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Support Vector Machine (SVM)

* SVM represents the decision boundary
using a subset of the training examples,
known as the support vectors.

SVC with linear kernel LinearSVC (linear kernel)
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* We illustrate the basic idea behind SVM e R
by introducing the concept of maximal : |
margin hyperplane and explain the
rationale of choosing such a hyperplane.
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Maximum Margin Hyperplanes

* Find a linear hyperplane (decision
boundary) that separates the data.




Maximum Margin Hyperplanes

* One possible solution.
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Maximum Margin Hyperplanes

* Another possible solution.
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Maximum Margin Hyperplanes

* Other possible solutions. 5
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Maximum Margin Hyperplanes

* Let’s focus on B; and B,.
* Which one is better?
* How do you define better?
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Maximum Margin Hyperplanes

* The best solution is the hyperplane ®
that maximizes the margin. ~. O ®
: O
* Thus, B, is better than B..
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Linear SVM: Separable Case

* Alinear SVM is a classifier that searches
for a hyperplane with the largest margin
(a.k.a. maximal margin classifier).

decision boundarV
e wand b have to be learned. wex+b=0

d

wex+b=-1

e Given w and b the classifiers work as
N 1 ifwex+b>1
f(xX)=

—1 ifwex+b<-1
Example calculus dot product
w=[.3.2] x=[12] b=-2
W:X+b=.3%1+.2%2+(-2)=-1.3
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Linear SVM: Separable Case b=+l
B1 : :
* What is the distance expression for a /
point x to a line wx+b= 0 (the decision O
boundary)? /
‘X W + b‘ ‘X ‘W 4+ b‘ decision boundarV O
d(X) — = wex+b=0 ./ support vectors
2 d 2
[w; \/Zi=lwi pesibo1” X ’
0
] b
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Linear SVM: Separable Case e +b=+l

* The distance between / O

e The distance between

bll and b12 i.e. the decision boundar /
) ) y
///////"n RS
Margin = —— [] )
H
H
H

margin is ) wex+bhb=0
[ w] o

wex+b=-1

e Question! margin

* In order to maximize
the margin we need to
minimize ||w|| 0 M
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Learning a Linear SVM

* Learning the SVM model is equivalent to
determining w and b.

e How to find wand b?

* Objective is to maximize the margin.
* Which is equivalent to minimize

* Subject to to the following constraints

* This is a constrained optimization
problem that can be solved using the
Lagrange multiplier method.

* Introduce Lagrange multiplier A

Margin =

It




Constrained Optimization Problem

Minimize || w ||= <W : W> subject to y, (<xi -W> +b)>1foralli

Lagrangian method : maximize inf , L(w, b, ), where

Lw.b,a) = Wil =S a0, (x, - w) +£)-1]

At the extremum, the partial derivative of L with respect
both w and » must be 0. Taking the derivatives, setting them
to 0, substituting back into L, and simplifying yields:

Maximize Zai — % Zyl.yjaiaj <xl. -x].>
i ij

subject to Zyl. ;=0 and o, 20




Example of Linear SVM
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A Geometrical Interpretation
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Linear SVM: Non-separable Case

* What if the problem is not

linearly separable?

* We must allow for errors in our RN
solution. " |
|
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Slack Variables

* The inequality constraints must be

relaxed to accommodate the
nonlinearly separable data.

* This is done introducing slack
variables & (xi) into the constrains of

the optimization problem.

* ¢ provides an estimate of the error of

the decision boundary on the
misclassified training examples.
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Learning a Non-separable Linear SVM

* Objective is to minimize | w ||2 ok
L(W) — +C Zé
* Subject to to the constraints 2 i=1
* where C and k are user-specified r = =
1 if wex. +b {9
Vi = {

parameters representing the R
penalty of misclassifying the —1 ifwex;+b S

training instances

* Lagrangian multipliers are
constrainedto 0 <A <C.

https://scikit-learn.org/stable/auto examples/svm/plot linearsvc support vectors.html#sphx-glr-auto-examples-svm-plot-linearsvc-support-vectors-py



https://scikit-learn.org/stable/auto_examples/svm/plot_linearsvc_support_vectors.html

Non-linear SVM

* What if the decision boundary is not

linear?

if \/(z1—0.5)? 4+ (29 —0.5)% > 0.2

otherwise
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Non-linear SVMs: Feature Spaces

ldea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable.
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Non-linear SVM

* The trick is to transform the data
from its original space x into a new
space ®(x) so that a linear decision
boundary can be used.

2 2 S
T — T1 + o — 22 = —0.46.
P : \Z1,22) — (.1.1..1.2. V&I, v ..‘l;_,l].

2 2 = = ,
wyry] + w3rs + wev2xy + wyiv22xy +wo =0.

* Decision boundary we®d(x¥)+b=0
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Learning a Nonlinear SVM

112
o - |[w|
* Optimization problem min ——
" D
subject to  yi(w- ®(xi) +b) = 1, ¥{(zi vi)}

* Which leads to the same set of equations but involve ®(x)
instead of x. n
f(z) = sign(w - ®(z) + b) = sign (Z AiyiP(x;) - ©(z) + b).
i=1
Issues:
* What type of mapping function ® should be used?

* How to do the computation in high dimensional space?

* Most computations involve dot product ®(x) - ®(x)
e Curse of dimensionality?



The Kernel Trick

* O(x) - @(x) = K(x;, %)

* K(x;, x;) is a kernel function 1
(expressed in terms of the Zi
coordinates in the original space) .

* Examples: -

L % <% g
I\(Xy) = (Xy+1) 04
K(x.y) = e-b—31/(as8 ;
K(x.y) =tanh(kx -y — 4) i

https://scikit-learn.org/stable/auto examples/svm/plot svm kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py
https://scikit-learn.org/stable/auto examples/exercises/plot iris exercise.html#sphx-glr-auto-examples-exercises-plot-iris-exercise-py



https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
https://scikit-learn.org/stable/auto_examples/exercises/plot_iris_exercise.html

Examples of Kernel Functions

* Polynomial kernel with degree d
K(x,y) = (x'y 4+ 1)

e Radial basis function kernel with width o
K(x,y) = exp(—||x — y[|?/(202))

* Closely related to radial basis function neural networks
* The feature space is infinite-dimensional

 Sigmoid with parameter k and 0 K(x,y) = tanh(kx!y + 0)

* |t does not satisfy the Mercer condition on all k and 0

* Choosing the Kernel Function is probably the most tricky part of using SVM.



The Kernel Trick

* The linear classifier relies on inner product between vectors K(x;x;)=x;'x;

 If every datapoint is maBped into high-dimensional space via some transformation @: x=»
d(x), the inner product becomes:

K(x; )= (x) " (x)
* A kernel function is a function that is equivalent to an inner product in some feature space.
 Example:
2-dimensional vectors x=[x; x,]; let K(x;x;)=(1 + x;'x;)*
Need to show that K(x;x;)= d(x;) "d(x)):
K% %)=(1 + %.TX)% = 14 X;12X5% + 2 Xi9X1 XipXio+ Xig™Xj5” + 2X;3Xj1 + 2XX0=
=[1 x,;° V2 x;;%;, X.,° V2x;; V2x,]T[1 lez V2 X;1X;, szz V2x;; V2X;5] =
=d(x) "d(x;), where §(x) = [1, x5, V2 x1x;, X;%, V2x5, V2X))

* Thus, a kernel function implicitly maps data to a high-dimensional space (without the need
to compute each ¢Pp(x) explicitlyi/.



f(z) =sign(w-®(z)+b) = .sz'gn.(z AiVi K(X,-,Z) + b).

The Kernel Trick =

Advantages of using kernel:
* Don’t have to know the mapping function .

* Computing dot product ®(x) - ®(y) in the
original space avoids curse of dimensiopality.

Not all functions can be kernels ' Mercer theorem: the function must be
| | “positive-definite”

» Must make sure there is a corresponding ® in

|
:
some high-dimensional Space. . This implies that the n by n kernel matrix, i

| in which the (i j)-th entry is the K(x; x;), is 1

* Mercer’s theorem (see textbook) that ensures e (ij)-th entry (X %) i
i 1 always positive definite !

that the kernel functions can always be .
expressed as the dot product in some high This also means that optimization problem !
|

|
dimensional space. | can be solved in polynomial time!
:



Constrained Optimization Problem with Kernel

Minimize || w ||= <W : W> subject to y, (<xi -W> +b)>1foralli

Lagrangian method : maximize inf , L(w, b, ), where

Lw.b,a) = Wil =S a0, (x, - w) +£)-1]

At the extremum, the partial derivative of L with respect
both w and » must be 0. Taking the derivatives, setting them
to 0, substituting back into L, and simplifying yields:

. 1
Maximize ) o, - 5 > vyea, K(x;,X;)
i i,j

subject to Zyl. ;=0 and o, 20



Example

class 1 class 2 class 1

X X O O X
1 2 6
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Example

e Suppose we have 5 one-dimensional data points
* X;=1, X,=2, X3=4, X,=5, X:=6, with values 1, 2, 6 as class 1 and 4, 5 as class 2
* =V:1=1,¥,=1, y3=-1, y,=-1, ys=1
* We use the polynomial kernel of degree 2
* K(x,z) = (xz+1)?
* Cissetto 100
* We first find o (i=1, ..., 5) by
5

max. » a;—— Z Z ooy yi(ziT; + 1)?

1=1 z—l 1=1

subject to 100 > «o; > 0, ) ayy; =0
i=1




Example

* By using a QP solver, we get
* o,=0, a,=2.5, 0,3=0, 04,=7.333, a.;=4.833
* Note that the constraints are indeed satisfied
* The support vectors are {x,=2, X,=5, Xs=6}

* The discriminant function is J5 K(z,z5)

a5
£(2) \ l
=25(1)(22 4+ 1)2 4+ 7.333(=1)(524 1)° 4+ 4.833(1)(62+ 1)2 + b

— 0.66672° — 5.3332+ b

* b is recovered by solving f(2)=1 or by f(5)=-1 or by f(6)=1, as X, and x: lie on the
line p(w)Top(x) +b=1 andx,liesontheline y(w)T¢(x)+b= -1

* Allthree give b=9 == ¢(2) = 0.666722 — 5.33324+ 9



Example

Value of discriminant function

class 1

class 2

=X

o X

class 1



Characteristics of SVM

* Since the learning problem is formulated as a convex optimization
problem, efficient algorithms are available to find the global minima
of the objective function (many of the other methods use greedy
approaches and find locally optimal solutions).

* OQverfitting is addressed by maximizing the margin of the decision
boundary, but the user still needs to provide the type of kernel
function and cost function.

* Difficult to handle missing values.
* Robust to noise.
* High computational complexity for building the model.
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