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Approximation



Time Series Approximation

• Approximation: represent a TS into a new smaller and simpler space 
and use this novel representation for computing.

• Approximation is a special form of Dimensionality Reduction 
specifically designed for TSs.

• Approximation vs Compression: the approximated space is always 
understandable, while the compressed space is not necessarily 
understandable.
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An Example of a Approximation

• The graphic shows a time 
series with 128 points.
• The raw data used to 

produce the graphic is also 
reproduced as a column of 
numbers (just the first 30 
or so points are shown).
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An Example of a Approximation

• We can decompose the data 
into 64 pure sine waves 
using the Discrete Fourier 
Transform (just the first few 
sine waves are shown).
• The Fourier Coefficients are 

reproduced as a column of 
numbers (just the first 30 or 
so coefficients are shown).
• Note that at this stage we 

have not done 
dimensionality reduction, we 
have merely changed the 
representation...
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An Example of a Approximation

• … however, note that the first 
few sine waves tend to be the 
largest (equivalently, the 
magnitude of the Fourier 
coefficients tend to decrease 
as you move down the 
column).
• We can therefore truncate 

most of the small coefficients 
with little effect. 
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n = 128
N = 8
Cratio = 1/16

We have 
discarded 
of the data.
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An Example of a Approximation

• Instead of taking the first few 
coefficients, we could take the 
best coefficients
• This can help greatly in terms 

of approximation quality, but 
makes indexing hard 
(impossible?).
• Note this applies also to 

Wavelets
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Discrete Fourier Transform (DFT)

• Represent the time series as a linear combination of sines and cosines, 
but keep only the first n/2 coefficients.

• Why n/2 coefficients? Because each sine wave requires 2 numbers, for 
the phase (w) and amplitude (A,B). 

• A TS represented with DTF is said to be in the frequency domain. 
• Many of the Fourier coefficients have very low amplitude and thus 

contribute little to reconstructed signal. These low amplitude 
coefficients can be discarded without much loss of information thereby 
saving storage space.

• Pros
• Good ability to compress most natural signals.
• Fast, off the shelf DFT algorithms exist. O(nlog(n)).

• Cons
• Difficult to deal with sequences of different lengths.
• Cannot support weighted distance measures.

Jean Fourier

1768-1830



Discrete Wavelet Transform (DWT)
• Represent the TS as a linear combination of Wavelet basis functions, but 

keep only the first N coefficients.
• Wavelets are represent data in terms of the sum and difference of a 

prototype function, so called the “analyzing” or “mother” wavelet.
• Wavelets are localized in time, i.e., some of the wavelet coefficients 

represent small, local subsections of the data. This is in contrast to Fourier
coefficients that always represent global contribution to the data.

• Haar wavelets seem to be as powerful as the other wavelets for most 
problems and are very easy to code.

• Pros
• Good ability to compress stationary signals.
• Fast linear time algorithms for DWT exist.

• Cons
• It is only defined for sequence whose length is an integral power of two.
• Otherwise wavelets approximate the left side of signal at the expense of 

the right side.
• Cannot support weighted distance measures.

Alfred Haar

1885-1933



X = {8, 4, 1, 3}
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h1= 4 = mean(8,4,1,3) h2 = 2 = mean(8,4) - h1 h3 = 2 = (8-4)/2 h4 = -1 = (1-3)/2

h1 = 4
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h2 = 2 h3 = 2 h4 = -1 X = {8, 4, 1, 3}

I have converted a raw time series X = {8, 4, 1, 3}, into the Haar Wavelet representation H = [4, 2 , 2, -1]
We can covert the Haar representation back to raw signal with no loss of information...



Singular Value Decomposition (SVD)

• Represent the time series as a linear combination of 
eigenwaves but keep only the first N coefficients.

• SVD is similar to Fourier and Wavelet approaches is that 
we represent the data in terms of a linear combination 
of shapes (in this case eigenwaves).

• SVD differs in that the eigenwaves are data dependent. 

• We have previously seen that we can regard time series 
as points in high dimensional space.

• We can rotate the axes such that axis 1 is aligned with 
the direction of maximum variance, axis 2 is aligned 
with the direction of maximum variance orthogonal to 
axis 1 etc.

• Since the first few eigenwaves contain most of the 
variance of the signal, the rest can be truncated with 
little loss.

James Joseph Sylvester (1814-1897)
Camille Jordan (1838-1921)
Eugenio Beltrami (1835-1899)
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Piecewise Linear Approximation (PLA)

• Represent the time series as a sequence of straight lines.
• Lines could be connected, in which case we are allowed K/2 

lines, If lines are disconnected, we are allowed only K/3 lines 
• In the literature there are numerous algorithms available for 
segmenting time series.

• An open question is how to best choose K, the “optimal” 
number of segments used to represent a particular time series. 

• This problem involves a tradeoff between accuracy and 
compactness, and clearly has no general solution.

• Pros: 
• data compression
• noise filtering
• able to support some interesting non-Euclidean similarity 

measures

Karl Friedrich Gauss

1777 - 1855

Each line segment has 
• length 
• left_height
(right_height can 
be inferred by looking at 
the next segment)



Piecewise Aggregate Approximation (PAA)

• Represent the time series as a sequence of box 
basis functions with each box of the same size. 
• It approximates a TS by dividing it into equal-

length segments and recording the mean value of 
the data points that fall within the segment. 
• It reduces the data from n dimensions to N

dimensions by dividing the time series into N equi-
sized ``frames’’.
• The mean value of the data falling within a frame 

is calculated, and a vector of these values 
becomes the data reduced representation.
• Pros

• Extremely fast to calculate
• Supports non Euclidean measures
• Supports weighted Euclidean distance
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Adaptive Piecewise Constant Approximation (APCA)

• It allows the segments to have arbitrary lengths, which 
in turn needs two numbers per segment.
• The first number records the mean value of all the data 

points in segment, and the second number records the 
length of the segment.
• APCA has the advantage of being able to place a single 

segment in an area of low activity and many segments 
in areas of high activity. 
• In addition, one has to consider the structure of the 

data in question.
• Pros:

• Fast to calculate O(n)
• Supports non Euclidean measures
• Supports weighted Euclidean distance



Time Series Segmentation

• A TS can be segmented using predefined length w or predefined 
number of segments k, or by using change point detection methods.

• More details: Selective review of offline change point detection methods. Truong, C., Oudre, L., & 
Vayatis, N. (2020). Signal Processing, 167, 107299.



Symbolic Aggregate Approximation (SAX)

• Convert the data into a discrete format, with a small alphabet size.
• Every part of the representation contributes about the same amount of 

information about the shape of the time series.
• A time series T of length n is divided into w equal-sized segments; the values in 

each segment are then approximated and replaced by a single coefficient, which is 
their average. Aggregating these w coefficients form the PAA representation of T. 
• Next, we determine the breakpoints that divide the distribution space into ɑ

equiprobable regions, where ɑ is the alphabet size specified by the user (or it could 
be used the MDL). 
• The breakpoints are determined such that the probability of a segment falling into 

any of the regions is approximately the same. 
• If the symbols are not equi-probable, some of the substrings would be more 

probable than others. Consequently, we would inject a probabilistic bias in the 
process.



Symbolic Aggregate Approximation (SAX)

• Once the breakpoints are determined, 
each region is assigned a symbol.
• The PAA coefficients can then be easily 

mapped to the symbols corresponding to 
the regions in which they reside. 
• The symbols are assigned in a bottom-up 

fashion, i.e., the PAA coefficient that falls 
in the lowest region is converted to “a”, 
in the one above to “b”, and so forth. 

baabccbc



Clustering



Clustering Time Series

• It is based on the similarity between time series.
• The most similar data are grouped into clusters, but the clusters 

themselves should be dissimilar.
• These groups to find are not predefined, i.e., it is an unsupervised 

learning task. 
• The two general methods of time series clustering are 
• Partitional Clustering and 
• Hierarchical Clustering



Hierarchical Clustering

• It computes pairwise distance, and then merges 
similar clusters in a bottom-up fashion, without 
the need of providing the number of clusters
• It is one of the best tools to data evaluation, by 

creating a dendrogram of several time series from 
the domain of interest.
• Its application is limited to small datasets due to 

its quadratic computational complexity.



Partitional Clustering

• Typically uses K-Means (or some variant) to optimize the objective 
function by minimizing the sum of squared intra-cluster errors. 
• K-Means is perhaps the most commonly used clustering algorithm in 

the literature, one of its shortcomings is the fact that the number of 
clusters, K, must be pre-specified.
• Also the distance function plays a fundamental role both for the 

quality of the results and for the efficiency.



Types of Time Series Clustering

• Whole clustering: similar to that of conventional clustering of discrete 
objects. Given a set of individual time series data, the objective is to 
group similar time series into the same cluster. 
• Features-based clustering: extract features, or time series motifs (see 

next lectures) as the features and use them to cluster time series.
• Compression-based clustering: compress time series and run 

clustering on the compressed versions.
• Subsequence clustering: given a single time series, subsequence 

clustering is performed on each individual time series extracted from 
the long time series with a sliding window.
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Exercises Approximation



DWT – Exercise 1

• Given the following input time series:

• Compute the DWT.

• Approach: First row is the original signal. The 
second row in the table is generated by taking
the mean of the samples pairwise, put them
in the first four places, and then the 
difference between the the first member of 
the pair and the computed mean. 
Computations are repeated on the means. 
Differences are kept in each step.



DWT – Exercise 1 - Solution

t1
t2



DWT – Exercise 1 - Solution

(56+40)/2
56-48



DWT – Exercise 1 - Solution

(8+24)/2 8-16



DWT – Exercise 1 - Solution



DWT – Exercise 1 - Solution



DWT – Exercise 1 - Solution



DWT – Exercise 1 - Solution



DWT – Exercise 1 - Solution
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DWT – Exercise 1 - Solution



DWT – Exercise 2

• The transform is invertible. We start from the bottom row. We add 
and subtract the difference to the mean, and repeat the process up to 
the first row.



DWT – Exercise 2 Solution

35+0

35-0



DWT – Exercise 2 Solution

35+16

35-16

35+10
35-10



DWT – Exercise 2 Solution


