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Approximation



Time Series Approximation

• Approximation: represent a TS into a new smaller and simpler space 
and use this novel representation for computing.

• Approximation is a special form of Dimensionality Reduction 
specifically designed for TSs.

• Approximation vs Compression: the approximated space is always 
understandable, while the compressed space is not necessarily 
understandable.
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An Example of an Approximation

• The graphic shows a time 
series with 128 points.

• The raw data used to 
produce the graphic is also 
reproduced as a column of 
numbers (just the first 30 
or so points are shown).
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An Example of an Approximation

• We can decompose the data 
into 64 pure sine waves 
using the Discrete Fourier 
Transform (just the first few 
sine waves are shown).

• The Fourier Coefficients are 
reproduced as a column of 
numbers (just the first 30 or 
so coefficients are shown).

• Note that at this stage we 
have not done 
dimensionality reduction, we 
have merely changed the 
representation...
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An Example of an Approximation

• … however, note that the first 
few sine waves tend to be the 
largest (equivalently, the 
magnitude of the Fourier 
coefficients tend to decrease 
as you move down the 
column).

• We can therefore truncate 
most of the small coefficients 
with little effect. 

1.5698

1.0485

0.7160

0.8406

0.3709

0.4670

0.2667

0.1928

0.1635

0.1602

0.0992

0.1282

0.1438

0.1416

0.1400

0.1412

0.1530

0.0795

0.1013

0.1150

0.1801

0.1082

0.0812

0.0347

0.0052

0.0017

0.0002

...

Fourier

Coefficients

1.5698

1.0485

0.7160

0.8406

0.3709

0.4670

0.2667

0.1928

Truncated

Fourier

Coefficients

n = 128

N = 8

Cratio = 1/16

We have 

discarded 

of the data.
16

15

C’



0.4995

0.5264

0.5523

0.5761

0.5973

0.6153

0.6301

0.6420

0.6515

0.6596

0.6672

0.6751

0.6843

0.6954

0.7086

0.7240

0.7412

0.7595

0.7780

0.7956

0.8115

0.8247

0.8345

0.8407

0.8431

0.8423

0.8387

…

Raw

Data

0 20 40 60 80 100 120 140

C

n = 128

An Example of an Approximation

• Instead of taking the first few 
coefficients, we could take the 
best coefficients

• This can help greatly in terms 
of approximation quality, but 
makes indexing hard 
(impossible?).

• Note this applies also to 
Wavelets
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Discrete Fourier Transform (DFT)

• Represent the time series as a linear combination of sines and cosines but 
keep only the first n/2 coefficients.

• Why n/2 coefficients? Because each sine wave requires 2 numbers, for the 
phase (w) and amplitude (A,B). 

• A TS represented with DTF is said to be in the frequency domain. 

• Many of the Fourier coefficients have very low amplitude and thus contribute 
little to reconstructed signal. These low amplitude coefficients can be 
discarded without much loss of information thereby saving storage space.

• Pros
• Good ability to compress most natural signals.
• Fast, off the shelf DFT algorithms exist. O(nlog(n)).

• Cons
• Difficult to deal with sequences of different lengths.
• Cannot support weighted distance measures.

Jean Fourier

1768-1830



Discrete Wavelet Transform (DWT)
• Represent the TS as a linear combination of Wavelet basis functions, but keep 

only the first N coefficients.

• Wavelets are represented data in terms of the sum and difference of a prototype 
function, so called the “analyzing” or “mother” wavelet.

• Wavelets are localized in time, i.e., some of the wavelet coefficients represent 
small, local subsections of the data. This is in contrast to Fourier coefficients that 
always represent global contribution to the data.

• Haar wavelets seem to be as powerful as the other wavelets for most problems 
and are very easy to code.

• Pros
• Good ability to compress stationary signals.
• Fast linear time algorithms for DWT exist.

• Cons
• It is only defined for sequence whose length is an integral power of two.
• Wavelets approximate the left side of signal at the expense of the right side.
• Cannot support weighted distance measures.

Alfred Haar

1885-1933

Not available in Python



Singular Value Decomposition (SVD)
• Represent the time series as a linear combination 

of eigenwaves but keep only the first N coefficients.

• SVD is similar to Fourier and Wavelet approaches is 
that we represent the data in terms of a linear 
combination of shapes (in this case eigenwaves).

• SVD differs in that the eigenwaves are data 
dependent. 

• We have previously seen that we can regard time 
series as points in high dimensional space.

• We can rotate the axes such that axis 1 is aligned 
with the direction of maximum variance, axis 2 is 
aligned with the direction of maximum variance 
orthogonal to axis 1 etc.

• Since the first few eigenwaves contain most of the 
variance of the signal, the rest can be truncated 
with little loss.

James Joseph Sylvester (1814-1897)
Camille Jordan (1838-1921)
Eugenio Beltrami (1835-1899)
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Piecewise Linear Approximation (PLA)
• Represent the time series as a sequence of straight lines.

• Lines could be connected, in which case we are allowed K/2 lines, If lines 
are disconnected, we are allowed only K/3 lines 

• In the literature there are numerous algorithms available for segmenting
time series.

• An open question is how to best choose K, the “optimal” number of 
segments used to represent a particular time series. 

• This problem involves a tradeoff between accuracy and compactness, and 
clearly has no general solution.

• Pros: 

• data compression

• noise filtering

• able to support some interesting non-Euclidean similarity measures

Karl Friedrich Gauss

1777 - 1855

Each line segment has 
• length 

• left_height

(right_height can 
be inferred by looking at 
the next segment)Not available in Python



Piecewise Aggregate Approximation (PAA)
• Represent the time series as a sequence of box basis functions with each 

box of the same size. 

• It approximates a TS by dividing it into equal-length segments and 

recording the mean value of the data points that fall within the segment. 

• It reduces the data from n dimensions to N dimensions by dividing the 

time series into N equi-sized ``frames’’.

• The mean value of the data falling within a frame is calculated, and a 

vector of these values becomes the data reduced representation.

• Pros

• Extremely fast to calculate

• Supports non-Euclidean measures

• Supports weighted Euclidean distance
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Adaptive Piecewise Constant Approximation (APCA)

• It allows the segments to have arbitrary lengths, which in turn needs two 

numbers per segment.

• The first number records the mean value of all the data points in 

segment, and the second number records the length of the segment.

• APCA has the advantage of being able to place a single segment in an 

area of low activity and many segments in areas of high activity. 

• In addition, one has to consider the structure of the data in question.

• Pros:

• Fast to calculate O(n)

• Supports non-Euclidean measures

• Supports weighted Euclidean distance

Not available in Python



Time Series Segmentation

• A TS can be segmented using predefined length w or predefined 
number of segments k, or by using change point detection methods.

• More details: Selective review of offline change point detection methods. Truong, C., Oudre, L., & 
Vayatis, N. (2020). Signal Processing, 167, 107299.



Symbolic Aggregate Approximation (SAX)
• Convert the data into a discrete format, with a small alphabet size.

• Every part of the representation contributes about the same amount of information 
about the shape of the time series.

• A time series T of length n is divided into w equal-sized segments; the values in each 
segment are then approximated and replaced by a single coefficient, which is their 
average. Aggregating these w coefficients form the PAA representation of T. 

• Next, we determine the breakpoints that divide the distribution space into ɑ equiprobable 
regions, where ɑ is the alphabet size specified by the user (or it could be used the MDL). 

• The breakpoints are determined such that the probability of a segment falling into any of 
the regions is approximately the same. 

• If the symbols are not equi-probable, some of the substrings would be more probable than 
others. Consequently, we would inject a probabilistic bias in the process.

PAA



Symbolic Aggregate Approximation (SAX)

• Once the breakpoints are determined, 
each region is assigned a symbol.

• The PAA coefficients can then be easily 
mapped to the symbols corresponding to 
the regions in which they reside. 

• The symbols are assigned in a bottom-up 
fashion, i.e., the PAA coefficient that falls 
in the lowest region is converted to “a”, 
in the one above to “b”, and so forth. 

baabccbc



Clustering



Clustering Time Series

• It is based on the similarity between time series.

• The most similar data are grouped into clusters, but the clusters 
themselves should be dissimilar.

• These groups to find are not predefined, i.e., it is an unsupervised 
learning task. 

• The two general methods of time series clustering are 
• Partitional Clustering and 

• Hierarchical Clustering



Hierarchical Clustering

• It computes pairwise distance, and then merges 
similar clusters in a bottom-up fashion, without 
the need of providing the number of clusters

• It is one of the best tools to data evaluation, by 
creating a dendrogram of several time series from 
the domain of interest.

• Its application is limited to small datasets due to 
its quadratic computational complexity.



Partitional Clustering

• Typically uses K-Means (or some variant) to optimize the objective 
function by minimizing the sum of squared intra-cluster errors. 

• K-Means is perhaps the most commonly used clustering algorithm in 
the literature, one of its shortcomings is the fact that the number of 
clusters, K, must be pre-specified.

• Also, the distance function plays a fundamental role both for the 
quality of the results and for the efficiency.



Types of Time Series Clustering

• Whole clustering: similar to that of conventional clustering of discrete 
objects. Given a set of individual time series data, the objective is to 
group similar time series into the same cluster. 

• Features-based clustering: extract features, or time series motifs (see 
next lectures) as the features and use them to cluster time series.

• Compression-based clustering: compress time series and run 
clustering on the compressed versions.

• Subsequence clustering: given a single time series, subsequence 
clustering is performed on each individual time series extracted from 
the long time series with a sliding window.
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