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Fit a Line with Logistic Regression



Fit a Line with Logistic Regression
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Recovering Probabilities from Log Odds

• which gives p as the sigmoid function!

€ 

ln( p
1− p

) = β0 + β1X

⇔
p

1− p
= eβ 0 +β1X

⇔ p =
eβ 0 +β1X

1+eβ 0 +β1X
=

1
1+e−(β 0 +β1X )



Trasformation Applied
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Logistic Regression

• In Logistic Regression we seek a model

• That is, the log odds, i.e., the logit, is assumed to be linearly related 
to the independent variable X
• In this way it is possible to solve an ordinary (linear) regression.

𝑌 = 𝑙𝑜𝑔𝑖𝑡 𝑝 = 𝛽!𝑋 + 𝛽" = log(p/(1-p)



Interpretation of Beta1

• Let:
• odds1 = odds for value X (p/(1–p))
• odds2 = odds for value X + 1 unit

• Then:

• The exponent of the slope describes the proportionate rate at which the 
predicted odds ratio changes with each successive unit of X

€ 

odds2
odds1

=
eβ 0 +β1 (X +1)

eβ 0 +β1X

=
e(β 0 +β1X )+β1

eβ 0 +β1X
=
e(β 0 +β1X )eβ1

eβ 0 +β1X
= eβ1

If the odds ratio of two consecutive value is large it means that 
an increment on X has a large impact in the prediction of Y.



Example

• Hours: 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50

• Pass: 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1

Beta0 = −4.0777, Beta1 = 1.5046

One additional hour of study is estimated to increase log-odds by 1.5046, so multiplying odds by e1.5046 =  4.5.

For example, for a student who studies 2 hours we have an estimated probability of passing the exam of 0.26. 

Similarly, for a student who studies 4 hours, the estimated probability of passing the exam is 0.87.



References

• Regression. Appendix D. Introduction to 
Data Mining.


