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Recalling Linear Regression

If a new mouse

e " has this weight...
Size

3) Use the line to predict size given weight.
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Recalling Linear Regression

...then this is the
size that we .

=T~ predict from the

weight.
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3) Use the line to predict size given weight.




Logistic Regression

s Obese =~ O 0000

Is Not Obese == “ ‘ .




Logistic Regression

Logistic regression predicts whether
something is True or False, instead of
predicting something continuous like size.

s Obese O 0000

Is Not Obese “ . ‘




Logistic Regression

These mice are

Is Obese =

Is Not Obese =

obese... \




Logistic Regression

These mice are

Is Obese =

Is Not Obese =

obese... \

...and these

/ mice are not.




Logistic Regression

...also, instead of fitting a line to the
data, logistic regression fits an “S”
shaped “logistic function".
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Logistic Regression

The curve goes
from0to1...
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Logistic Regression
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...and that means that the
curve tells you the probability
that a mouse is obese based

on its weight.




Logistic Regression

Is Obese == ® 000800
If we weighed a
very heavy
mouse...
Is Not Obese -~ .....""‘ O /
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Logistic Regression

Is Obese - o O ..QQ
' There is a high
probability that the
New mouse is
obese.
s Not Obese —- .‘...""‘ i
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Logistic Regression

s Obese == ® 0000

If we weighed an
intermediate
mouse...

Is Not Obese =




Logistic Regression

Is Obese =

Is Not Obese =

\ Then there is only a
50% chance that
the mouse is obese.
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Logistic Regression

Is Obese =

Is Not Obese =

¢ Lastly, there’s only a

small probability
that a light mouse is
obese.

Weight



Logistic Regression

Although logistic regression tells the probability that a mouse
is obese or not, it’s usually used for classification.
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Linear vs Logistic

Is Obese =

Is Not Obese -

One big difference between
linear regression and logistic
regression is how the line is fit

to the data.




Linear vs Logistic

With linear regression, we
fit the line using “least

s .‘ squares”.

Size




Linear vs Logistic

In other words, we find the
line that minimizes the sum
of the squares of these
residuals.




Linear vs Logistic

Is Obese =

Is Not Obese =

Logistic regression doesn’t have the same

|”

concept of a “residual”, so it can’t use

least squares




Linear vs Logistic

Instead it uses something called
“maximum likelihood”.
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MLE

You pick a probability, scaled by
weight, of observing an obese
mouse - just like this curve...

Is Obese =

Is Not Obese =
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MLE

...and you use that to calculate the
likelihood of observing a non-
obese mouse that weighs this

much...

Is Obese == ®.90000
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MLE

...and then you calculate the
likelihood of observing this
mouse...

Is Obese == ®.9000600
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MLE

...and you do that for all of the
mice...

Is Obese =

Is Not Obese =




MLE

...and lastly you multiply all of those
likelihoods together. That’s the
likelihood of the data given this line.

Is Obese =

Is Not Obese =
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MLE

Is Obese =

Is Not Obese =

Then you shift the line and
calculate a new likelihood of
the data...
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MLE

...then shift the line and
calculate the likelihood again...

Is Obese == o & 588 -

Is Not Obese --..Q.g.o‘ G
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MLE

...and again...
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MLE

|s Obese =t= o & Q‘@@ ........
Finally, the curve
\with the maximum
: likelihood is
selected.
Is Not Obese =} Q@...“" & |
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Linear vs Logistic

uses the log(odds) on the y-axis...

logistic regression
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Fit a Line with Logistic Regression

g ® 0000
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Our goal is to draw the
“best fitting” squiggle for
this data.

Fit a Line with Logistic Regression




As we know, in logistic regression, we
transform the y-axis from the probability

~

of obesity...




+Infinity = . ......... ...'
...to log(odds of obesity)
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We can draw a ﬁ 0 T IB IX

candidate “best fitting” 2 ==
line on the graph... \
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#Infinity ==

: § 1
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...and this means that the 1 ==
residuals (the distance from the X
data points to the line) are also ' . —

equal to positive and negative
infinity...
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...and this means we can’t
use least-squares to find the
best fitting line.

. "

" ]

u . . :
" " "

[} " . 4
= ™ . L]
L] ™ '.’
[ " %

- L] ¥

kel u .Q

: .

[

“ . .'

u ™ "

K se ®

W * o

: K

. .

[

.

]

.

.

"

B

.

|:

¥
L

FioR

Infinity — @




Instead, we use maximum
likelihood...
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The first thing we do is A
project the original data 1 == v
points onto the candidate .
ine. 0 g+
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+Infinity =—

In other words, the
log(odds) of this point...

-Infinity =— ‘
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+Infinity =—
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In other words, the e .

log(odds) of this point...
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+Infinity =— -

'+ By + 51X

And the log(odds) of this

point... ml
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Then we transform the candidate
log(odds) to candidate probabilities
using this fancy looking formula...

1 . 3 glog(odds)
1 <ol _1 + elog(odds)
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-_— ...which is just a reordering of the :
transformation from probability to 2wl
log(odds).
0
1= A Iog(L)= log(odds)
s 1 -P 1 ==
4 0 +—
4
g T
0--‘I. 2 I 1 1
| 1 | 1 1 _2 e :.'
-3 .,_

In(—2—) = B, + B.X ity — 00 @
I-p




Logistic Regression Equation

|09(%) = log(odds)

Exponentiate both sides... L glog(odds)

1P



Logistic Regression Equation

lo L
91 p) log(odds)

Exponentiate both sides... 1L glog(odds)

©

Multiply both sides by (1 - p)... p = (1 - p)eloglodds)



Logistic Regression Equation

log(—t—) = log(odds)

1-p

L — elog(odds)

-p ;O.. @

Exponentiate both sides...

Multiply both sides by (1 - p)... p = (1 - p)elegiodds)

Multiply (1 - p) and eloglodds), p = gloglodds) - pglog(odds)



Logistic Regression Equation

Iog(ﬁ) - log(odds)
Exponentiate both sides... % = glog(odds)
Multiply both sides by (1 - p)... p = (1 - p)elogloads)

Mu|tip|y (1 " P) and eloglodds) p = glog(odds) - pelog(odds)

Add peloglodds) to both sides... p + peloglodds) = glog(odds)



Logistic Regression Equation

|09 ) = log(odds)

Exponentiate both sides... % = glog(odds)
Multiply both sides by (1 - p)... p = (1 - p)elagiodas)
|\/|u|tip|y (1 - P) and eloglodds) il = glog(odds) - pelog(odds)

Add pelogledds) to both sides...  p + peloglodds) = glog(odds)

Pull p out... p(1 + elogloads)) = glogfodds)



Logistic Regression Equation , ... ; -
log(——) = log(odds) '
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Exponentiate both sides...

Multiply both sides by (1 - p)... p = (1 - p)elosledds)

Mu|tip|y (1 - P) and eloglodds) p = glog(odds) - pelog(odds)
Add peloslodds) to both sides...  p + peloslodds) = gloglodds

Pull p out... p(1 + elogleads)) = glogfodds})

Divide both sides by (1 + eloglodds)), gloglodds)

=1 + elog(odds)
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Find Best Line

Now we use the observed status (obese or
not obese) to calculate their likelihood
given the shape of the squiggly line.
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Find Best Line

Q: FVX We'll start by calculating the

likelihood of the obese mice,
given the shape of the squiggle.




Find Best Line

1+ A009
4 The likelihood that this mouse

is obese, given the shape of

the squiggle, is the value on

,5 the y-axis where point

] intersects the squiggle, 0.49.




Find Best Line

1+ 009
g In other words, the likelihood
that this mouse is obese,
: given the shape of the
’ squiggle, is the same as the
J predicted probability.




Find Best Line

1+ A009
3 In this case, the probability is

not calculated as the area under

: a curve, but instead is the y-axis

’ value, and that’s why it is the

] same as the likelihood.




Find Best Line

The likelihoods that these mice

1 =+« ~8: 099" are obese are 0.91, 0.91 and
) AAA 0.92




———  |IKelinOOd Of data given the squiggle = 0.49x0.9x0.91x0.91x0.92x ...

|

The likelihood for all of the obese
1+ 000 mice is just the product of the
] individual likelihoods.




———  |IKelinOOd Of data given the squiggle = 0.49x0.9x0.91x0.91x0.92x ...

NOTE: The lower the
probability of being obese,
the higher the probability of

not being obese.




——  |IKelinOOd Of data given the squiggle = 0.49x0.9x0.91x0.91x0.92x ...

Thus, for these mice, the
likelihood = (1 - probability the mouse is obese)




———  |IKelinOOd Of data given the squiggle = 0.49x0.9x0.91x0.91x0.92x ...

14 O TITETTPCTIY y .
The probability that this
: mouse is obese is 0.9, so the
; probability and likelihood that
o it is not obese is (1 - 0.9)
0--‘I. | 1 | I




——  |IKelinOOd Of data given the squiggle = 0.49x0.9x0.91x0.91x0.92x ...

1+ ...'.. ...........
The probabilities that these
: mice are obese are both 0.01,
9 so the probability and the
Yy likelihood that they are not
oto® obese is (1 - 0.01)




likelihood of data given the squiggle = 0.49x0.9x0.91x0.91 x0.92x

(1-0.9)x(1 - 0.3)x(1 - 0.01)x(1 - 0.01)
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NOTE: Although it is possible to calculate
the likelihood as the product of the
individual likelihoods, statisticians prefer to
calculate the log of the likelihood instead.




——|0()(likelihood of data given the squiggle) = [0g(0.49) + 10g(0.9) + 10g(0.91) + 109(0.91) + e ————
l0g(0.92) + log(1 - 0.9) + log(1 - 0.3) +
log(1 - 0.01) + log(1 - 0.01)

1T A009-
# With the log of the likelihood, or
.' “log-likelihood” to those in the know, we
add the logs of the individual likelihoods
o--OIO" ——— instead of multiplying the individual

11T likelihoods...



log(likelihood of data given the squiggle) = -3.77

1T L9000
. Thus, the log-likelihood of the
@ data given the squiggle is -3.77...
0--.I. 1 1 1 1




Find Best Line -
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log-likelihood of the original line is 0 L]
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Now we rotate the line... 0 I i e}




Find Best Line

...and calculate its log-likelihood
by projecting the data onto it...
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Find Best Line

...transforming the

log(odds) to

probabilities...

glog(odds)

_1 + elog(odds)
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Flnd BESt Llne ...and we just keep rotating

the log(odds) line and
projecting the data onto it...
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Flnd BESt Llne ...and we just keep rotating

the log(odds) line and
projecting the data onto it...
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Find Best Line

10

0

-10 -5

...and we just keep rotating
the log(odds) line and
projecting the data onto it...




Flnd BESt Llne ...and we just keep rotating

the log(odds) line and
projecting the data onto it...
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1.0

0.0 02 04 06 0.8

...and transforming it to
probabilities and calculating
the log-likelihood.

-5

-10




1.0

0.0 02 04 06 0.8

...and transforming it to
probabilities and calculating
the log-likelihood.
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1.0

0.0 0.2 04 06 0.8

...and transforming it to
probabilities and calculating
the log-likelihood.
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Find Best Line

NOTE: The algorithm that finds
the line with the maximum
likelihood is pretty smart - each
time it rotates the line, it does so
in a way that increases the log-
likelihood. Thus, the algorithm
can find the optimal fit after a
few rotations.

+Infinity =— 8 B B 11
B
;i
: @
T M
1 < v
g
A o .~":é
o
2te,
3 44
pio

-Infinity — .



Ultimately we get a line that
maximizes the likelihood and

that’s the one chosen to have 3 == ‘
the best fit. @
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Recovering Probabilities from Log Odds

ln(

) Py + X

P P _ 6/30"'/51)( /
1-p 55
eﬁo +p1X 1 /
< p= = | |

1+€/30+/31X 1+e—(ﬁo+ﬁ1X) ~ = ©

* which gives p as the sigmoid function!



Logistic Regression

* In Logistic Regression we seek a model

Y = logit(p) =log(p/(1-p)

* That is, the log oddes, i.e., the logit, is assumed to be linearly related
to the independent variable X

* In this way it is possible to solve an ordinary (linear) regression.



Interpretation of Betal

e Let:
e oddsl = odds for value X (p/(1-p))
* odds2 = odds for value X + 1 unit

e Then:

odds? 6/30 +61 (X +1) If the odds ratio of two consecutive value is large it means that
= an increment on X has a large impact in the prediction of Y.
X
oddsl ePo+hi

e(/30 +B,X)+ B, e(ﬂo +/31X)e/31

= = =€ 1
6/30+/31X eﬁo+/31X

* The exponent of the slope describes the proportionate rate at which the
predicted odds ratio changes with each successive unit of X



Example

* Hours: 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50
® PaSS: O, 0, O, O, O, O, 1, O, 1, O, 1, O, 1, O, 1, 1, 1, 1, 1, 1 Probability of passing exam versus hours of studying

ooooo

BetaO = -4.0777, Betal = 1.5046

Log-odds of passing exam = 1.5046 - Hours — 4.0777
Odds of passing exam = exp(1.5046 - Hours — 4.0777)
]. 025~ ;/’/

1+ eXp(_ (15046 - Hours — 40777)) | i ——___f_//-f"'

i L D e D D )

Probability of passing exam

Probability of passing exam =

Hours studying

One additional hour of study is estimated to increase log-odds by 1.5046, so multiplying odds by e1->046 = 4.5,
For example, for a student who studies 2 hours we have an estimated probability of passing the exam of 0.26.

Similarly, for a student who studies 4 hours, the estimated probability of passing the exam is 0.87.
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