DATA MINING 2
(Deep) Neural Networks

Riccardo Guidotti

a.a. 2020/2021

Slides edited from a set of slides titled “Introduction to

Machine Learning and Neural Networks” by Davide Bacciu UNIVERSITA DI PISA

(Big) Data

256
\ . Max

Max Max pooling
22\ Stridel| g5 poaling paoling

A quick look on Deep Learning

Machine
Learning

Repres.

Learning

Deep
Learning

Deep learning

Repres.
Representation learning methods that

Learning

* allow a machine to be fed with raw data and

* to automatically discover the representations
Deep needed for detection or classification.

Learning

Raw representation Higher-level representation
. Age 35
* Weight 65
O . Incogme 23 KE * Young parent 0.9
. Children , wi f) e Fit sportsman 0.1
* High-educated reader 0.8

* Likes sport 0.3
* Likesreading 0.6
* Education high

* Rich obese 0.0

—

Multiple Levels Of Abstraction

224

55

N
N

X

St$

of 4

, i :
PR
-l :!

). B

=N =
RS

27 b \
13 13 13
L YF =3 .
3 = o] 3 - dense’
- o 13 - 13 [¢ 13
3 -
= - 3 3]: -
384 384 256
256 Max. p
Max Max pooling
pocling pooling

096

dense;

4096

1

Nonlinearly Separable Data

* Since f(w,x) is a linear
combination of input variables,
decision boundary is linear.

* For nonlinearly separable
problems, the perceptron fails
because no linear hyperplane can
separate the data perfectly.

* An example of nonlinearly
separable data is the XOR
function.

XOR Data

X4

X2

y

0

1
0
1

0
0
1
1

-1
1
1

-1

Multilayer Neural Network

Input Hidden Output
* Hidden Layers: intermediary layers between Layer Layer Layer

input and output layers.

* More %1eneral activation functions (sigmoid,
linear, hyperbolic tangent, etc.).

* Multi-layer neural network can solve any type *
of classitication task involving nonlinear
decision surfaces.

* Perceptron is single layer.

* We can think to each hidden node as a
Eerceptron that tries to construct one
yperplane, while the output node combines
the results to return the decision boundary.

General Structure of ANN

e é { ; ; ;
Layer Input Neuron i Output

Activation

function — 0,
Hidden X/ Y Y 8(5;)
Layer T
/ threshold, t
Output x Training ANN means learning
Layer the weights of the neurons

Artificial Neural Networks (ANN)

* Various types of neural network topology

* single-layered network (perceptron) versus
multi-layered network

* Feed-forward versus recurrent network

; Linear function 1 Sigmoid funcicjc_)n
* Various types of 05 os|
activation functions (f) OZ/ -
Y — f(ZWX) -}1 Tanh f(L)mction 1 E Sign fL(l)nction 1

171 5 3

| ol _# | q

05 // 3

1

-1 0 1 -1 0 1

Deep Neural Networks

Deep Neural Networks

Deep Neural Networks

Actually deep
learning is way
more than having
neural networks
with a lot of layers

Output

Backpropagation through
many layers has numerical
problems that makes
learning not-straightforward
(Gradient Vanish/Esplosion)

Hidden Layer 3

Hidden Layer 2

Hidden Layer 1

Representation Learning

Feature representation
e We don’t know the P

“right” levels of

) 3rd layer
abstraction of “Objects”
information that is
good for the
machine 2nd layer

* So let the model Object parts
figure it out!
5 1st layer
llEdgeSII
Pixels

Example from Honglak Lee (NIPS 2010)

Representation Learning

Feature representation

Face Recognition:

* Deep Network can build up 3rd !ayerﬂ
increasingly higher levels of Objects
abstraction

* Lines, parts, regions

2nd layer
“Object parts”
1st layer
llEdgeSII

Pixels

Example from Honglak Lee (NIPS 2010)

Representation Learning

Feature representation

S 50

b BE] 3rd layer
. ’ . »n
“Objects

Output

Hidden Layer 3

2nd layer
“Object parts”

Hidden Layer 2

1st layer
llEdgeS”

Hidden Layer 1

Pixels

Example from Honglak Lee (NIPS 2010)

Activation Functions

* A new change: modifying the nonlinearity
* The logistic is not widely used in modern ANNs

tanh(x) 5
Alternative 1:

tanh

Like logistic function but shifted
to range [-1, +1]

O
!

o0 = Gfnet) =

e

Activation Functions

max(0, z)

Alternative 2: rectified linear unit

/ Linear with a cutoff at zero

(Implementation: clip the gradient
when you pass zero)

A\wu-o—-muam

A

)
P

U
]

'
aad
\

.

n

w

>

o
N

max(0,w - x + b).

Activation Functions

Alternative 3: soft exponential linear unit

— log(exp(x) + 1)
10} — Max(0, x) A
— 1/(1 + exp(-x))

Soft version: log(exp(x)+1)

Doesn’t saturate (at one end)
- Sparsifies outputs
Helps with vanishing gradient

Slide from William Cohen

Activation Functions Summary

~ o7 ‘IO:: --------- D
1.0 oo nennnnannnnnnsn > (eesnsunnnnnnsn CECE EEEEE T ‘-'-.‘---) | I R
e [Sigmoid
M Derivative
: M step Function : B Linear Function ~ efestteel
5 b SR« 758
1.04 W Derivative 104 M Derivative PIPPRTTT Ui B abL! TT e
L’O
1
0forx<O0 _ _
Fa =177 fG) =x) = 170
1forx=0 e
1.06To0. _esenmenes > 1.0 kussnnnnnnnnn ::;
".0 J “: . e x]
| Hyperbolic Tangent 1 Wrew Zk e k
PRI 1.0+ . Derivative e .Turevi
¥ Softmax Function
X _ p,—X
f(x)_e € £2) 0(ore) forx<O0
= — x) =
e* +e™* X forx =0

Learning Multi-layer Neural Network

e Can we apply perceptron learning to each node, including hidden nodes?
* Perceptron computes error e = y-f(w,x) and updates weights accordingly
* Problem: how to determine the true value of y for hidden nodes?

* Approximate error in hidden nodes by error in the output nodes

* Problems:
* Not clear how adjustment in the hidden nodes affect overall error
* No guarantee of convergence to optimal solution

Gradient Descent for Multilayer NN

2 Quadratic function from
. ... 1 N which we can find a global
* Error function to minimize: E = Ez(yi —f(zwjxl,j)j / minimum solution
1= J
. oF
* Weight update: wﬁ,’”l) — Wﬁ-k) 1=
J

 Activation function f must be differentiable

. . . . k+1) k
* For sigmoid function: w§. = w§. : +/IZ(y;-0,)0,(1-0,)x,

 Stochastic Gradient Descent (update the weight immediately)

Gradient Descent for Multilayer NN

* Weights are updated in the

opposite direction of the (k) _ () _ 4 oF
gradient of the loss function. w, =W, —
J
e Gradient direction is the
direction of uphill of the error
function. M|
* By taking the negative we are Gradient direction
going downhill. ol . J
* Hopefully to a minimum of the | Wik @
error. L

1 1 1 1 1 1 1
-1 -08 06 04 02 0 0.2 0.4 06 0.8

Gradient Descent for Multilayer NN

e For output neurons, weight update
formula is the same as before (gradient

Hidden layer Hidden layer Hidden layer
descent for perceptron) k-1 K k+1
Neuron p Neuron x

Wi = w9+ o,(1-0,)) 5w Q

P! l_] pz

* For hidden neurons: Q% Neuron i W}VO
s

jed; qu Wiy
Output neurons : 0, =0,(1-0,)(¢, —0;) Neuron g Neuron y
Hidden neurons : 0 ;= oj(l — 0].) Z5kwjk
keCDj

o: output of the network
t: target value (ground truth)

Training Multilayer NN

[(E) Output (silgmoid)

Output Y= 14+exp(—b)

f

(D) Output (linear)
b= 0Bz

Hidden Layer

?

(C) Hidden (sigmoid)
% = Treway V)

?

[(B) Hidden (linear)

M .
aj = igQji%i, Vj

[(A) lnzut]

Givenx;, V1

Training Multilayer NN

[/T) Loss]
E = L(y—y*)?
} 4
EQ, y7) [() Output (igmoid)]

Y= Trexp(—b)

f
(D) Output (linear)
b=3"05)%
f

[(C) Hidden (sigmoid)]
1 vj

Output

Hidden Layer

)= 14+exp(—aj)’

[(B) Hidden (Iln]\e4ar)]

' =D iz0 QGiTi, V]
How do we update these weights o ZZ—%O‘J o

given the loss is available only at (A) Input
the output unit?

Givenxz;, V1

Error Backpropagation

Error is computed at the output

and propagated back to the input
EQv,y7) by chain rule to compute the
contribution of each weight
(a.k.a. derivative) to the loss

Output

A 2-step process

1. Forward pass - Compute the
network output

2. Backward pass — Compute the loss
function gradients and update

Hidden Layer

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Backpropagation in other words

* In order to get the loss of a node Py
(e.g. Z0), we multiply the value of its
corresponding f’(z) by the loss of the
node it is connected to in the next
layer (delta_1), by the weight of the
link connecting both nodes.

* We do the delta calculation step at
every unit, back-propagating the loss
into the neural net, and finding out
what loss every node/unit is
responsible for.

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea?7

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7

On the Key Importance of Error Functions

* The error/loss/cost function reduces all the various good and bad
aspects of a possibly complex system down to a single number, a
scalar value, which allows candidate solutions to be compared.

* It is important, therefore, that the function faithfully represent our
design goals.

* If we choose a poor error function and obtain unsatisfactory results,
the fault is ours for badly specifying the goal of the search.

Objective Functions for NN

: A problem where you predict a real-value quantity.
Output Layer: One node with a linear activation unit.

Loss Function: Quadratic Loss (Mean Squared Error (MSE))

. Classify an example as belonging to one of K classes
Output Layer:

* One node with a sigmoid activation unit (K=2)
* K output nodes in a softmax layer (K>2)

Loss function: Cross-entropy (i.e. negative log likelihood)

J=F Forward Backward
1 dJ
dratic J = =(y — y*)* W
Quadratic 2(y y™*) i y—y
« . dJ 1 N
Cross Entropy J =y"log(y) + (1 —y*)log(l—y)| — =y "—+ (1 —y")——
dy Y y—1

Design Issues in ANN

* Number of nodes in input layer
* One input node per binary/continuous attribute
* k or log,k nodes for each categorical attribute with k values

* Number of nodes in output layer
* One output for binary class problem
* k or log,k nodes for k-class problem

* Number of nodes in hidden layer
* Initial weights and biases

Characteristics of ANN

* Multilayer ANN are universal approximators but could suffer from overfitting if
the network is too large.

Gradient descent may converge to local minimum.

Model building can be very time consuming, but testing can be very fast.

Can handle redundant attributes because weights are automatically learnt.

Sensitive to noise in training data.

Difficult to handle missing attributes.

Tips and Tricks of NN Training

Dataset Should Normally be Split Into

* Training set: use to update the weights. Records in this set are
repeatedly in random order. The weight update equation are applied
after a certain number of records.

* Validation set: use to decide when to stop training only by
monitoring the error and to select the best model configuration

* Test set: use to test the performance of the neural network. It should
not be used as part of the neural network development and model
selection cycle

Before Starting: Weight Initialization

* Choice of initial weight values is important as this decides starting
position in weight space. That is, how far away from global minimum
* Aim is to select weight values which produce midrange function signals
e Select weight values randomly from uniform probability distribution

* Normalize weight values so number of weighted connections per unit
produces midrange function signal

* Try different random initialization to
* Assess robustness
* Have more opportunities to find optimal results

Two learning fashion (plus one)

» Sequential mode (on-line, stochastic, or per-pattern)
 Weights updated after each records is presented
* Many weight updates, can quicker convergence but also make learning less stable

* Batch mode (off-line or per-epoch)
* Weights updated after all records are presented
e Can be very slow and lead to trapping in early local minima

* Minibatch mode (a blend of the two above)

* Weights updated after a few records (from tens to thousands) are presented
* Best of both (and good for GPU)

Convergence Criteria

* Learning is obtained by repeatedly supplying training data and
adjusting by backpropagation
e Typically 1 training set presentation = 1 epoch

* We need a stopping criteria to define convergence
e Euclidean norm of the gradient vector reaches a sufficiently small value

* Absolute rate of change in the average squared error per epoch is
sufficiently small

 Validation for generalization performance: stop when generalization
performance reaches a peak

Early Stopping

* Running too many epochs may overtrain the network and result in
overfitting and perform poorly in generalization

* Keep a hold-out validation set and test accuracy after every epoch.
Maintain weights for best performing network on the validation set
and stop training when error increases beyond this

* Always let the network run for some epochs before deciding to stop
(patience parameter), then backtrack to best result

A

Validation set
error
Training set

No. of epochs

Model Selection

* Too few hidden units prevent the network from learning adequately fitting the
data and learning the concept.

* Too many hidden units leads to overfitting, unless you regularize heavily (e.g.
dropout, weight decay, weight penalties)

* Cross validation should be used to determine an appropriate number of hidden
units by using the optimal validation error to select the model with optimal
number of hidden layers and nodes.

Regularization

e Constrain the learning model to avoid overfitting and help improving
generalization.

* Add penalization terms to the loss function that punish the model for
excessive use of resources

* Limit the amount of weights that is used to learn a task
* Limit the total activation of neurons in the network

E'=E(Q,y")+

Hyperparameter to be R (WQ) Penalty on

chosen in model selection
R(Z) Penalty on

Common penalty terms (norms)

* 1-norm [|A[]; = 25 |ayj]
* Parameters: R(Wy) = ||Wpy||%
e Activations: R(Z(X)) = ||Z(X)||? (Z hidden unit activation)

* 2-norm ||Al]|, = \/ZU i

* Parameters: R(Wp) = ||Wy]||5
e Activations: R(Z(X)) = ||Z(X)||5 (Z hidden unit activation)

* Any p-norm and more...

Dropout Regularization

Randomly disconnect units from the network during training

Dropout Regularization

Randomly disconnect units from the network during training

Dropout Regularization

Randomly disconnect units from the network during training

Dropout Regularization

Randomly disconnect units from the network during training

—
oyé *‘\{

N

>

You can also drop single
connections (dropconnect)

Regulated by unit dropping
hyperparameter

Prevents unit coadaptation
Committee machine effect
Need to adapt prediction phase
Used at prediction time gives
predictions with confidence
intervals

Momentum

 Adding a term to weight update equation to store an exponentially
weight history of previous weights changes

 Reducing problems of instability while increasing the rate of convergence

* |If weight changes tend to have same signs, the momentum term

increases and gradient decrease speed up convergence on shallow
gradient

* |f weight changes tend have opposing signs, the momentum term
decreases and gradient descent slows to reduce oscillations
(stabilizes)

 Can help escape being trapped in local minima

Choosing the Optimization Algorithm

e Standard Stochastic Gradient Descent (SGD)
* Easy and efficient
 Difficult to pick up the best learning rate
* Unstable convergence
e Often used with momentum (exponentially weighted history of previous weights changes)

* RMSprop
* Adaptive learning rate method (reduces it using a moving average of the squared gradient)
* Fastens convergence by having quicker gradients when necessary

* Adagrad

* Like RMSprop with element-wise scaling of the gradient

* ADAM

* Like Adagrad but adds an exponentially decaying average of past gradients like momentum

Convolutional Neural Networks

* Are typically applied for the classification of images and time series
* Instead of having only “fully connected” layers adopt “convolutional

layers”
- 32x32x3 image
ox5x3 filter w

-—

V
——e

=\

™~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
(i.,e. 5*5*3 = 75-dimensional dot product + bias)

? wlz +b

x

Recurrent Neural Network

 Are typically applied in natural language processing (NLP).

Sample “eq “Iu/-\ I[\ o7
y p t

t t t
e .03 .25 1 1M
Key idea: RNNs have an Softmax | % - ‘o8 08
“internal state” that is ": 51° "’13 ":’
/ updated as a sequence is 10 05 X 02
processed outputiayer | Z51 1[5 T 03
4.1 1.2 121 v 3
7 T | T Wy
t|=fwl(hs iz e [0 | SR | R I B
X new state / old state input vector at g ik 03 s
/ some time step I ! I [w_xh
some function : 0 0 0
with parameters W input layer | O 2 : g
0 0 0 0
input chars: “h" \} “e" \ f"l" LI

input

multivariate N
time series

channels

} time

Convolution

Bottleneck ' N
Cony{olutnon Y

f output
~’ multivariate
MaxPooling time series
1 N

" Convolution
(bottleneck)

Convolutional Neural Network

Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019 lecture09.pdf

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation

Wx

1 — —> 4 (O

3072 10 x 3072 10

weights

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

3072

e

Wx

19 x 3072
weights

activation
—> 1 (O
/ 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

32 width

3 depth

Convolution Layer

— Filters always extend the full

32x32x3‘mage ‘d)h"“he nput volume
oxox3 filter
%, s /4
I' Convolve the filter with the image
|.e. “slide over the image spatially,

computing dot products”

32

Convolution Layer

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

? wlz +b

1 number:

Convolution Layer

activation map

__— 32x32x3 image
oxox3 filter

V
i

32

convolve (slide) over all
spatial locations

Convolution Layer

110]| 1

0 1 0
1.1 [1, RENEE 101
0, 1. 1 (s 4 ConK\;(:Lue’clion
0,/0/1/1]|1
0/|0|1]|1]|0
0/1|{1|/0]|0

Convolved
Image

Feature

Convolution Layer

Kernel Channel #1

l

308

+

Kernel Channel #2

l

—498

+

o|o|o|of|o]o ol oo o] o o| oo
o | 156 | 155 | 156 | 158 | 158 167 | 166 | 167 | 169 | 169 163 | 165 | 165
0 153 | 154 | 157 | 159 | 159 164 | 165 | 168 | 170 | 170 164 | 166 | 166
0 | 149 | 151 [155 | 158 | 159 160 | 162 | 166 | 169 | 170 0 | 156 | 158 | 162 | 165 | 166
0 | 146 | 146 | 149 | 153 | 158 156 | 156 | 159 | 163 | 168 o | 155 | 155 | 158 | 162 | 167
0 145 | 143 | 143 | 148 | 158 155 | 153 | 153 | 158 | 168 0 154 | 152 | 152 | 157 | 167
Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)

ok ek |l 1 0 0

0 k|| =k 1]-1]-1

0 il 1 1 0| -1

Kernel Channel #3

164 +1=-25

l

Bias=1

I

Output

-25

Convolution Layer

_— 32x32x3 image activation maps

o 5x5x3 filt
s / XoX HHier
,/
@>@ ”

convolve (slide) over all

spatial locations
32 / 28

3 1

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

Y

Convolution Layer

32 A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

Convolutional Neural Network

Image Maps
Input
\Nutput
\ -
Pl =t x
Convolutions Fully Connected

Subsampling

Convolutional Neural Network

* CNN is a sequence of Conv Layers, interspersed with activation functions.

* CNN shrinks volumes spatially.
* E.g. 32x32 input convolved repeatedly with 5x5 filters! (32 -> 28 -> 24 ...).

* Shrinking too fast is not good, doesn’t work well.

A A A

CONV, CONV, CONV,
RelLU RelU RelU

‘59-95- % e.g. 10
XX 5X5x6
32 filters 28 e A

W
|

-

o

CNN for Image Classification

Low-level
features

Mid-level
features

VGG-16 Conv1 1

High-level
features

Linearly
separable
classifier

Stride

/X7 input (spatially)

assume 3x3 filter

=> 5x5 output

Stride

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

Stride

/X7 input (spatially)
assume 3x3 filter
applied with stride 37

I doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

Stride

Output size:

(N - F) / stride + 1

eg.N=7,F=3:

F stride 1 =>(7-3)/1+1=

stride 2 =>(7-3)/2+1=

stride3=>(7/-3)/3+1=233:\

Padding

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

QPR O | Q| O

In general, common to see CONV layers with stride
1, filters of size FxF, and zero-padding with (F-1)/2.
(will preserve size spatially)

* F=3=>zeropad with 1 pixel

* F=5=>zero pad with 2 pixel

e F=7=>zero pad with 3 pixel

Convolution Summary

Accepts a volume of size W; x H; x Dy
Requires four hyperparameters:
o Number of filters K,
o their spatial extent F',
o the stride S,
o the amount of zero padding P.
Produces a volume of size Wy x Hy x D, where:
o Wo=(W, —F+2P)/S+1
o Hy = (H, — F + 2P)/S + 1 (i.e. width and height are computed equally by symmetry)
° D2 = I
With parameter sharing, it introduces F' - F' - D; weights per filter, for a total of (F' - F' - Dy) - K weights
and K biases.
In the output volume, the d-th depth slice (of size W5 x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Pooling Layer

* Makes the representations smaller and more manageable
* Operates over each activation map independently

224x224x64

112x112x64

pool

—

|

_— R
downsampling
112

224

224

MaxPooling and AvgPoling

max pooling

20
112

30
37

average pooling

Pooling Summary

Accepts a volume of size W; x H; x D,
Requires three hyperparameters:
o their spatial extent F',
o the stride S,
Produces a volume of size Wy x Hy x D5 where:
° 2=(W1—F)/S+1
o Hy =(H, — F)/S +1
© D2 — D1
» [ntroduces zero parameters since it computes a fixed function of the input
e Note that it is not common to use zero-padding for Pooling layers

Example of CNN

Conv_1
Convolution
(5 x 5) kernel

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network

RelLU activation
,_* < Ve N

Conv_2
Convolution
(5 x 5) kernel

)) Max-Pooling ; : Max-Pooling (with
valid padding (2x2) valid padding (2x2)
A A A
r ™ A ' ~ N 0
1
T “Srzaeg 2
INPUT nl channels nl channels n2 channels /‘5‘ 9
(28 x 28 x 1) (24 x 24 x n1) (12 x 12 x n1) (8 x8xn2) | OUTPUT

n3 units

Recurrent Neural Network

Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019 lecturel0.pdf

Types of Recurrent Neural Networks

one to one

Vanilla NN

one to many many to one

Image --> Sequence of Words -->
Sequence of Words Sentiment
Image Captioning Sentiment Classification
TS Classification

many to many

Sequence of Words -->
Sequence of Words
Machine Translation

many to many

Video Classification

Recurrent Neural Network - RNN

Key idea: RNNs have an
“Internal state” that is

/ updated as a sequence Is
processed

Recurrent Neural Network - RNN

* We can process a sequence of vectors x by applying a recurrence

formula at every time step:

h

new state

(7

y

Lt

)

Jw

some function
with parameters W

old state input vector at
some time step

y

-

Unfolded RNN

SO >

RNN: Computational Graph

0 W 1 W 2
e T Y
W X, X,

Reminder: Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to One

RNN: Example Training

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

input layer

input chars:

1
0
0
0
“h"

O |ooc-=0

= |lo=0o0

= o-~0O0

RNN: Example Training

Example:
Character-level
Language Model

hi = tanh(Whrprhi—1 + Wenxt)

: 0.3 1.0 0.1 -0.3
VOCGbUIary- hidden layer | -0.1 » 0.3 =1 -0.5 - 0.9
[h,e,l,0] 0.9 0.1 0.3 0.7

a N R R %
Example training s = = 5
sequence: input layer | 9 4 3 .
“hello” D 2 D 2
input chars: “h” “e” 3 [7 g

RNN: Example Training

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training

seqguence:
“hello”

target chars:

output layer

hidden layer

input layer

input chars:

y

=
-

L2000
R T« ¢

—

J o000 = —»

0 oo=20|—>

o
wom -

W_hh| -

O=00|—s| OO

RNN: Example Test

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars: *

RNN: Example Test

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

0.
-0.1
0.

1
0
0
0
“H"

o lco-0

RNN: Example Test

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

RNN: Example Test

Example: Sample e/\ ,'/\ '/\ o

t 1 r
Character-level 3 2| | m n
Softmax 100 05 68 .08
Language Model ‘84 50 03 7
: f f 1 T
Sampllng 1.0 0.5 0.1 0.2
output layer :‘;% 2% ?g :(1)?
4.1 1.2 1.1 2.2

Vocabulary: T T T P w_ny
LEL e wasenioer [0 |
0.9 0.1 -0.3 0.7

At test-time sample T T T [w_en
characters one at a time, R é E § §
feed back to model L * 0 \ : \}?
input chars: “h” “a" }" 7 5

References

e Artificial Neural Network. Chapter 5.4 and
5.5. Introduction to Data Mining.

* Hands-on Machine Learning with Scikit- oReLLY S
Learn, Keras & Tensorflow. A practical Mashine Learning

handbook to start wrestling with Machine | Keras & Tensoriow
Learning models (2nd ed).
* Deep Learning. lan Goodfellow, Yoshua

Bengio, and Aaron Courville. The
reference book for deep learning models.

;;;;;;;

Exercises - Neural Network

Predict with a Neural Network

e Given the following NN with
— assigned weights (see figure)
— activation function f(S) = sign(S-0.2) for all nodes

e Label the test set on the right, then compute accuracy,
and precision & recall for both classes

1 12 O
0.4 1 1
11 0.1 0.2 +1 +1
0.0 R .
0.2 o) £y
04 -1 +1
+1 +1
12 0.1 03 5 =
0.4 il k1
' -1 -1
input layer hidden layer output layer +1 +1

Predict with a Neural Network - Solution

 Given the following NN with Hy = sign(0.4 *-1+0.1%1-0.2) =
=sign(-0.5) =-1
- assigned weights (see figure) H, = sign(0.0 * -1 + -0.4 * 1-0.2) =

— activation function f(S) = sign(S-0.2) for all nodes H;i'@:‘,f_g'_?f_'f+ 0.4%1-02)=
« Label the test set on the right, then compute accurac: =503 =1

and precision & recall for both classes Y, =sign(0.2 * -1+ 0.2* -1+ 0.3 * 1-0.2) =

Tl 2 c = sign(-0.3) =-1
04 -1 +1 -1
" . 0.2 1 1 +1
0.0 +1 -1 -1
0.2 O +1 -1 +1
0.3 = +1 +1
+1 +1 +1
12 0.1 93 - = .
0.4 +1 +1 -1
: -1 -1 -1
input layer hidden layer output layer 1 +1 1

Predict with a Neural Network

Given the neural network below (on the left), apply it to the test set provided (on the right). The weights are reported beside
each connection, while the activation function is simply f(S) = sign(S), i.e. -1 for positive values, +1 for positive ones and 0
for S=0. For each case, show the output also of the nodes on the hidden layer.

04 [HL

| 0 1 p 0.3

- 7 . 11 12 0
Cofggn— 22 S0 +0 1

| -0.4 ' -
29 < : il

0.1% 9 1 +1
06 H3 1 1

input layer hidden Iayer output layer +1 % |

Predict with a Neural Network - Solution

0.4 H1 Answer:

™ & IZI(:J Ii ?
. N = o N % & -
0§4H2 A '_O ' +1 +0 +1
._ I2v 0.1 -1 +3 -1
| 0.6 H3___' 1 +1 1
input layer hidden layer output layer +1] +1
Inputl 0 1 1 1 1
Input2 -1 0 1 1 -1
H1l
H2
H3

Output

