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Clustering

• Clustering: Grouping of objects into different sets, or more precisely, 
the partitioning of a data set into subsets (clusters), so that the data 
in each subset (ideally) share some common trait - often proximity 
according to some defined distance measure

• Common distance functions:  
• Euclidean distance, Manhattan distance, …

• This kind of distance functions are suitable for numerical data



Not Only Numerical Data
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Boolean and Categorical Attributes

• A boolean attribute corresponding to a single item in a transaction, if 
that item appears, the boolean attribute is set to ‘1’ or ‘0’ otherwise.

• A categorical attribute may have several values, each value can be 
treated as an item and represented by a boolean attribute.



Market Basket Data

• A transaction represents one customer, and each transaction contains set 
of items purchased by the customer.
• Clustering customers reveals customers with similar buying patterns 

putting them into the same cluster. 
• It is useful for

• Characterizing different customer groups             
• Targeted Marketing 
• Predict buying patterns of new customers based on profile

• A market basket database: A scenario where attributes of data points are 
non-numeric, transaction viewed as records with boolean attributes 
corresponding to a single item (TRUE if transaction contain item, FALSE 
otherwise).
• Boolean attributes are special case of Categorical attributes.



Shortcomings of Traditional Clustering

• For categorical data we:
• Define new criterion for neighbors and/or similarity
• Define the ordering criterion

• Consider the following 4 market basket transactions

• using Euclidean distance to measure the closeness between all pairs of points, we 
find that d(P1,P2) is the smallest distance: it is equal to 1

T1= {1, 2, 3, 4} 
T2= {1, 2, 4} 
T3= {3} 
T4= {4}

P1= (1, 1, 1, 1)
P2= (1, 1, 0, 1)
P3= (0, 0, 1, 0)
P4= (0, 0, 0, 1)



Shortcomings of Traditional Clustering

• If we use a hierarchical algorithm then we merge P1 and P2 
and get a new cluster (P12) with (1, 1, 0.5, 1) as a centroid
• Then, using Euclidean distance again, we find:
• d(p12,p3)= Ö3.25 
• d(p12,p4)= Ö2.25
• d(p3,p4)= Ö2

• So, we should merge P3 and P4 since the distance between 
them is the shortest.
• However, T3 and T4 don't have even a single common item. 
• So, using distance metrics as similarity measure for 

categorical data is not appropriate.

P1= (1, 1, 1, 1)
P2= (1, 1, 0, 1)
P3= (0, 0, 1, 0)
P4= (0, 0, 0, 1)



Clustering Algorithms for Categorical/Transactional Data

•K-Modes
•ROCK
•CLOPE
• TX-Means



K-Modes

• X = { X1 ,…, Xn } is the dataset of objects.
• Xi = [ x1 ,…, xm ] is an object i.e., a vector of m categorical attributes 

• W is a matrix n × k, with wi,l equal to 1 if Xi belongs to Cluster l, 0 otherwise.
• Q = { Q1 ,…, Qk } is the set of representative objects (mode) for the k clusters.

• d( Xi , Ql ) is a distance function for objects in the data



K-Modes: Distance

• K-Means as distance uses 
Euclidean distance 

• K-Modes as distance uses the 
number of mismatches between 
the attributes of two objects.

d(X,Y ) = (xi − yi )
2
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K-Modes: Mode

• K-Modes uses the mode as representative object of a cluster
• Given the set of objects in the cluster Cl the mode is get computing 

the max frequency for each attribute
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K-Modes: Algorithm

1. Randomly select the initial objects as modes
2. Scan of the data to assign each object to the 

closer cluster identified by the mode 
3. Re-compute the mode of each cluster 
4. Repeat the steps 2 and 3 until no object 

changes the assigned cluster



ROCK: RObust Clustering using linK

• ROCK is a hierarchical algorithm for clustering transactional data 
(market basket databases)
• ROCK uses links to cluster instead of the classical distance notion 
• ROCK uses the notion of neighborhood between pair of objects to 

identify the number of links between two objects



ROCK: The Neighbors Concept

• It captures a notion of similarity
• A and  B are neighbors if sim(A, B) ≥ θ

• ROCK uses  the Jaccard coefficient
• sim(A, B)= |A ∩ B| / | A U B |

A = { 1 , 3 , 4 , 7 }

B = { 1 , 2 , 4 , 7 , 8 }
sim(A,B) = 3

6
=
1
2
= 0.5



ROCK: Links

• A link defines the number of common neighbors 
between two objects: 
• link(A, B) = |neighbor(A) ∩ neighbor(B) |
• Higher values of link(A, B) means higher probability 

that A and B belong to the same cluster 
• Similarity is local while link is capturing global

information
• A point is considered a neighbor of itself
• There is a link from each neighbor of the “root” 

point back to itself through the root
• Therefore, if a point has n neighbors, then n2 links 

are due to it. 



ROCK: Example

• Data consisting of 6 Attributes: {Book, Water, Sun, Sand, Swimming, Reading}
• {Book}   
• {Water, Sun, Sand, Swimming}
• {Water, Sun, Sand, Reading}
• {Reading, Sand}

• Resulting Jaccard Coefficient Matrix
• Set Threshold = 0.2. Neighbors: 

• N(A)={A}; N(B)={B,C,D}
• N(C)={B,C,D}, N(D) = {B,C,D} 

• Number of Links Table
• Link (B, C) = |{B,C,D}| = 3

• Resulting Clusters after applying ROCK: {A}, {B,C,D}

A B C D
A 1 0 0 0
B 0 1 0.6 0.2
C 0 0.6 1 0.5
D 0 0.2 0.5 1

A B C D
A 1 0 0 0
B 0 3 3 3
C 0 3 3 3
D 0 3 3 3



ROCK – Criterion Function
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This goodness measure helps to identify the best pair of clusters to be 
merged during each step of ROCK. 

Number of expected cross-links between two clusters

Where   Ci denotes cluster i
ni is the number of points in Ci
k is the number of clusters
q is the similarity threshold

Dividing by the number of expected links 
between pairs of objects in the cluster Ci we 
avoid that objects with a low number of links 
are assigned all to the same cluster



ROCK: Clustering Algorithm

Input:  
A set S of data points
Number of k clusters to be found
The similarity threshold

Output: 
Groups of clustered data

The ROCK algorithm is divided into three major parts:
1. Draw a random sample from the data set
2. Perform a hierarchical agglomerative clustering algorithm
3. Label data



ROCK: Clustering Algorithm

Draw a random sample from the data set:
• Sampling is used to ensure scalability to very large data sets 
• The initial sample is used to form clusters, then the remaining data on 

dataset is assigned to these clusters 



ROCK: Clustering Algorithm

Perform a hierarchical agglomerative clustering algorithm:
• ROCK performs the following steps which are common to all 

hierarchical agglomerative clustering algorithms, but with different 
definition to the similarity measures:

1. Places each single data point into a separate cluster
2. Compute the similarity measure for all pairs of clusters
3. Merge the two clusters with the highest similarity (goodness measure)
4. Verify a stop condition. If it is not met then go to step 2.



ROCK: Clustering Algorithm

Label data
• Finally, the remaining data points are assigned to the clusters. 
• This is done by selecting a random sample Li from each cluster Ci, 

then we assign each point p to the cluster for which it has the 
strongest linkage with Li. 



ROCK Summary

Input: dataset, number of clusters.
1. Draw a random sample from the data set
2. Places each data point into a separate cluster
3. Compute the similarity measure for all pairs of clusters
4. Merge the two clusters with the highest similarity
5. Verify a stop condition. If it is not met then go to step 2.
6. Assign not used points to clusters using linkage similarity with 

respect to selected samples from each cluster



CLOPE: Clustering with sLOPE

• Transactional clustering efficient for high dimensional data 
• Uses a global criterion function that tries to increase the intra-cluster overlapping of 

transaction items by increasing the height-to-width ratio of the cluster histogram. 
Example: 5 transactions {a,b} {a,b,c} {a,c,d} {d,e} {d,e,f}

D(C) = set  of items in C

S(C) = ti
ti∈C
∑

W (C) = D(C)

H (C) = S(C) /W (C)

Clustering 1 Clustering 2

H/W=0.5 H/W=0.55 H/W=0.55 H/W=0.32

Higher H/W means higher item overlapping



CLOPE: Criterion Function

• For evaluating the goodness of a clustering the gradient of a cluster is 
• G(C)=H(C)/W(C)=S(C)/W(C)2

Repulsion.
When r is large, 
transactions within the 
same cluster must 
share a large portion of 
common items. 



CLOPE: Algorithm



CLOPE Summary

Input: dataset, repulsion, maximum number of clusters
• Phase 1
1. For each transaction, add it to a new cluster or to an existing one 

such that the profit is maximized
• Phase 2
1. For each transaction, try to move it to another cluster and do it if 

this maximizes the profit
2. Repeat 1. until all the transactions remain in the same cluster



TX-MEANS

• A parameter-free clustering algorithm able to efficiently partitioning 
transactional data automatically
• Suitable for the case where clustering must be applied on a massive 

number of different datasets
• E.g.: when a large set of users need to be analyzed individually and each of 

them has generated a long history of transactions

• TX-Means automatically estimates the number of clusters 
• TX-Means provides the representative transaction of each cluster, 

which summarizes the pattern captured by that cluster. 



How It Works 1/3
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How It Works 3/3

• Clusters

• Representative Baskets



TX-Means Algorithm

TXMEANS(B: baskets):

• r <-- GETREPR(B);

• Q.push(B,r);

• While there is a cluster B,r to split in Q:
• Remove common items from B;
• B1, B2, r1, r2 <-- BISECTBASKET(B);
• If BIC(B1,B2,r1,r2) > BIC(B,r) Then:
• add B1,B2,r1,r2 to the clusters to split Q;

• Else
• add B,r to the clustering result C;

• Return C;

stopping 
criterion

representative 
basket

bisecting 
schema



Bisecting Schema

BISECTBASKET(B: baskets):

• SSE <-- inf; 

• r1,r2 <-- select random initial baskets in B as representative; 

• While True:
• C1,C2 <-- assign baskets in B with respect to r1,r2;
• r1_new <-- GETREPR(C1); r2_new <-- GETREPR(C2);
• SSE_new <-- SSE(C1,C2,r1_new,r2_new);
• If SSE_new >= SSE Then:
• Return C1,C2,r1,r2;

• r1,r2 <-- r1_new,r2_new;

overlap-based 
distance function: 
Jaccard coefficient



Get Representative Baskets

GETREPR(B: baskets):

• I <-- not common items in B; 

• r <-- common items in B; 

• While I is not empty:
• Add to r the items with maximum frequency in I;
• Calculate the distance between r and the baskets in B;
• If the distance no longer decreases Then:

• Return r;
• Else
• remove from I the items with maximum frequency;

• Return r;

overlap-based distance 
function (Jaccard

coefficient)



Dealing with Big Datasets

• Clustering of a big individual transactional dataset B.
• TX-Means is scalable thanks to the following sampling strategy.

• Sampling strategy: 
• Random selection of a subset S of the baskets in B;
• Run of TX-Means on the subset S and obtain clusters C and 

representative baskets R;
• Assign the remaining baskets B/S to the clusters C using a nearest 

neighbor approach with respect to the representative baskets R.
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Exercises Transactional Clustering



Rock – Exercise 1

• Suppose we have four verses contains some subjects , as follows:

• P1={ judgment, faith, prayer, fair}

• P2={ fasting, faith, prayer}
• P3={ fair, fasting, faith}

• P4={ fasting, prayer, pilgrimage}
• the similarity threshold = 0.3, and number of required cluster is 2.

Using Jaccard coefficient as a similarity measure, we obtain the following similarity table



Rock – Exercise 1

• Since we have a similarity 
threshold equal to 0.3, then we 
derive the adjacency table: à

• By multiplying the adjacency table 
with itself, we derive the following 
table which shows the number of 
links (or common neighbors): à



Rock – Exercise 1

• we compute the goodness measure for all 
adjacent points ,assuming that  
• f(q) =  1-q / 1+q = 1-0.3 /1+0.3 = 0.54

•we obtain the following tableè

• we have an equal goodness measure  for 
merging ((P1,P2), (P2,P3), (P3,P1))
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Rock – Exercise 1

• Now, we start the hierarchical algorithm by merging, say P1 and P2.

• A new cluster (letʼs call it C(P1,P2)) is formed.

• It should be noted that for some other hierarchical clustering 
techniques, we will not start the clustering process by merging P1 and 
P2, since Sim(P1,P2) = 0.4,which is not the highest. But, ROCK uses 
the number of links as the similarity measure rather than distance.



Rock – Exercise 1

• Now, after merging P1 and P2, we 
have only three clusters. The 
following table shows the number of 
common neighbors for these 
clusters:à

• Then we can obtain the following 
goodness measures for all adjacent 
clusters:à



Rock – Exercise 1

• Since the number of required clusters is 2, then we finish the 
clustering algorithm by merging C(P1,P2) and P3, obtaining a new 
cluster C(P1,P2,P3) which contains {P1,P2,P3} leaving P4 alone in a 
separate cluster.



Rock – Exercise 2

• Given the following 
similarity matrix find the 
clustering result knowing 
that the similarity threshold 
= 0.4, and number of 
required cluster is 2.

p1 p2 p3 p4 p5

p1 1 0.7 0.2 0.5 0.5

p2 1 0.6 0.8 0.1

p3 1 0.5 0.4

p4 1 0.3

p5 1



Rock – Exercise 2 – Solution 

p1 p2 p3 p4 p5

p1 1 1 0 1 1

p2 1 1 1 1 0

p3 0 1 1 1 1

p4 1 1 1 1 0

p5 1 0 1 0 1

p1 p2 p3 p4 p5

p1 1 0.7 0.2 0.5 0.5

p2 1 0.6 0.8 0.1

p3 1 0.5 0.4

p4 1 0.3

p5 1



Rock – Exercise 2 – Solution 
p1 p2 p3 p4 p5

p1 1 1 0 1 1

p2 1 1 1 1 0

p3 0 1 1 1 1

p4 1 1 1 1 0

p5 1 0 1 0 1

p1 p2 p3 p4 p5

p1 - 3 3 3 2

p2 - 3 4 2

p3 - 3 2

p4 - 2

p5 -



Rock – Exercise 2 – Solution 

• f(q) =  1-q / 1+q = 1-0.4 /1+0.4 = 0.43
• 1 + 2 f(q) = 1.86
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p1 p2 p3 p4 p5

p1 - 3 3 3 2

p2 - 3 4 2

p3 - 3 2

p4 - 2

p5 -

p1 p2 p3 p4 p5

p1 - 1.84 1.84 1.84 1.22

p2 - 1.84 2.45 1.22

p3 - 1.84 1.22

p4 - 1.84

p5 -



Rock – Exercise 2 – Solution 

• f(q) =  1-q / 1+q = 1-0.4 /1+0.4 = 0.43
• 1 + 2 f(q) = 1.86

• Final Clusters: p1234 p5
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p1 p2p4 p3 p5

p1 - 6 3 2

p2p4 - 6 4

p3 - 2

p5 -

p1 p2 p3 p4 p5

p1 - 3 3 3 2

p2 - 3 4 2

p3 - 3 2

p4 - 2

p5 -

p1 p2p4 p3 p5

p1 - 1.94 1.84 1.22

p2p4 - 1.94 1.29

p3 - 1.22

p5 -



Clope Exercise 1
Split1: 
• 4 transactions: abc, abc, ab, a 

• a: 4, b:3, c: 2 -> sol: S=9; W=3; H=9/3=3; H/W=1
• 3 transactions: def, de, de 

• d: 3, e:3, f: 1  -> sol: S=7; W=3; H=7/3=2.33; H/W=0.77
Split2: 

• 2 transactions: abcd, ab 
• a: 2, b:2, c: 1, d:1 -> sol: S=6; W=4; H=6/4=1.5; H/W=0.37

• 2 transactions: ec, ec
• e:2, c: 2 -> sol: S=4; W=2; H=4/2=2; H/W=1

Split1 is the best clustering considering r=2
Profit(Split1) = (9/32 * 4 + 7/32 * 3) /7 = 0.90
Profit(Split2) = (6/42 * 2 + 4/22 * 2) /4 = 0.16


