DATA MINING 1 Naïve Bayes Classifiers

Dino Pedreschi, Riccardo Guidotti

a.a. 2022/2023

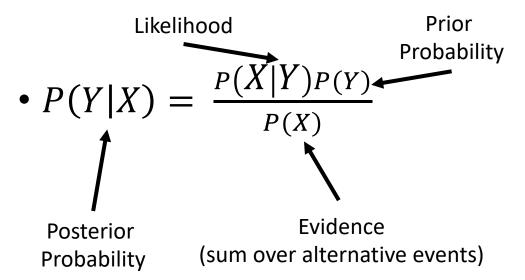
Slides edited from Tan, Steinbach, Kumar, Introduction to Data Mining

Probability Notions and Bayes Theorem

- A probabilistic framework for solving classification problems.
- Let *P* be a probability function that assigns a number between 0 and 1 to events.
- *X* = *x* an events is happening.
- P(X = x) is the probability that events X = x.
- Joint Probability P(X = x, Y = y)
- Conditional Probability $P(Y = y \mid X = x)$
- Relationship: P(X,Y) = P(Y|X) P(X) = P(X|Y) P(Y)
- Bayes Theorem: P(Y|X) = P(X|Y)P(Y) / P(X)
- Another Useful Property: P(X = x) = P(X = x, Y = 0) + P(X = x, Y = 1)

Bayes Theorem: Example

- Consider a football game. Team 0 wins 65% of the time, Team 1 the remaining 35%. Among the game won by Team 1, 75% of them are won playing at home. Among the games won by Team 0, 30% of them are won at Team 1's field.
- If Team 1 is hosting the next match, which team will most likely win?
- Team 0 wins: P(Y = 0) = 0.65
- Team 1 wins: P(Y = 1) = 0.35
- Team 1 hosted the match won by Team 1: P(X = 1 | Y = 1) = 0.75
- Team 1 hosted the match won by Team 0: P(X = 1 | Y = 0) = 0.30
- Objective P(Y = 1 | X = 1)


Bayes Theorem: Example

- P(Y = 1 | X = 1) = P(X = 1 | Y = 1)P(Y = 1) / P(X = 1) =
- = $0.75 \times 0.35 / (P(X = 1, Y = 1) + P(X = 1, Y = 0))$
- = $0.75 \times 0.35 / (P(X = 1 | Y = 1)P(Y=1) + P(X = 1 | Y = 0)P(Y=0))$
- = $0.75 \times 0.35 / (0.75 \times 0.35 + 0.30 \times 0.65)$
- \bullet = 0.5738

• Therefore Team 1 has a better chance to win the match

Bayes Theorem for Classification

- X denotes the attribute sets, $X = \{X_1, X_2, ..., X_d\}$
- Y denotes the class variable
- We treat the relationship probabilistically using P(Y|X)

Bayes Theorem for Classification

- Learn the posterior $P(Y \mid X)$ for every combination of X and Y.
- By knowing these probabilities, a test record X' can be classified by finding the class Y' that maximizes the posterior probability P(Y'|X').
- This is equivalent of choosing the value of Y' that maximizes P(X'|Y')P(Y').
- How to estimate it?

Naïve Bayes Classifier

- It estimates the class-conditional probability by *assuming that the attributes are conditionally independent* given the class label *y*.
- The conditional independence is stated as:
- $P(X|Y = y) = \prod_{i=1}^{d} P(X_i|Y = y)$
- where each attribute set $X = \{X_1, X_2, ... X_d\}$

Conditional Independence

- Given three variables Y, X_1 , X_2 we can say that Y is independent from X_1 given X_2 if the following condition holds:
- $P(Y \mid X_1, X_2) = P(Y \mid X_2)$
- With the conditional independence assumption, instead of computing the class-conditional probability for every combination of X we only have to estimate the conditional probability of each X_i given Y.
- Thus, to classify a record the naive Bayes classifier computes the posterior for each class Y and takes the maximum class as result

•
$$P(Y|X) = P(Y) \prod_{i=1}^{d} P(X_i|Y = y) / P(X)$$

How to estimate?

How to Estimate Probability From Data

- Class $P(Y) = N_v / N$
- N_y number of records with outcome y
- N number of records
- Categorical attributes
- $P(X = x | Y = y) = N_{xy} / N_y$
- N_{xy} records with value x and outcome y
- P(Evade = Yes) = 3/10
- P(Marital Status = Single | Yes) = 2/3

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95 K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90K	Yes

How to Estimate Probability From Data

Continuous attributes

- Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
- Two-way split: (X < v) or (X > v)
 - choose only one of the two splits as new attribute
- Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(X|y)

How to Estimate Probability From Data

Normal distribution

•
$$P(X_i = x_i \mid Y = y) = \frac{1}{\sqrt{2\pi}\sigma_{ij}}e^{-\frac{(x_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

• μ_{ij} can be estimated as the mean of

- μ_{ij} can be estimated as the mean of X_i for the records that belongs to class y_i .
- Similarly, σ_{ij} as the standard deviation.
- P(Income = 120 | No) = 0.0072
 - mean = 110
 - std dev = 54.54

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95 K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90K	Yes

Example

Given X = {Refund = No, Married, Income = 120k}

- P(Refund=Yes|No) = 3/7
- P(Refund=No|No) = 4/7
- P(Refund=Yes|Yes) = 0
- P(Refund=No|Yes) = 1
- P(Marital Status=Single|No) = 2/7
- P(Marital Status=Divorced | No)=1/7
- P(Marital Status=Married | No) = 4/7
- P(Marital Status=Single | Yes) = 2/3
- P(Marital Status=Divorced | Yes)=1/3
- P(Marital Status=Married | Yes) = 0/3

For taxable income:

- If class=No:
 - mean=110, variance=2975
- If class=Yes:
 - mean=90, variance=25

```
P(X|Class=No) = P(Refund=No|Class=No)

× P(Married| Class=No)

× P(Income=120K| Class=No)

= 4/7 × 4/7 × 0.0072

= 0.0024
```

```
P(X|Class=Yes) = P(Refund=No| Class=Yes)

× P(Married| Class=Yes)

× P(Income=120K| Class=Yes)

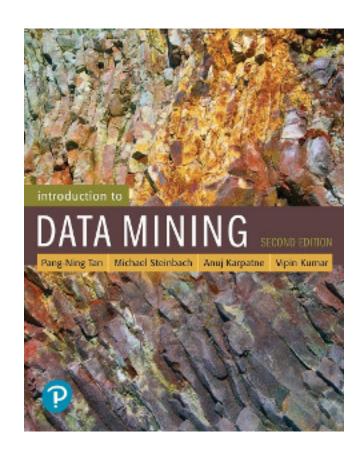
= 1 × 0 × 1.2 × 10-9

= 0
```

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95 K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90K	Yes

M-estimate of Conditional Probability


- If one of the conditional probability is zero, then the entire expression becomes zero.
- For example, given X = {Refund = Yes, Divorced, Income = 120k}, if P(Divorced | No) is zero instead of 1/7, then
 - $P(X|No) = 3/7 \times 0 \times 0.00072 = 0$
 - $P(X|Yes) = 0 \times 1/3 \times 10^{-9} = 0$
- M-estimate P(X|Y) = $\frac{N_{xy}+mp}{N_y+m}$ (if P(X|Y) = $\frac{N_{xy}+1}{N_y+|Y|}$ is Laplacian estimation)
- m is a parameter, p is a user-specified parameter (e.g. probability of observing x_i among records with class y_i .
- In the example with m=3 and p=1/m=1/3 (i.e., Laplacian estimation) we have
- P(Divorced | Yes) = (0+3x1/3)/(3+3) = 1/6

Naïve Bayes Classifier

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN, not treated in this course)

References

• Bayesian Classifiers. Chapter 5.3. Introduction to Data Mining.

Exercises - NBC

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$P(p) = 9/14$$

 $P(n) = 5/14$

outlook	
P(sunny p) =	P(sunny n) =
P(overcast p) =	P(overcast n) =
P(rain p) =	P(rain n) =
temperature	
P(hot p) =	P(hot n) =
P(mild p) =	P(mild n) =
P(cool p) =	P(cool n) =
humidity	
P(high p) =	P(high n) =
P(normal p) =	P(normal n) =
windy	
P(true p) =	P(true n) =
P(false p) =	P(false n) =

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$P(p) = 9/14$$

 $P(n) = 5/14$

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	P(cool n) = 1/5
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 1/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

P(p) = 9/14
P(n) = 5/14

Outlook	Temeprature	Humidity	Windy	Class
rain	hot	high	false	?

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
$P(\mathbf{cool} \mathbf{p}) = 3/9$	$P(\mathbf{cool} \mathbf{n}) = 1/5$
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 1/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

$$P(X|p)\cdot P(p) =$$

$$P(X|n)\cdot P(n) =$$

P(p) = 9/14
P(n) = 5/14

Outlook	Temeprature	Humidity	Windy	Class
rain	hot	high	false	N

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	P(cool n) = 1/5
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 1/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

 $P(X|p)\cdot P(p) = P(rain|p)\cdot P(hot|p)\cdot P(high|p)\cdot P(false|p)\cdot P(p) = 3/9 \cdot 2/9 \cdot 3/9 \cdot 6/9 \cdot 9/14 = 0.010582$

 $P(X|n)\cdot P(n) =$ $P(rain|n)\cdot P(hot|n)\cdot P(high|n)\cdot P(false|n)\cdot P(n) = 2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 \cdot 5/14 =$ 0.018286

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals
$$P(A | M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A|N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

a) Naive Bayes (3 points)

Given the training set below, build a Naive Bayes classification model (i.e. the corresponding table of probabilities) using (i) the normal formula and (ii) using Laplace formula. What are the main effects of Laplace on the models?

Α	В	class
no	green	N
no	red	Υ
yes	green	N
no	red	N
no	red	Υ
no	green	Υ
yes	green	N

Answer:

Normal

	Υ	N		Υ	N
	3	4		0.43	0.57
	AIY	AIN		AIY	A N
yes	0	2	yes	0.00	0.50
no	3	2	no	1.00	0.50
	B Y	B N		B Y	B N
green	1	3	green	0.33	0.75
red	2	1	red	0.67	0.25

Laplace

	Υ	N		Υ	N
	3	4		0.43	0.57
	AIY	AIN		AIY	A N
yes	0	2	yes	0.20	0.50
no	3	2	no	0.80	0.50
	B Y	B N		BIY	B N
green	1	. 3	green	0.40	0.67
red	2	1	red	0.60	0.33

a) Naive Bayes (3 points)

Given the training set on the left, build a Naive Bayes classification model and apply it to the test set on the right.

SCORE	FIRST-TRY	FACULTY	class
good	no	science	Υ
medium	yes	science	N
bad	yes	science	N
bad	yes	humanities	Υ
good	no	humanities	N
good	no	science	Υ
medium	no	humanities	Υ

SCORE	FIRST-TRY	FACULTY	class
bad	no	humanities	
good	yes	science	
medium	yes	humanities	