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Intuition

 Maximum Likelihood Estimation (MLE) is a method that determines
values for the parameters of a model.

* The parameter values are found such that they maximize the
likelihood that the process described by the model produced the data
that were actually observed.



Which model fit best?

Normal Gaussian distribution

Parameters: mean and standard deviation
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MLE Example

The goal of maximum likelihood is to find the
optimal way to fit a distribution to the data.
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MLE Example

There are lots of different types of distributions
for different types of data...
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MLE Example

There are lots of different types of distributions
for different types of data...

Normal

low Mouse weight » High




MLE Example

There are lots of different types of distributions
for different types of data...

Normal Exponential
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MLE Example

There are lots of different types of distributions
for different types of data...

NN

Normal Exponential Gamma
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M LE Exa m p I e The reason you want to fit a distribution to your

data is it can be easier to work with and it is also
more general - it applies to every experiment of
the same type.

/N

Normal Exponential Gamma
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MLE Example

In this case, we think that the weights might be normally distributed...
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MLE Example

That means we think it came from this
type of distribution: l
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MLE Example

/\ N

Normal distributions come in all kinds of shapes and sizes... —————



MLE Example

Once we settle on the shape, we have to figure
out where to center the thing...

Is one location “better” than another?
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MLE Example

Before we get too technical, lets just pick any old
normal distribution and see how well it fits the
data.




MLE Example

This distribution says “most of
the values you measure should
be near my average!”




MLE Example

This distribution says “most of
the values you measure should
be near my average!”

Unfortunately, most of the values we measured
are far from the distribution’s average.




MLE Example

According to a normal distribution with a mean
value over here...
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MLE Example

According to a normal distribution with a mean
value over here...

/ ...the probability, or “likelihood” of observing

all these weights is low.
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MLE Example

What if we shifted the normal
distribution over, so that its mean
was the same as the average
weight?




MLE Example

According to a normal distribution
with a mean value here...
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MLE Example

According to a normal distribution
with a mean value here...

...the probability, or “likelihood” of
observing these weights is relatively
high.




MLE Example

If we kept shifting the normal
distribution over...
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MLE Example

If we kept shifting the normal
distribution over...

... then the probability, or “likelihood”,
of observing these measurements
would go down again.
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MLE Example

Likelihood of
observing the

data:

Location of the center of the distribution.




MLE Example

Location of the center of the distribution.

Likelihood of
observing the
data:
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MLE Example

Likelihood of
observing the
data:




MLE Example

Likelihood of
observing the
data:




MLE Example

Likelihood of
observing the
data:




MLE Example

Likelihood of
observing the
data:




MLE Example

Likelihood of
observing the
data:




MLE Example

Likelihood of

observi
data:

ing the




MLE Example

Likelihood of
observing the
data:

o - We want the |ocation that
O o “maximizes the likelihood” of
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T — “maximizes the likelihood” of ———

observing the - o observing the weights we
data: - measured.

M LE Exa m p I e — We want the location that

- This location for the mean
“maximizes the likelihood” of
observing the weights we
measured.
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M LE Exa m p I e — We want the location that

Likelihood of ® “maximizes the likelihood” of ™ -
observing the - o observing the weights we
data: - - ® measured.
- -
' .
I s — This location for the mean

“maximizes the likelihood” of
observing the weights we
measured.

Thus, it is the “maximum
likelihood estimate for the
mean.”




MLE Example

Great! Now we have figured out the
maximum likelihood estimate for the mean!




MLE Example

Now we have to figure out the
“maximum likelihood estimate for
the standard deviation....”




MLE Example

Likelihood of
observing the

data:

Standard Deviation




MLE Example

Likelihood of -
observing the - -
data: - -

Standard Deviation
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M LE Exa m p I e Now we've found the standard

o €= deviation that maximizes the m——
L|ke||h<?od of o - likelihood of observing the
observing the - weights that we measured.
data: - -
¢ o
-

Standard Deviation
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M LE Exa m p I e o Now we've found the standard

o §————deviation that maximizes the s———
L|kel|h<?od of o - likelihood of observing the
observing the - weights that we measured.
data: - -
¢ o
-

Standard Deviation
This is the normal distribution
that has been “fit” to the data
by using the maximum
likelihood estimations for the
mean and the standard
deviation.
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MLE Example

Now when someone says that they have
the maximum likelihood estimates for the
mean or the standard deviation, or for
something else...




Likelihood of @ -
observing the - -
data: - -
-
® -
Now when someone says that they have ... you know that they found the value for
the maximum likelihood estimates for the the mean or the standard deviation (or for

whatever) that maximizes the likelihood
that you observed the things you
observed.

mean or the standard deviation, or for
something else...
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Calculating the MLE

* Example: we have three data points 9, 9.5, 11

* We want to calculated the total probability of observing all the data,
i.e. the joint probability distribution of all observed data points.

* Assumption: each data point is generated independently from the
others.

* If the events are independent, then the total probability of observing
all the data is the product of observing each data point individually
(i.e. the product of the marginal probabilities).



Calculating the MLE

* Probability of observing a single data point x
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The Log Likelihood

 Maximum is found by differentiation, i.e., find the derivative of the
function w.r.t. a variable, set it to zero and find the required value.

* Since the previous expression is not easy to differentiate, we simplify
the calculus considering the natural logarithm of the expression.
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The Log Likelihood

* This expression can be easily differentiated to find the maximum.

on(P(z; u, 1 '
n( ‘(l 1 U)):_.)[9+9.5+11_3/,],
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e The same can be done for the standard deviation.



