 3/9	P(high n) = 4/5	
P(normal p) = 6/9	P(normal n) = 1/5	
windy		
P(true p) = 3/9	P(true n) = 3/5	
P(false p) = 6/9	P(false n) = 2/5	

P(p) = 9/14	Outlook	Temeprature	Humidity	Windy	Class
P(n) = 5/14	rain	hot	high	false	N

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	P(cool n) = 1/5
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 1/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

 $P(X|p) \cdot P(p) = P(rain|p) \cdot P(hot|p) \cdot P(high|p) \cdot P(false|p) \cdot P(p) =$

 $P(X|n) \cdot P(n) =$ P(rain|n) \cdot P(hot|n) \cdot P(high|n) \cdot P(false| n) \cdot P(n) =

P(p) = 9/14	Outlook	Temeprature	Humidity	Windy	Class
P(n) = 5/14	rain	hot	high	false	N

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	P(cool n) = 1/5
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 1/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

 $P(X|p) \cdot P(p) = P(rain|p) \cdot P(hot|p) \cdot P(high|p) \cdot P(false|p) \cdot P(p) = 3/9 \cdot 2/9 \cdot 3/9 \cdot 6/9 \cdot 9/14 = 0.010582$

 $P(X|n) \cdot P(n) =$ P(rain|n) \cdot P(hot|n) \cdot P(high|n) \cdot P(false| n) \cdot P(n) = 2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 \cdot 5/14 = 0.018286

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

a) Naive Bayes (**3 points**)

Given the training set below, build a Naive Bayes classification model (i.e. the corresponding table of probabilities) using (i) the normal formula and (ii) using Laplace formula. What are the main effects of Laplace on the models?

А	В	class
no	green	N
no	red	Y
yes	green	N
no	red	N
no	red	Y
no	green	Y
yes	green	N

Answer:										
Normal		Y		N			Y		N	
			3		4			0.43		0.57
		AIY		A N			AIY	A	A N	
	yes		0		2	yes		0.00		0.50
	no		3		2	no		1.00		0.50
		B Y		B N			B Y	E	3 N	
	green		1		3	green		0.33		0.75
	red		2		1	red		0.67		0.25
		V		N			V		N	
Laplace		T	2	IN				0.40	IN	0.57
			3		4			0.43		0.57
	_	AIY		AIN			AIY	A	A N	
	yes		0		2	yes		0.20		0.50
	no		3		2	no		0.80		0.50
		B Y		B N			B Y	E	3 N	
	green		1		3	green		0.40		0.67
	red		2		1	red		0.60		0.33

a) Naive Bayes (3 points)

Given the training set on the left, build a Naive Bayes classification model and apply it to the test set on the right.

SCORE	FIRST-TRY	FACULTY	class				
good	no	science	Y]			
medium	yes	science	N				
bad	yes	science	N				
bad	yes	humanities	Y	SCORE	FIRST-TRY	FACULTY	class
good	no	humanities	N	bad	no	humanities	01000
good	no	science	Y	good	yes	science	
medium	no	humanities	Y	medium	yes	humanities	