DATA MINING 1 Rule-based Classifiers

Riccardo Guidotti

a.a. 2024/2025

Slides edited from Tan, Steinbach, Kumar, Introduction to Data Mining

Rule-based Classifier

- Classify records by using a collection of "if...then..." rules
- Rule: (Condition) $\rightarrow y$
 - where
 - *Condition* is a conjunction of tests on attributes
 - y is the class label
 - Examples of classification rules:
 - (Blood Type=Warm) \land (Lay Eggs=Yes) \rightarrow Birds
 - (Taxable Income < 50K) \land (Refund=Yes) \rightarrow Evade=No

Rule-based Classifier (Example)

- R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
- R5: (Live in Water = sometimes) \rightarrow Amphibians

	Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
	human	warm	yes	no	no	mammals
	python	cold	no	no	no	reptiles
	salmon	cold	no	no	yes	fishes
	whale	warm	yes	no	yes	mammals
S	frog	cold	no	no	sometimes	amphibians
	komodo	cold	no	no	no	reptiles
	bat	warm	yes	yes	no	mammals
	pigeon	warm	no	yes	no	birds
	cat	warm	yes	no	no	mammals
	leopard shark	cold	yes	no	yes	fishes
	turtle	cold	no	no	sometimes	reptiles
	penguin	warm	no	no	sometimes	birds
	porcupine	warm	yes	no	no	mammals
	eel	cold	no	no	yes	fishes
	salamander	cold	no	no	sometimes	amphibians
	gila monster	cold	no	no	no	reptiles
	platypus	warm	no	no	no	mammals
	owl	warm	no	yes	no	birds
	dolphin	warm	yes	no	yes	mammals
	eagle	warm	no	yes	no	birds

Application of Rule-Based Classifier

• A rule *r* covers an instance **x** if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	yes	no	no	?

The rule R1 covers a hawk => Bird

The rule R3 covers the grizzly bear => Mammal

Rule Coverage and Accuracy

- Coverage of a rule:
 - Fraction of records that satisfy the antecedent of a rule
- Accuracy of a rule:
 - Fraction of records that satisfy the antecedent that also satisfy the consequent of a rule

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

 $(Status=Single) \rightarrow No$

Coverage = 40%, Accuracy = 50%

How does Rule-based Classifier Work?

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
lemur	warm	yes	no	no	?
turtle	cold	no	no	sometimes	?
dogfish shark	cold	yes	no	yes	?

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the rules

Characteristics of Rule Sets: Strategy 1

• Mutually exclusive rules

- Classifier contains mutually exclusive rules if the rules are independent of each other
- Every record is covered by at most one rule

Exhaustive rules

- Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
- Each record is covered by at least one rule

Characteristics of Rule Sets: Strategy 2

• Rules are not mutually exclusive

- A record may trigger more than one rule
- Solution?
 - Ordered rule set
 - Unordered rule set use voting schemes

Rules are not exhaustive

- A record may not trigger any rules
- Solution?
 - Use a default class

Ordered Rule Set

- Rules are rank ordered according to their priority
 - An ordered rule set is known as a decision list
- When a test record is presented to the classifier
 - It is assigned to the class label of the highest ranked rule it has triggered
 - If none of the rules fired, it is assigned to the default class

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles R5: (Live in Water = sometimes) \rightarrow Amphibians **Blood Type** Name Give Birth Can Fly Live in Water Class turtle cold ? sometimes no no

Rule Ordering Schemes

• Rule-based ordering

• Individual rules are ranked based on their quality

Class-based ordering

• Rules that belong to the same class appear together

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

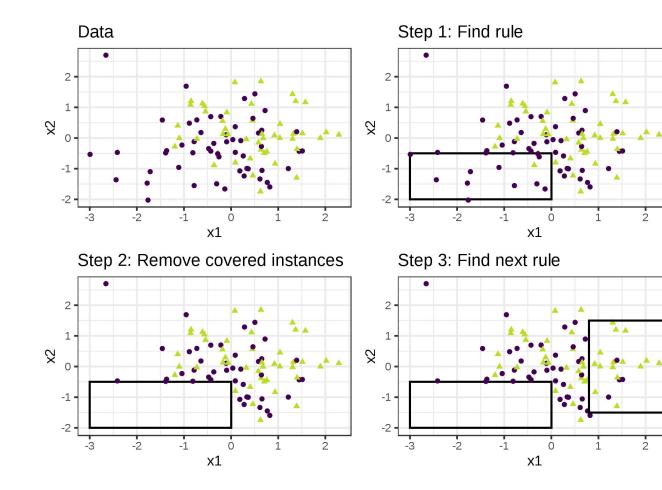
(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

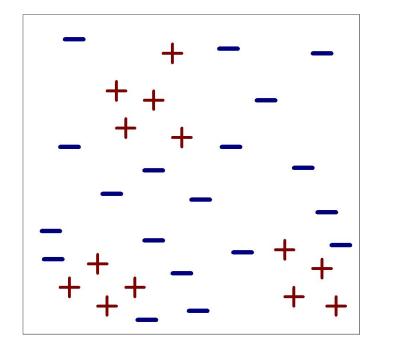
(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

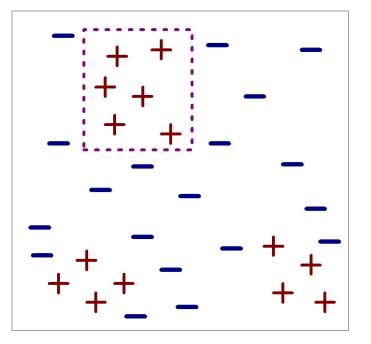
(Refund=No, Marital Status={Married}) ==> No


(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

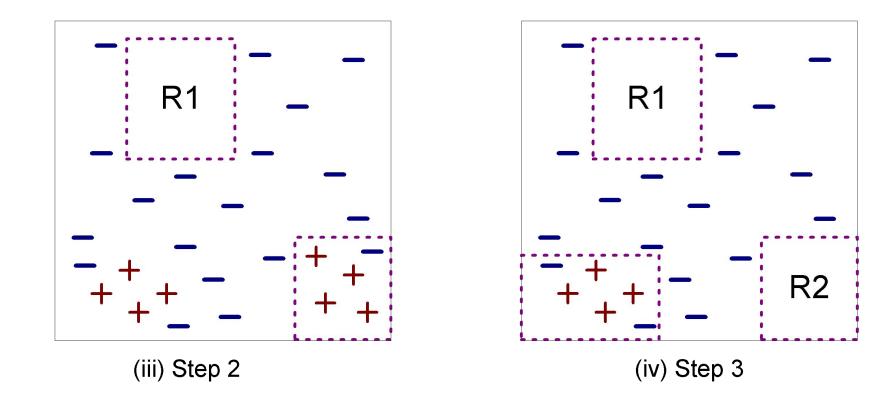
Building Classification Rules


- Direct Method:
 - Extract rules directly from data
 - Examples: RIPPER, CN2, Holte's 1R
- Indirect Method:
 - Extract rules from other classification models (e.g. decision trees).
 - Examples: C4.5rules

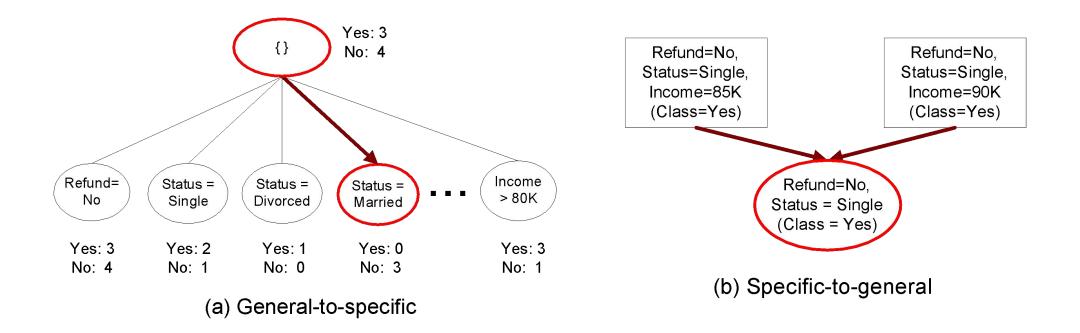
Direct Method: Sequential Covering


- 1. Start from an empty rule
- 2. Grow a rule using the Learn-One-Rule function
- 3. Remove training records covered by the rule
- 4. Repeat Step (2) and (3) until stopping criterion is met

Example of Sequential Covering



(i) Original Data

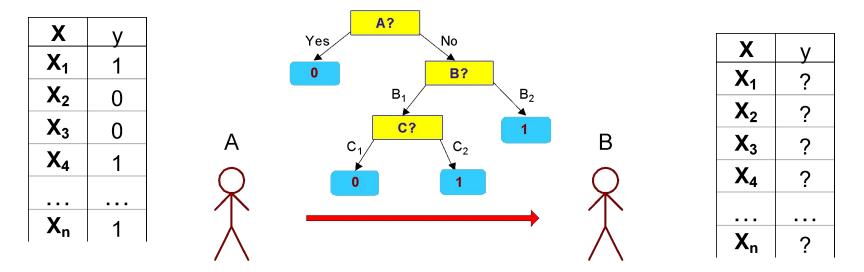

(ii) Step 1

Example of Sequential Covering...

Rule Growing

• Two common strategies

Rule Evaluation


FOIL: First Order Inductive Learner – an early rule-based learning algorithm

- FOIL's Information Gain
 - RO: {} => class (initial rule)
 - R1: {A} => class (rule after adding conjunct)

•
$$Gain(R_0, R_1) = p_1 \times [log_2\left(\frac{p_1}{p_1 + n_1}\right) - log_2\left(\frac{p_0}{p_0 + n_0}\right)]$$

p₀: number of positive instances covered by R0
n₀: number of negative instances covered by R0
p₁: number of positive instances covered by R1
n₁: number of negative instances covered by R1

Minimum Description Length (MDL)

- Cost(Model,Data) = Cost(Data | Model) + αx Cost(Model)
 - Cost is the number of bits needed for encoding.
 - Search for the least costly model.
- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

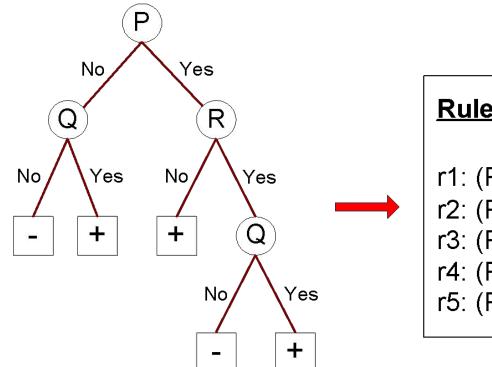
Pessimistic Error Estimate

• **Pessimistic Error Estimate** of a rule set T with k rules:

$$err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{train}}$$

- *err(T)*: error rate on all training records
- Ω : trade-off hyper-parameter relative cost of adding a rule
- k: number of rules
- N_{train} : total number of training records

- For 2-class problem, choose one of the classes as positive class, and the other as negative class
 - Learn rules for positive class
 - Negative class will be the default class
- For multi-class problem
 - Order the classes according to increasing class prevalence (fraction of instances that belong to a particular class)
 - Learn the rule set for smallest class first, treat the rest as negative class
 - Repeat with next smallest class as positive class


•Growing a rule:

- Start from empty rule
- Add conjuncts as long as they improve FOIL's information gain
- Stop when rule no longer covers negative examples
- Prune the rule immediately using incremental reduced error pruning
- Measure for pruning: v = (p-n)/(p+n)
 - *p*: number of positive examples covered by the rule in the validation set
 - *n*: number of negative examples covered by the rule in the validation set
- Pruning method: delete any final sequence of conditions that maximizes v

- Building a Rule Set:
 - Use sequential covering algorithm
 - Finds the best rule that covers the current set of positive examples
 - Eliminate both positive and negative examples covered by the rule
 - Each time a rule is added to the rule set, compute the new description length
 - Stop adding new rules when the new description length is *d* bits longer than the smallest description length obtained so far

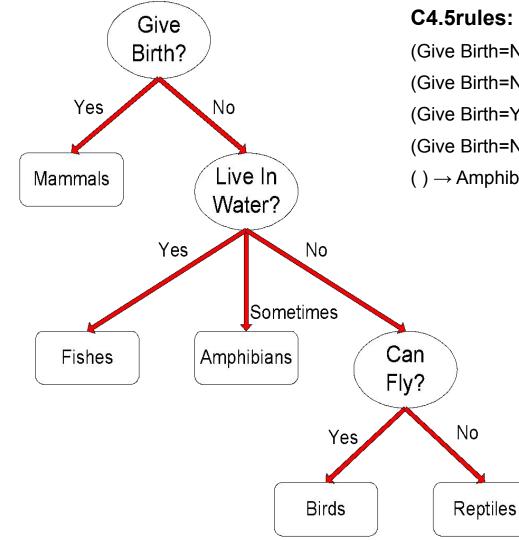
- Optimize the rule set:
 - For each rule *r* in the rule set *R*
 - Consider 2 alternative rules:
 - Replacement rule (*r**): grow new rule from scratch
 - Revised rule (r'): add conjuncts to extend the rule r
 - Compare the rule set for *r* against the rule set for *r*^{*} and *r*'
 - Choose rule set that minimizes MDL principle

Indirect Methods

Rule Set

r5:
$$(P=Yes,R=Yes,Q=Yes) ==> +$$

Indirect Method: C4.5rules


- Extract rules from an unpruned decision tree
- For each rule, $r: A \rightarrow y$,
 - consider an alternative rule r': A' → y where A' is obtained by removing one of the conjuncts in A
 - Compare the *pessimistic error rate* for *r* against all *r*'s
 - Prune if one of the alternative rules has lower pessimistic error rate
 - Remove duplicate rules
 - Repeat until we can no longer improve generalization error

- Instead of ordering the rules, order subsets of rules (class ordering)
 - Each subset is a collection of rules with the same rule consequent (class)
 - Compute description length of each subset

Example

Name	Give Birth	Lay Eggs	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	no	yes	mammals
python	no	yes	no	no	no	reptiles
salmon	no	yes	no	yes	no	fishes
whale	yes	no	no	yes	no	mammals
frog	no	yes	no	sometimes	yes	amphibians
komodo	no	yes	no	no	yes	reptiles
bat	yes	no	yes	no	yes	mammals
pigeon	no	yes	yes	no	yes	birds
cat	yes	no	no	no	yes	mammals
leopard shark	yes	no	no	yes	no	fishes
turtle	no	yes	no	sometimes	yes	reptiles
penguin	no	yes	no	sometimes	yes	birds
porcupine	yes	no	no	no	yes	mammals
eel	no	yes	no	yes	no	fishes
salamander	no	yes	no	sometimes	yes	amphibians
gila monster	no	yes	no	no	yes	reptiles
platypus	no	yes	no	no	yes	mammals
owl	no	yes	yes	no	yes	birds
dolphin	yes	no	no	yes	no	mammals
eagle	no	yes	yes	no	yes	birds

C4.5 versus C4.5 rules versus RIPPER

C4.5rules:

(Give Birth=No, Can Fly=Yes) \rightarrow Birds (Give Birth=No, Live in Water=Yes) \rightarrow Fishes (Give Birth=Yes) \rightarrow Mammals (Give Birth=No, Can Fly=No, Live in Water=No) \rightarrow Reptiles $() \rightarrow Amphibians$

RIPPER:

(Live in Water=Yes) \rightarrow Fishes

(Have Legs=No) \rightarrow Reptiles

(Give Birth=No, Can Fly=No, Live In Water=No) \rightarrow Reptiles

(Can Fly=Yes,Give Birth=No) \rightarrow Birds

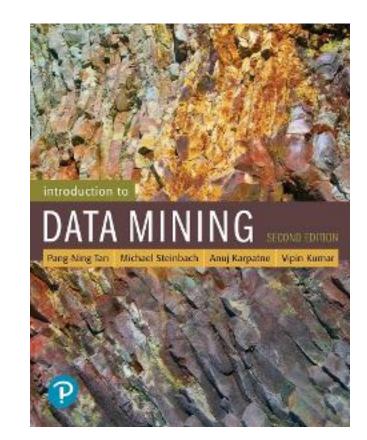
 $() \rightarrow Mammals$

C4.5 versus C4.5 rules versus RIPPER

C4.5 and C4.5rules:

			PREDICT			
		Amphibians	Fishes	Reptiles	Birds	Mammals
ACTUAL	Amphibians	2	0	0	0	0
CLASS	Fishes	0	2	0	0	1
	Reptiles	1	0	3	0	0
	Birds	1	0	0	3	0
	Mammals	0	0	1	0	6

RIPPER:


			PREDICT			
		Amphibians	Fishes	Reptiles	Birds	Mammals
ACTUAL	Amphibians	0	0	0	0	2
CLASS	Fishes	0	3	0	0	0
	Reptiles	0	0	3	0	1
	Birds	0	0	1	2	1
	Mammals	0	2	1	0	4

Advantages of Rule-Based Classifiers

- Has characteristics quite similar to decision trees
 - As highly expressive as decision trees
 - Easy to interpret
 - Performance comparable to decision trees
 - Can handle redundant attributes
- Better suited for handling imbalanced classes
- Harder to handle missing values in the test set

References

- Rule-Based Classifiers. Chapter 5.1. Introduction to Data Mining.
- <u>https://christophm.github.io/interpretabl</u> <u>e-ml-book/rules.html</u>

