# DATA MINING 1 Classification Model Evaluation

Dino Pedreschi, Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 3 "Introduction to Data Mining", 2nd Edition by Tan, Steinbach, Karpatne, Kumar



#### What is Classification?



- Metrics for Performance Evaluation
  - How to evaluate the performance of a model?
- Methods for Performance Evaluation
  - How to obtain reliable estimates?
- Methods for Model Comparison
  - How to compare the relative performance among competing models?

- Metrics for Performance Evaluation
  - How to evaluate the performance of a model?
- Methods for Performance Evaluation
  - How to obtain reliable estimates?
- Methods for Model Comparison
  - How to compare the relative performance among competing models?

## **Problem Setting**

- Let suppose we have a vector y of actual/real class labels, i.e.,

- Let name y' the vector returned by a trained model f, i.e.,

#### Metrics for Performance Evaluation

- Focus on the predictive capability of a model
  - Rather than how fast it takes to classify or build models, scalability, etc.

#### Confusion Matrix:

|        | PREDICTED CLASS |           |          |  |
|--------|-----------------|-----------|----------|--|
|        |                 | Class=Yes | Class=No |  |
| ACTUAL | Class=Yes       | а         | b        |  |
| CLASS  | Class=No        | С         | d        |  |

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

#### Metrics for Performance Evaluation

```
    y = [0001110101011100]
    y' = [0011100101110000]
    TN FP FN TP
```

#### Metrics for Performance Evaluation...

|        | PREDICTED CLASS   |           |           |  |
|--------|-------------------|-----------|-----------|--|
|        |                   | Class=Yes | Class=No  |  |
| ACTUAL | Class=Yes         | a<br>(TP) | b<br>(FN) |  |
| CLASS  | Class=No c d (TN) |           |           |  |

Most widely-used metric: 
$$\frac{a+d}{Accuracy} = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

## Limitation of Accuracy

- Consider a 2-class problem
  - Number of Class 0 examples = 9990
  - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
- Accuracy is misleading because model does not detect any class 1 example

#### **Cost-Sensitive Measures**

Precision (p) = 
$$\frac{TP}{TP + FP}$$
  
Recall (r) =  $\frac{TP}{TP + FN}$   
F-measure (F) =  $\frac{2rp}{r + p} = \frac{2TP}{2TP + FN + FP}$ 

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy = 
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

#### **Cost Matrix**

|        | PREDICTED CLASS |            |           |  |
|--------|-----------------|------------|-----------|--|
|        | C(i j)          | Class=Yes  | Class=No  |  |
| ACTUAL | Class=Yes       | C(Yes Yes) | C(No Yes) |  |
| CLASS  | Class=No        | C(Yes No)  | C(No No)  |  |

C(i|j): Cost of misclassifying class j example as class i

## Computing Cost of Classification

| Cost<br>Matrix  | PREDICTED CLASS |    |     |
|-----------------|-----------------|----|-----|
|                 | C(i j)          | +  | -   |
| ACTUAL<br>CLASS | +               | -1 | 100 |
| CLASS           | •               | 1  | 0   |

| Model M <sub>1</sub> | PREDICTED CLASS |     |     |
|----------------------|-----------------|-----|-----|
|                      |                 | +   | •   |
| ACTUAL<br>CLASS      | +               | 150 | 40  |
| CLASS                | •               | 60  | 250 |

| Model M <sub>2</sub> | PREDICTED CLASS |     |     |
|----------------------|-----------------|-----|-----|
|                      |                 | +   | -   |
| ACTUAL<br>CLASS      | +               | 250 | 45  |
| OLAGO                | •               | 5   | 200 |

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

## Cost vs Accuracy

| Count  | PREDICTED CLASS |           |          |  |
|--------|-----------------|-----------|----------|--|
|        |                 | Class=Yes | Class=No |  |
| ACTUAL | Class=Yes       | а         | b        |  |
| CLASS  | Class=No        | С         | d        |  |

| Cost   | PREDICTED CLASS |           |          |  |
|--------|-----------------|-----------|----------|--|
|        |                 | Class=Yes | Class=No |  |
| ACTUAL | Class=Yes       | р         | q        |  |
| CLASS  | Class=No        | q         | р        |  |

Accuracy is proportional to cost if

1. 
$$C(Yes|No)=C(No|Yes) = q$$

2. 
$$C(Yes|Yes)=C(No|No) = p$$

$$N = a + b + c + d$$

Accuracy = 
$$(a + d)/N$$

Cost = p (a + d) + q (b + c)  
= p (a + d) + q (N - a - d)  
= q N - (q - p)(a + d)  
= N [q - (q-p) 
$$\times$$
 Accuracy]

## Binary vs Multiclass Evaluation

|                 | PREDICTED CLASS |           |          |  |
|-----------------|-----------------|-----------|----------|--|
|                 |                 | Class=Yes | Class=No |  |
| ACTUAL<br>CLASS | Class=Yes       | TP        | FN       |  |
| OLAGO           | Class=No        | FP        | TN       |  |

|                 | PREDICTED CLASS |         |         |         |  |
|-----------------|-----------------|---------|---------|---------|--|
|                 |                 | Class=A | Class=B | Class=C |  |
| ACTUAL<br>CLASS | Class=A         | TP-A    |         |         |  |
| CLAGO           | Class=B         |         | TP-B    |         |  |
|                 | Class=C         |         |         | TP-C    |  |

### **Multiclass Evaluation**

|                 | PREDICTED CLASS |         |         |         |
|-----------------|-----------------|---------|---------|---------|
|                 |                 | Class=A | Class=B | Class=C |
| ACTUAL<br>CLASS | Class=A         | TP-A    | а       | b       |
| OLAGO           | Class=B         | С       | TP-B    | d       |
|                 | Class=C         | е       | f       | TP-C    |

Precision (p) = 
$$\frac{TP}{TP + FP}$$
  
Recall (r) =  $\frac{TP}{TP + FN}$   
F-measure (F) =  $\frac{2rp}{r + p} = \frac{2TP}{2TP + FN + FP}$ 

| А      | PREDICTED CLASS |         |                      |  |
|--------|-----------------|---------|----------------------|--|
|        |                 | Class=A | Class=Not A          |  |
| ACTUAL | Class=A         | TP-A    | a+b                  |  |
| CLASS  | Class=Not A     | c + e   | TP-B+TP-C<br>+ d + f |  |

| В      | PREDICTED CLASS |         |                   |  |  |  |
|--------|-----------------|---------|-------------------|--|--|--|
|        |                 | Class=B | Class=Not B       |  |  |  |
| ACTUAL | Class=B         | TP-B    | c + d             |  |  |  |
| CLASS  | Class=Not B     | a + f   | TP-A+TP-C<br>+b+e |  |  |  |

| С      | PREDICTED CLASS |         |             |  |  |  |
|--------|-----------------|---------|-------------|--|--|--|
|        |                 | Class=C | Class=Not C |  |  |  |
| ACTUAL | Class=C         | TP-C    | e + f       |  |  |  |
| CLASS  | Class=Not C     | b + d   | TP-A+TP-B   |  |  |  |
|        |                 |         | + a + c     |  |  |  |

- Metrics for Performance Evaluation
  - How to evaluate the performance of a model?
- Methods for Performance Evaluation
  - How to obtain reliable estimates?
- Methods for Model Comparison
  - How to compare the relative performance among competing models?

#### Methods for Evaluation



## Parameter Tuning

- It is important that the test data is not used in any way to create the classifier
- Some learning schemes operate in two stages:
  - Stage 1: builds the basic structure
  - Stage 2: optimizes parameter settings
  - The test data can't be used for parameter tuning!
  - Proper procedure uses three sets:
    - training data,
    - validation data,
    - test data
  - Validation data is used to optimize parameters
- Once evaluation is complete, all the data can be used to build the final classifier
- Generally, the larger the training data the better the classifier
- The larger the test data the more accurate the error estimate

#### Methods for Performance Evaluation

How to obtain a reliable estimate of performance?

- Performance of a model may depend on other factors besides the learning algorithm:
  - Class distribution
  - Cost of misclassification
  - Size of training and test sets

## Learning Curve



- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve:

Effect of small sample size:

- Bias in the estimate
- Variance of estimate

- 1. How much a classification model benefits from adding more training data?
- 2. Does the model suffer from a variance error or a bias error?

#### Methods of Estimation

- Holdout
  - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
  - Repeated holdout
- Cross validation
  - Partition data into k disjoint subsets
  - k-fold: train on k-1 partitions, test on the remaining one
  - Leave-one-out: k=n
- Stratified sampling
  - oversampling vs undersampling
- Bootstrap
  - Sampling with replacement

#### Holdout

- The holdout method reserves a certain amount for testing and uses the remainder for training
- Usually, one third for testing, the rest for training.
- Typical quantities are 60%-40%, 66%-34%, 70%-30%.
- For small or "unbalanced" datasets, samples might not be representative
  - For instance, few or none instances of some classes
- Stratified sample
  - Balancing the data
  - Make sure that each class is represented with approximately equal proportions in both subsets

## Repeated Holdout

- Holdout estimate can be made more reliable by repeating the process with different subsamples
  - In each iteration, a certain proportion is randomly selected for training (possibly with stratification)
  - The error rates on the different iterations are averaged to yield an overall error rate
- This is called the repeated holdout method
- Still not optimum: the different test sets overlap

#### **Cross Validation**



Run 3

- Avoids overlapping test sets
  - First step: data is split into k subsets of equal size
  - Second step: each subset in turn is used for testing and the remainder for training
- This is called k-fold cross-validation
- Often the subsets are stratified before cross-validation is performed
- The error estimates are averaged to yield an overall error estimate
- Even better: repeated stratified cross-validation E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)

## **Data Partitioning**



## Evaluation: Training, Validation, Tests



## Cross Validation with Time



- Metrics for Performance Evaluation
  - How to evaluate the performance of a model?
- Methods for Performance Evaluation
  - How to obtain reliable estimates?
- Methods for Model Comparison
  - How to compare the relative performance among competing models?

## ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
  - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
  - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

## Receiver Operating Characteristic Curve

- It illustrates the ability of a binary classifier as its discrimination threshold THR is varied.
- The *ROC* curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various THR.
- The TPR = TP / (TP + FN) is also known as sensitivity, recall or probability of detection.
- The FPR = FP / (TN + FP) is also known as probability of *false alarm* and can be calculated as (1 specificity).



#### **ROC Curve**

#### (TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (0,1): ideal
- Diagonal line:
  - Random guessing
  - Below diagonal line:
    - prediction is opposite of the true class



## Using ROC for Model Comparison



- No model consistently outperform the other
  - M<sub>1</sub> is better for small FPR
  - M<sub>2</sub> is better for large FPR
- Area Under the ROC curve
  - □ Ideal: Area = 1
  - □ Random: Area = 0.5

#### How to Construct the ROC curve

| Instance | P(+ A)         | True Class |
|----------|----------------|------------|
| Instance | 1 (+ /\(\tau\) | True Class |
| 1        | 0.95           | +          |
| 2        | 0.93           | +          |
| 3        | 0.87           | -          |
| 4        | 0.85           | -          |
| 5        | 0.85           | -          |
| 6        | 0.85           | +          |
| 7        | 0.76           | -          |
| 8        | 0.53           | +          |
| 9        | 0.43           | -          |
| 10       | 0.25           | +          |

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

TPR = TP / (TP + FN)FPR = FP / (TN + FP)

#### How to Construct the ROC curve

|         | Class  | +    | -    | +    | -    | -    | -    | +    | •    | +    | +    |      |
|---------|--------|------|------|------|------|------|------|------|------|------|------|------|
| Thresho | old >= | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |
|         | TP     |      |      |      | ,    |      |      |      |      | ,    |      |      |
|         | FP     |      |      |      |      |      |      |      |      |      |      |      |
|         | TN     |      |      |      |      |      |      |      |      |      |      |      |
|         | FN     |      |      |      |      |      |      |      |      |      |      |      |
| <b></b> | TPR    |      |      |      |      |      |      |      |      |      |      |      |
| <b></b> | FPR    |      |      |      |      |      |      |      |      |      |      |      |

|       | 1      |               |
|-------|--------|---------------|
| Inst. | P(+ A) | True<br>Class |
| 1     | 0.95   | +             |
| 2     | 0.93   | +             |
| 3     | 0.87   | ï             |
| 4     | 0.85   | ı             |
| 5     | 0.85   | ı             |
| 6     | 0.85   | +             |
| 7     | 0.76   | ı             |
| 8     | 0.53   | +             |
| 9     | 0.43   | -             |
| 10    | 0.25   | +             |

TPR = TP / (TP + FN)FPR = FP / (TN + FP)

#### How to Construct the ROC curve

|               | Class | +    | -    | +    | -    | -    | -    | +    | -    | +    | +    |      |  |
|---------------|-------|------|------|------|------|------|------|------|------|------|------|------|--|
| Thresh        | old>= | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |  |
|               | TP    | 5    |      |      |      |      |      |      |      |      |      |      |  |
|               | FP    | 5    |      |      |      |      |      |      |      |      |      |      |  |
|               | TN    | 0    |      |      |      |      |      |      |      |      |      |      |  |
|               | FN    | 0    |      |      |      |      |      |      |      |      |      |      |  |
| <b>→</b>      | TPR   | 1    |      |      |      |      |      |      |      |      |      |      |  |
| $\rightarrow$ | FPR   | 1    |      |      |      |      |      |      |      |      |      |      |  |

|       | -      |               |
|-------|--------|---------------|
| Inst. | P(+ A) | True<br>Class |
| 1     | 0.95   | +             |
| 2     | 0.93   | +             |
| 3     | 0.87   | -             |
| 4     | 0.85   | -             |
| 5     | 0.85   | -             |
| 6     | 0.85   | +             |
| 7     | 0.76   | -             |
| 8     | 0.53   | +             |
| 9     | 0.43   | -             |
| 10    | 0.25   | +             |

|         | Class | +    | -    | +    | -    | -    | -    | +    | -    | +    | +    |      |
|---------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Thresh  | old>= | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |
|         | TP    | 5    | 4    |      |      |      |      |      |      |      |      |      |
|         | FP    | 5    | 5    |      |      |      |      |      |      |      |      |      |
|         | TN    | 0    | 0    |      |      |      |      |      |      |      |      |      |
|         | FN    | 0    | 1    |      |      |      |      |      |      |      |      |      |
| <b></b> | TPR   | 1    | 0.8  |      |      |      |      |      |      |      |      |      |
| <b></b> | FPR   | 1    | 1    |      |      |      |      |      |      |      |      |      |

|       | -      |               |
|-------|--------|---------------|
| Inst. | P(+ A) | True<br>Class |
| 1     | 0.95   | +             |
| 2     | 0.93   | +             |
| 3     | 0.87   | -             |
| 4     | 0.85   | -             |
| 5     | 0.85   | -             |
| 6     | 0.85   | +             |
| 7     | 0.76   | -             |
| 8     | 0.53   | +             |
| 9     | 0.43   | -             |
| 10    | 0.25   | +             |

|         | Class | +    | -    | +    | -    | -    | -    | +    | -    | +    | +    |      |
|---------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Thresho | old>= | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |
|         | TP    | 5    | 4    | 4    |      |      |      |      |      |      |      |      |
|         | FP    | 5    | 5    | 4    |      |      |      |      |      |      |      |      |
|         | TN    | 0    | 0    | 1    |      |      |      |      |      |      |      |      |
|         | FN    | 0    | 1    | 1    |      |      |      |      |      |      |      |      |
| <b></b> | TPR   | 1    | 0.8  | 0.8  |      |      |      |      |      |      |      |      |
| <b></b> | FPR   | 1    | 1    | 0.8  |      |      |      |      |      |      |      |      |

|       | -      |               |
|-------|--------|---------------|
| Inst. | P(+ A) | True<br>Class |
| 1     | 0.95   | +             |
| 2     | 0.93   | +             |
| 3     | 0.87   | -             |
| 4     | 0.85   | -             |
| 5     | 0.85   | -             |
| 6     | 0.85   | +             |
| 7     | 0.76   | -             |
| 8     | 0.53   | +             |
| 9     | 0.43   | -             |
| 10    | 0.25   | +             |

|          | Class | +    | -    | +    | •    | -    | -    | +    | -    | +    | +    |      |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Thresho  | old>= | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |
|          | TP    | 5    | 4    | 4    | 3    |      |      |      |      |      |      |      |
|          | FP    | 5    | 5    | 4    | 4    |      |      |      |      |      |      |      |
|          | TN    | 0    | 0    | 1    | 1    |      |      |      |      |      |      |      |
|          | FN    | 0    | 1    | 1    | 2    |      |      |      |      |      |      |      |
| <b>→</b> | TPR   | 1    | 0.8  | 0.8  | 0.6  |      |      |      |      |      |      |      |
| <b>→</b> | FPR   | 1    | 1    | 0.8  | 0.8  |      |      |      |      |      |      |      |

| Inst. | P(+ A) | True<br>Class |
|-------|--------|---------------|
| 1     | 0.95   | +             |
| 2     | 0.93   | +             |
| 3     | 0.87   | -             |
| 4     | 0.85   | -             |
| 5     | 0.85   | -             |
| 6     | 0.85   | +             |
| 7     | 0.76   | -             |
| 8     | 0.53   | +             |
| 9     | 0.43   | -             |
| 10    | 0.25   | +             |

|          | Class | +    | -    | +    | -    | -    | -    | +    | -    | +    | +    |      |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Thresho  | old>= | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |
|          | TP    | 5    | 4    | 4    | 3    | 3    |      |      |      |      |      |      |
|          | FP    | 5    | 5    | 4    | 4    | 3    |      |      |      |      |      |      |
|          | TN    | 0    | 0    | 1    | 1    | 2    |      |      |      |      |      |      |
|          | FN    | 0    | 1    | 1    | 2    | 2    |      |      |      |      |      |      |
| <b>→</b> | TPR   | 1    | 0.8  | 0.8  | 0.6  | 0.6  |      |      |      |      |      |      |
| <b>-</b> | FPR   | 1    | 1    | 0.8  | 0.8  | 0.6  |      |      |      |      |      |      |

|       | _      |               |
|-------|--------|---------------|
| Inst. | P(+ A) | True<br>Class |
| 1     | 0.95   | +             |
| 2     | 0.93   | +             |
| 3     | 0.87   | -             |
| 4     | 0.85   | -             |
| 5     | 0.85   | -             |
| 6     | 0.85   | +             |
| 7     | 0.76   | -             |
| 8     | 0.53   | +             |
| 9     | 0.43   | -             |
| 10    | 0.25   | +             |

|               |       |      |      |      |      |      |      |      |      |      |      |      | ıİ |
|---------------|-------|------|------|------|------|------|------|------|------|------|------|------|----|
|               | Class | +    | -    | +    | -    | -    | -    | +    | -    | +    | +    |      |    |
| Thresho       | old>= | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |    |
|               | TP    | 5    | 4    | 4    | 3    | 3    | 3    | 3    |      |      |      |      |    |
|               | FP    | 5    | 5    | 4    | 4    | 3    | 2    | 1    |      |      |      |      |    |
|               | TN    | 0    | 0    | 1    | 1    | 2    | 3    | 4    |      |      |      |      |    |
|               | FN    | 0    | 1    | 1    | 2    | 2    | 2    | 2    |      |      |      |      |    |
| $\rightarrow$ | TPR   | 1    | 0.8  | 0.8  | 0.6  | 0.6  | 0.6  | 0.6  |      |      |      |      |    |
| $\rightarrow$ | FPR   | 1    | 1    | 0.8  | 0.8  | 0.6  | 0.4  | 0.2  |      |      |      |      |    |

| Inst. | P(+ A) | True<br>Class |
|-------|--------|---------------|
| 1     | 0.95   | +             |
| 2     | 0.93   | +             |
| 3     | 0.87   | -             |
| 4     | 0.85   | -             |
| 5     | 0.85   | -             |
| 6     | 0.85   | +             |
| 7     | 0.76   | -             |
| 8     | 0.53   | +             |
| 9     | 0.43   | -             |
| 10    | 0.25   | +             |

|          | Class | +    | -    | +    | -    | -    | -    | +    | -    | +    | +    |      |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Thresho  | old>= | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |
|          | TP    | 5    | 4    | 4    | 3    | 3    | 3    | 3    | 2    |      |      |      |
|          | FP    | 5    | 5    | 4    | 4    | 3    | 2    | 1    | 1    |      |      |      |
|          | TN    | 0    | 0    | 1    | 1    | 2    | 3    | 4    | 4    |      |      |      |
|          | FN    | 0    | 1    | 1    | 2    | 2    | 2    | 2    | 3    |      |      |      |
| <b>→</b> | TPR   | 1    | 0.8  | 0.8  | 0.6  | 0.6  | 0.6  | 0.6  | 0.4  |      |      |      |
| <b>→</b> | FPR   | 1    | 1    | 0.8  | 0.8  | 0.6  | 0.4  | 0.2  | 0.2  |      |      |      |

| Inst. | P(+ A) | True<br>Class |
|-------|--------|---------------|
| 1     | 0.95   | +             |
| 2     | 0.93   | +             |
| 3     | 0.87   | -             |
| 4     | 0.85   | -             |
| 5     | 0.85   | -             |
| 6     | 0.85   | +             |
| 7     | 0.76   | -             |
| 8     | 0.53   | +             |
| 9     | 0.43   | -             |
| 10    | 0.25   | +             |

|          | Class | +    | -    | +    | -    | -    | -    | +    | -    | +    | +    |      |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Thresho  | old>= | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |
|          | TP    | 5    | 4    | 4    | 3    | 3    | 3    | 3    | 2    | 2    |      |      |
|          | FP    | 5    | 5    | 4    | 4    | 3    | 2    | 1    | 1    | 0    |      |      |
|          | TN    | 0    | 0    | 1    | 1    | 2    | 3    | 4    | 4    | 5    |      |      |
|          | FN    | 0    | 1    | 1    | 2    | 2    | 2    | 2    | 3    | 3    |      |      |
| <b>→</b> | TPR   | 1    | 0.8  | 0.8  | 0.6  | 0.6  | 0.6  | 0.6  | 0.4  | 0.4  |      |      |
| <b>→</b> | FPR   | 1    | 1    | 0.8  | 0.8  | 0.6  | 0.4  | 0.2  | 0.2  | 0    |      |      |

| Inst. | P(+ A) | True<br>Class |
|-------|--------|---------------|
| 1     | 0.95   | +             |
| 2     | 0.93   | +             |
| 3     | 0.87   | -             |
| 4     | 0.85   | -             |
| 5     | 0.85   | -             |
| 6     | 0.85   | +             |
| 7     | 0.76   | -             |
| 8     | 0.53   | +             |
| 9     | 0.43   | -             |
| 10    | 0.25   | +             |

|          | Class | +    | -    | +    | -    | -    | -    | +    | -    | +    | +    |      |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Thresho  | old>= | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |
|          | TP    | 5    | 4    | 4    | 3    | 3    | 3    | 3    | 2    | 2    | 1    |      |
|          | FP    | 5    | 5    | 4    | 4    | 3    | 2    | 1    | 1    | 0    | 0    |      |
|          | TN    | 0    | 0    | 1    | 1    | 2    | 3    | 4    | 4    | 5    | 5    |      |
|          | FN    | 0    | 1    | 1    | 2    | 2    | 2    | 2    | 3    | 3    | 4    |      |
| <b>→</b> | TPR   | 1    | 0.8  | 0.8  | 0.6  | 0.6  | 0.6  | 0.6  | 0.4  | 0.4  | 0.2  |      |
| <b></b>  | FPR   | 1    | 1    | 0.8  | 0.8  | 0.6  | 0.4  | 0.2  | 0.2  | 0    | 0    |      |

|       | _      |               |
|-------|--------|---------------|
| Inst. | P(+ A) | True<br>Class |
| 1     | 0.95   | +             |
| 2     | 0.93   | +             |
| 3     | 0.87   | -             |
| 4     | 0.85   | -             |
| 5     | 0.85   | -             |
| 6     | 0.85   | +             |
| 7     | 0.76   | -             |
| 8     | 0.53   | +             |
| 9     | 0.43   | -             |
| 10    | 0.25   | +             |

|          | Class | +    | -    | +    | -    | -    | -    | +    | -    | +    | +    |      |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Thresho  | old>= | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |
|          | TP    | 5    | 4    | 4    | 3    | 3    | 3    | 3    | 2    | 2    | 1    | 0    |
|          | FP    | 5    | 5    | 4    | 4    | 3    | 2    | 1    | 1    | 0    | 0    | 0    |
|          | TN    | 0    | 0    | 1    | 1    | 2    | 3    | 4    | 4    | 5    | 5    | 5    |
|          | FN    | 0    | 1    | 1    | 2    | 2    | 2    | 2    | 3    | 3    | 4    | 5    |
| <b>→</b> | TPR   | 1    | 0.8  | 0.8  | 0.6  | 0.6  | 0.6  | 0.6  | 0.4  | 0.4  | 0.2  | 0    |
| <b></b>  | FPR   | 1    | 1    | 0.8  | 0.8  | 0.6  | 0.4  | 0.2  | 0.2  | 0    | 0    | 0    |

| Inst. | P(+ A) | True<br>Class |
|-------|--------|---------------|
| 1     | 0.95   | +             |
| 2     | 0.93   | +             |
| 3     | 0.87   | -             |
| 4     | 0.85   | -             |
| 5     | 0.85   | -             |
| 6     | 0.85   | +             |
| 7     | 0.76   | -             |
| 8     | 0.53   | +             |
| 9     | 0.43   | -             |
| 10    | 0.25   | +             |

#### How to Construct the ROC curve

|                   | Class | +    |      | +    | -    | -    | -    | +    | -    | +    | +    |      |
|-------------------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Threshold >= 0.25 |       | 0.25 | 0.43 | 0.53 | 0.76 | 0.85 | 0.85 | 0.85 | 0.87 | 0.93 | 0.95 | 1.00 |
|                   | TP    | 5    | 4    | 4    | 3    | 3    | 3    | 3    | 2    | 2    | 1    | 0    |
|                   | FP    | 5    | 5    | 4    | 4    | 3    | 2    | 1    | 1    | 0    | 0    | 0    |
|                   | TN    | 0    | 0    | 1    | 1    | 2    | 3    | 4    | 4    | 5    | 5    | 5    |
|                   | FN    | 0    | 1    | 1    | 2    | 2    | 2    | 2    | 3    | 3    | 4    | 5    |
| <b>→</b>          | TPR   | 1    | 0.8  | 0.8  | 0.6  | 0.6  | 0.6  | 0.6  | 0.4  | 0.4  | 0.2  | 0    |
| <b>→</b>          | FPR   | 1    | 1    | 0.8  | 0.8  | 0.6  | 0.4  | 0.2  | 0.2  | 0    | 0    | 0    |

$$TPR = TP / (TP + FN)$$
  
 $FPR = FP / (TN + FP)$ 

**ROC Curve:** 



| Inst. | P(+ A) | True<br>Class |
|-------|--------|---------------|
| 1     | 0.95   | +             |
| 2     | 0.93   | +             |
| 3     | 0.87   | -             |
| 4     | 0.85   | -             |
| 5     | 0.85   | -             |
| 6     | 0.85   | +             |
| 7     | 0.76   | -             |
| 8     | 0.53   | +             |
| 9     | 0.43   | -             |
| 10    | 0.25   | +             |

### Lift Chart

- The lift curve is a popular technique in direct marketing.
- The input is a dataset that has been "scored" by appending to each case the estimated probability that it will belong to a given class.
- The cumulative *lift chart* (also called *gains chart*) is constructed with the cumulative number of cases (descending order of probability) on the x-axis and the cumulative number of true positives on the y-axis.
- The dashed line is a reference line. For any given number of cases (the x-axis value), it represents the expected number of positives we would predict if we did not have a model but simply selected cases at random. It provides a benchmark against which we can see performance of the model.

Notice: "Lift chart" is a rather general term, often used to identify also other kinds of plots. Don't get confused!

# Lift Chart – Example

| Serial no. | Predicted prob of 1 | Actual Class | Cumulative Actual class |
|------------|---------------------|--------------|-------------------------|
| 1          | 0.995976726         | 1            | 1                       |
| 2          | 0.987533139         | 1            | 2                       |
| 3          | 0.984456382         | 1            | 3                       |
| 4          | 0.980439587         | 1            | 4                       |
| 5          | 0.948110638         | 1            | 5                       |
| 6          | 0.889297203         | 1            | 6                       |
| 7          | 0.847631864         | 1            | 7                       |
| 8          | 0.762806287         | 0            | 7                       |
| 9          | 0.706991915         | 1            | 8                       |
| 10         | 0.680754087         | 1            | 9                       |
| 11         | 0.656343749         | 1            | 10                      |
| 12         | 0.622419543         | 0            | 10                      |
| 13         | 0.505506928         | 1            | 11                      |
| 14         | 0.47134045          | 0            | 11                      |
| 15         | 0.337117362         | 0            | 11                      |
| 16         | 0.21796781          | 1            | 12                      |
| 17         | 0.199240432         | 0            | 12                      |
| 18         | 0.149482655         | 0            | 12                      |
| 19         | 0.047962588         | 0            | 12                      |
| 20         | 0.038341401         | 0            | 12                      |
| 21         | 0.024850999         | 0            | 12                      |
| 22         | 0.021806029         | 0            | 12                      |
| 23         | 0.016129906         | 0            | 12                      |
| 24         | 0.003559986         | 0            | 12                      |
|            |                     |              |                         |



## Lift Chart – Application Example

- From Lift chart we can easily derive an "economical value" plot, e.g. in target marketing.
- Given our predictive model, how many customers should we target to maximize income?
- Profit = UnitB\*MaxR\*Lift(X) UnitCost\*N\*X/100
- UnitB = unit benefit, UnitCost = unit postal cost
- N = total customers
- MaxR = expected potential respondents in all population (N)
- Lift(X) = lift chart value for X, in [0,...,1]

## Lift Chart – Application Example



## References

• Chapter 3. Classification: Basic Concepts and Techniques.

