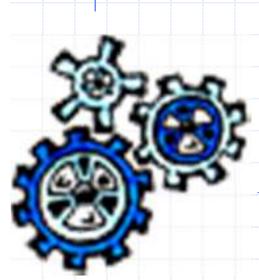
Data Mining per il CRM Customer segmentation



Dino **Pedreschi**

Pisa KDD Lab, ISTI-CNR & Univ. Pisa

http://www-kdd.isti.cnr.it/

MAINS, 23 marzo 2012

Data Mining Technologies for CRM

Clustering Customer segmentation

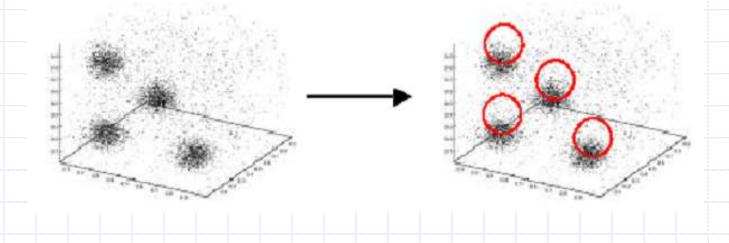
Clustering **Problem definition** 22/03/2012 3

Problem definition

- Given:
 - A data set with *N d*-dimensional data items.
- Task:
 - Determine a natural partitioning of the data set into a number of clusters (k) and noise.
 - Clusters should be such that:
 - items in same cluster are similar
 - →intra-cluster similarity is maximized
 - items from different clusters are different
 - →inter-cluster similarity is minimized

Example – clustering in 3D

- Data: points in the 3D space
- Similarity: based on (Euclidean) distance



Application: customer segmentation

Given:

 Large data base of customer data containing their properties and past buying records

♦ Goal:

 Find groups of customers with similar behavior

Case study: customer segmentation

AIR MILES

a case-study on customer segmentation

From: G. Saarenvirta, "Mining customer data", DB2 magazine on line, 1998
http://www.db2mag.com/98fsaar.html

Customer clustering & segmentation

- two of the most important data mining methodologies used in marketing
- use customer-purchase transaction data to
 - track buying behavior
 - create strategic business initiatives.
 - divide customers into segments based on "shareholder value" variables:
 - customer profitability,
 - measure of risk,
 - measure of the lifetime value of a customer,
 - retention probability.

Customer segments

- Example: high-profit, high-value, and low-risk customers
 - typically 10% to 20% of customers who create 50% to 80% of a company's profits
 - strategic initiative for the segment is retention
- A low-profit, high-value, and low-risk customer segment may be also attractive
 - strategic initiative for the segment is to increase profitability
 - cross-selling (selling new products)
 - up-selling (selling more of what customers currently buy)

22/03/2012

Behavioral vs. demographic segments

- Within behavioral segments, a business may create demographic subsegments.
- Customer demographic data are not typically used together with behavioral data to create segments.
- Demographic (sub)segmenting is used to select appropriate tactics (advertising, marketing channels, and campaigns) to satisfy the strategic behavioral segment initiatives.

The Loyalty Group in Canada

- runs an AIR MILES Reward Program (AMRP) for a coalition of more than 125 companies in all industry sectors - finance, credit card, retail, grocery, gas, telecom.
- 60% of Canadian households enrolled
- AMRP is a frequent-shopper program:
 - the consumer collects bonuses that can then redeem for rewards (air travel, hotel accommodation, rental cars, theatre tickets, tickets for sporting events, ...)

Data capture

- The coalition partners capture consumer transactions and transmit them to The Loyalty Group, which
- stores these transactions and uses the data for database marketing initiatives on behalf of the coalition partners.
- The Loyalty Group data warehouse currently contains
 - more than 6.3 million household records
 - 1 billion transaction records.

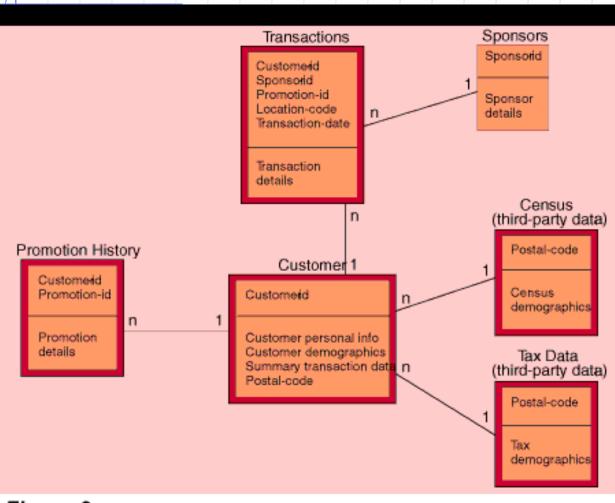
Before data mining

- The Loyalty Group has employed standard analytical techniques
 - Recency, Frequency, Monetary value (RFM) analysis
 - online analytic processing tools
 - linear statistical methods
- to analyze the success of the various marketing initiatives undertaken by the coalition and its partners.

Data mining project at AMRP

- Goal: create a customer segmentation using a data mining tool and compare the results to an existing segmentation developed using RFM analysis.
- data mining platform
 - DB2 Universal Database Enterprise parallelized over a five-node RS/6000 SP parallel system.
 - Intelligent Miner for Data (reason: has categorical clustering and product association algorithms which are not available in most other tools)

Data model



~ 50,000
 customers
 and their
 associated
 transactions
 for a 12 month period.

Figure 2. AIR MILES case study data model. 22/03/2012

Data preparation

- "shareholder value" variables
 - revenue
 - customer tenure
 - number of sponsor companies shopped at over the customer tenure
 - number of sponsor companies shopped at over the last 12 months,
 - recency (in months) of the last transaction
- calculated by aggregating the transaction data and then adding then to each customer record

Data preparation (2)

- Dataset obtained by joining the transaction data to the customer file to create the input for clustering algorithms
- ♦ 84 variables =
 - 14 categories of sponsor companies ×
 - 3 variables per category ×
 - 2 quarters (first two quarters of 1997)

Data cleansing - missing values

- demographic data
 - is usually categorical
 - has a high % of missing values
 - the missing values can be set to either unknown or unanswered (if result of unanswered questions)
- if a large portion of the field is missing, it may be discarded.
- In the case study, missing numeric values set to 0

Data transformation

- Ratio variables.
 - E.g.: profitability = profit / tenure
- Time-derivative variables.
 - E.g.: profit 2nd quarter profit 1st quarter
- Discretization using quantiles.
 - E.g., break points at 10, 25, 50, 75, and 90.
- Discretization using predefined ranges.
 - E.g., those used in census
- Log transforms.
 - E.g., for very skewed distributions

Distribution of original data

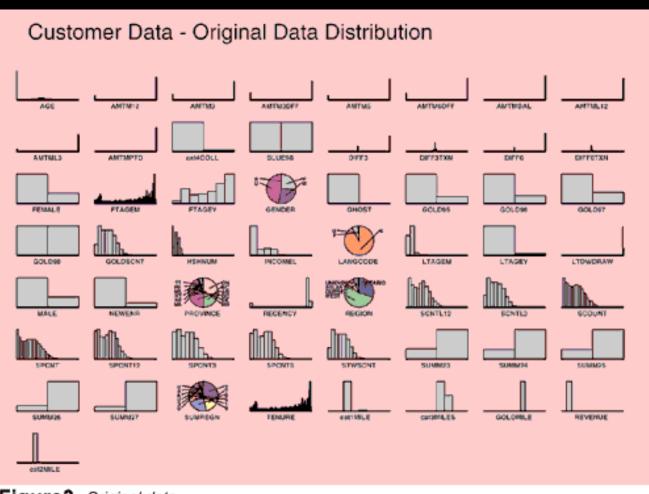


Figure3. Original data.

21

Distribution of discretized data

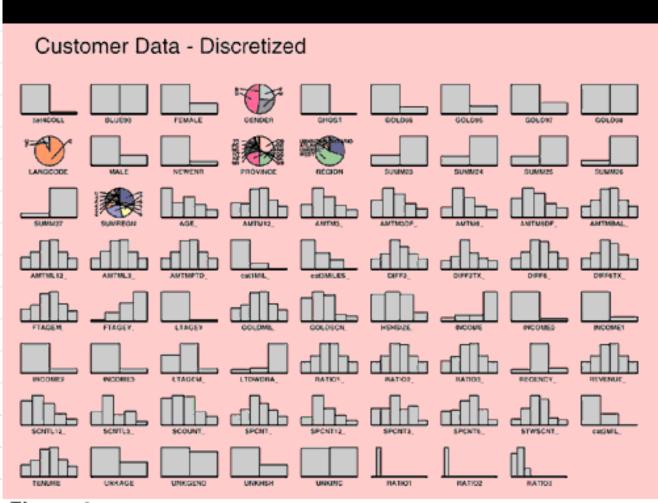


Figure 4. Discretized data.

22/03/2012

Before/after discretization

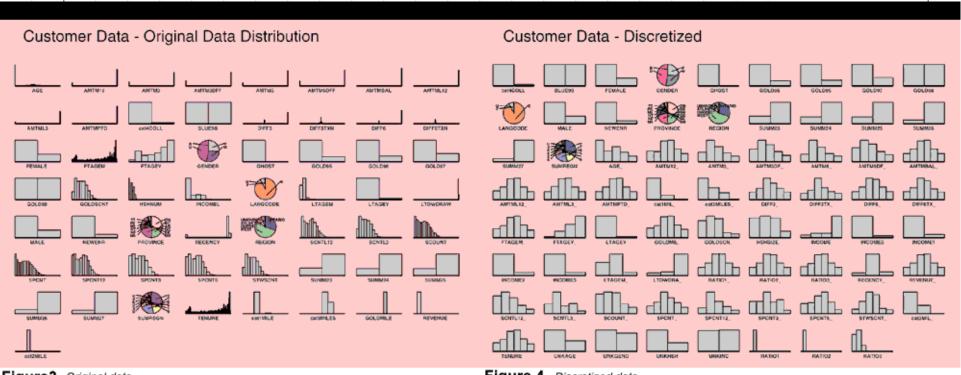
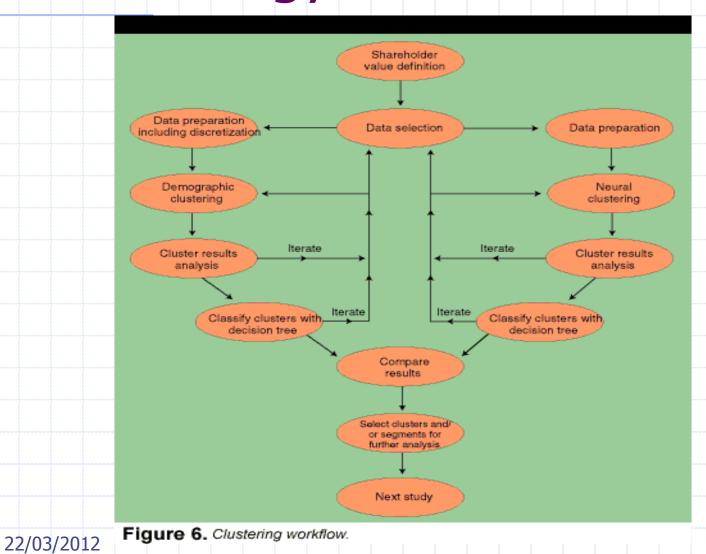


Figure3. Original data.

Figure 4. Discretized data.

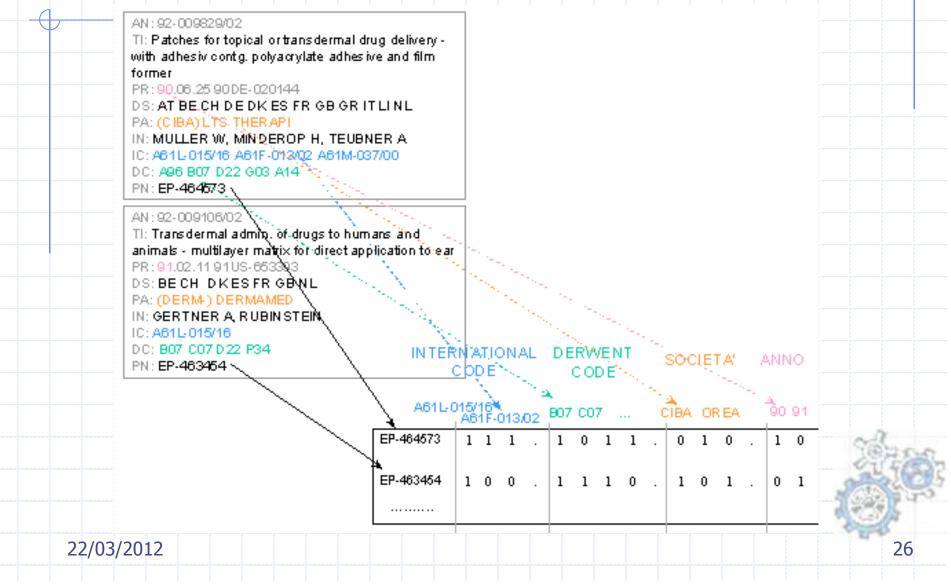
Clustering/segmentation methodology



IBM-IM demographic clustering

- Designed for categorical variables
- Similarity index:
 - increases with number of common values on same attribute
 - decreases with number of different values on same attribute
- # of clusters is not fixed a priori
 - only upper bound set

Demographic clustering: data structure



Demographic clustering: parameters

	Wi	Wı										Wn
Doci	1	1	1	1	0	1	1	0	1	0	1	0
Docj	1	0	0	1	1	1	o	1	0	0	0	1

$$N_{11} = \sum_{k=1}^{m} x_{1k} x_{jk}$$

$$N_{10} = \sum_{k=1}^{m} x_{1k} (1 - x_{jk})$$

$$N_{01} = \sum_{k=1}^{m} (1 - x_{k}) x_{jk}$$

$$N_{00} = \sum_{k=1}^{m} (1 - x_{k}) (1 - x_{k})$$

Indice di Somiglianza

$$s(i,j) = \frac{a N_{11}}{b N_{11} + c (N_{10} + N_{01})}$$

- Condorcet a=b=1 c=1/2.
- Dice

Soglia di Somiglianza

 $se\ s(i,j) > \alpha$ $rac{}{}$ $rac{}$ $rac{}{}$ $rac{}$ $rac{}{}$ $rac{}$ $rac{}$

ac in [0,1]

default: a = 0.5

Sistema di ponderazione

$$N_{11} = \sum_{k=1}^{m} \times_{k} \times_{jk} w_{k} \quad (N_{10} = ... N_{D1} = ...) \longrightarrow \begin{array}{c} \bullet \ w_{k} = 1 / x_{.k} \\ \bullet \ w_{k} = \log(N / x_{.k}). \end{array}$$

Demographic clustering: similarity index

- proportional to 1-1
- inversely proportional to 0-1 and 1-0
- unaffected by 0-0
- Condorcet index=
 - $N_{11} / (N_{11} + \frac{1}{2}(N_{01} + N_{10}))$
- Dice index=
 - $N_{11} / (N_{11} + \frac{1}{4}(N_{01} + N_{10}))$
- Dice looser then Condorcet

■ appropriate with highly different objects

Demographic clustering: similarity index

- Similarity threshold α
 - i,j assumed similar if $s(i,j)>\alpha$
 - low values (<0.5) appropriate with highly different objects
- Weights for attributes
 - importance of attributes in the similarity index may be varied with different weights
 - default weight = 1

IM Demographic clustering

- basic parameters:
 - Maximum number of clusters.
 - Maximum number of passes through the data.
 - Accuracy: a stopping criterion for the algorithm. If the change in the Condorcet criterion between data passes is smaller than the accuracy (as %), the algorithm will terminate.
 - The Condorcet criterion is a value in [0,1], where 1 indicates a perfect clustering -- all clusters are homogeneous and entirely different from all other clusters

... more parameters

- Similarity threshold.
 - defines the similarity threshold between two values in distance units.
 - If the similarity threshold is 0.5, then two values are considered equal if their absolute difference is less than or equal to 0.5.
- In the case study:
 - maximum # of clusters: 9
 - maximum # of passes: 5
 - accuracy: 0.1

Input dataset

- dataset: all continuous variables discretized.
- input variables:
 - # of products purchased over customer's lifetime
 - # of products purchased in the last 12 months
 - Customer's revenue contribution over lifetime
 - Customer tenure in months
 - Ratio of revenue to tenure
 - Ratio of number of products to tenure
 - Region
 - Recency
 - Tenure (# of months since customer first enrolled in the program).

Input dataset

- Other discrete and categorical variables and some interesting continuous variables were input as supplementary variables:
- variables used to profile the clusters but not to define them.
- easier interpretation of clusters using data other than the input variables.

Output of demographic clustering

Customer Clustering(DG) - Layer 1

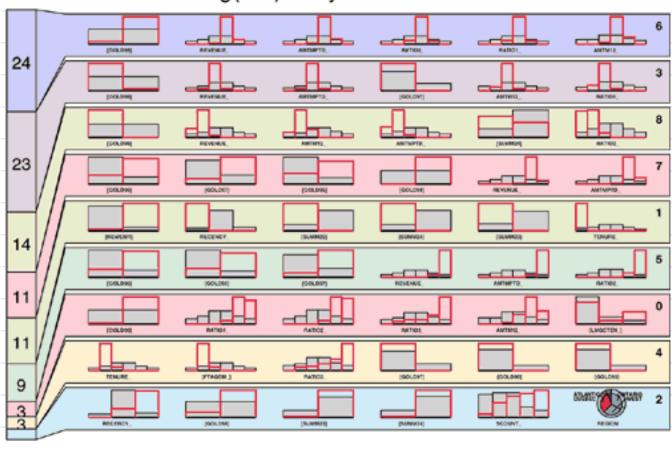


Figure 7. Demographic clustering output.

22/03/2012

Visualization of clusters

- horizontal strip = a cluster
- clusters are ordered from top to bottom in order of size
- variables are ordered from left to right in order of importance to the cluster, based on a chi-square test between variable and cluster ID.
- other metrics include entropy, Condorcet criterion, and database order.

Visualization of clusters

- variables used to define clusters are without brackets, while the supplementary variables appear within brackets.
- numeric (integer), discrete numeric (small integer), binary, and continuous variables have their frequency distribution shown as a bar graph.
- red bars = distribution of the variable within the current cluster.
- gray solid bars = distribution of the variable in the whole universe.

Visualization of clusters

- Categorical variables are shown as pie charts.
- inner pie = distribution of the categories for the current cluster
- outer ring = distribution of the variable for the entire universe.
- The more different the cluster distribution is from the average, the more interesting or distinct the cluster.

Output of demographic clustering

Customer Clustering(DG) - Layer 1

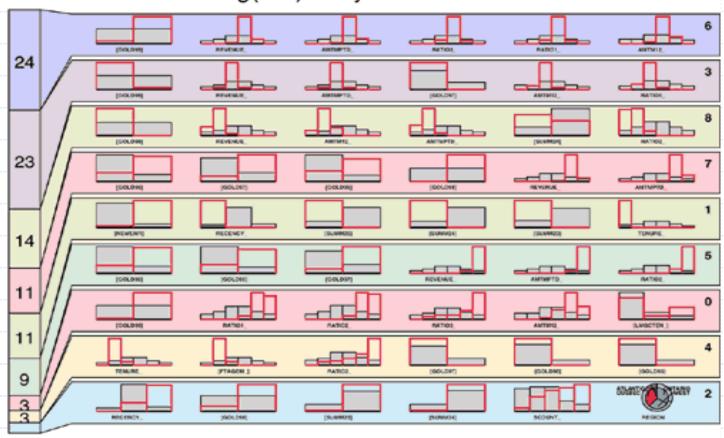


Figure 7. Demographic clustering output.

22/03/2012

Qualitative characterization of clusters

- Gold98 is a binary variable that indicates the best customers in the database, created previously by the business using RFM analysis.
- The clustering model agrees very well with this existing definition: Most of the clusters seem to have almost all Gold or no Gold customers.
- Confirmed the current Gold segment!

Qualitative characterization of clusters

- Our clustering results
 - not only validate the existing concept of Gold customers,
 - they extend the idea of the Gold customers by creating clusters within the Gold98 customer category.
 - A platinum customer group
- Cluster 5
 - almost all Gold98 customers, whose revenue, bonus collected lifetime to date, revenue per month, and lifetime to date per month are all in the 50th to 75th percentile.

22/03/2012

Qualitative characterization of clusters

Cluster 3:

no Gold98 customers. Its customer revenue,
 bonus collected, revenue per month, are all in the
 25th to 50th percentile.

Cluster 5:

- 9 % of the population.
- revenue, bonus collected are all in the 75th percentile and above, skewed to almost all greater than the 90th percentile.
- looks like a very profitable cluster

Detailed view of cluster 5

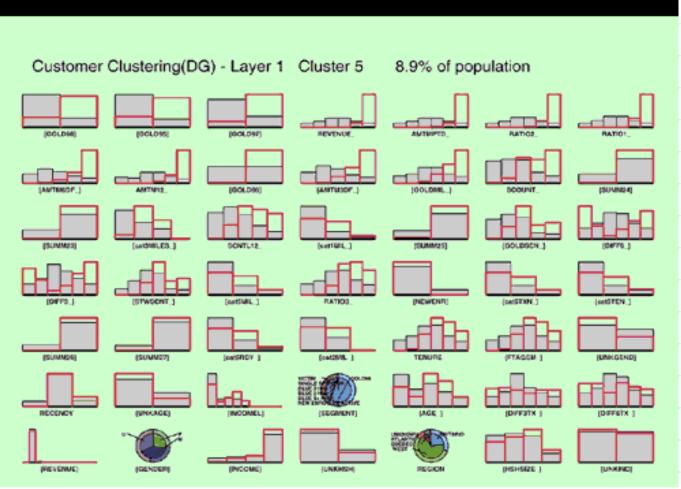


Figure 8. Cluster 5 output. 22/03/2012

Profiling clusters

• Goal: assess the potential business value of each cluster quantitatively by profiling the aggregate values of the shareholder value variables by cluster.

-	CLUSTERID	REVENUE	CUSTOMERS	PRODUCT INDEX	LEVERAGE	TENURE
~~	5	34.74%	8.82%	1.77	3.94	60.92
~~	6	26.13%	23.47%	1.41	1.11	57.87
	7	21.25%	10.71%	1.64	1.98	63.52
	3	6.62%	23.32%	.73	.28	47.23
	0	4.78%	3.43%	1.45	1.40	31.34
	2	4.40%	2.51%	1.46	1.75	61.38
~~	4	1.41%	2.96%	.99	.48	20.10
**	8	.45%	14.14%	.36	.03	30.01
**	1	.22%	10.64%	.00	.02	4.66

Table 1. Profiling a cluster.

Profiling clusters

- leverage = ratio of revenue to customer.
- cluster 5 is the most profitable cluster.
- as profitability increases, so does the average number of products purchased.
- product index = ratio of the average number of products purchased by the customers in the cluster divided by the average number of products purchased overall.
- customer profitability increases as tenure increases.

22/03/2012

Business opportunities

- Best customers in clusters 2, 5, and 7. :
 - indication: retention
- clusters 2, 6, and 0
 - indication: cross-selling by contrasting with clusters 5 and 7.
 - Clusters 2, 6, and 0 have a product index close to those of clusters 5 and 7, which have the highest number of products purchased.
 - Try to convert customers from clusters 2, 6, and 0 to clusters 5 and 7. By comparing which products are bought we can find products that are candidates for cross-selling.

22/03/2012

Business opportunities

- Clusters 3 and 4
 - indication: cross-selling to clusters 2, 6,
 and 0 •
- Cluster 1
 - indication: wait and see. It appears to be a group of new customers
- Cluster 8
 - indication: no waste of marketing dollars

Follow-up

- Reactions from The Loyalty Group
 - visualization of results allowed for meaningful and actionable analysis.
 - original segmentation methodology validated, but that refinements to the original segmentation could prove valuable.
 - decision to undertake further data mining projects, including
 - predictive models for direct mail targeting,
 - further work on segmentation using more detailed behavioral data,
 - opportunity identification using association algorithms within the segments discovered.