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Time Series Classification

* Given a set X of n time series, X = {x,;, x,, ..., X,}, each time series has
m ordered values x; = < X4, X;, ..., X¢y, > and a class value c;.

* The objective is to find a function f that maps from the space of
possible time series to the space of possible class values.

* Generally, it is assumed that all the TS have the same length m.



KNN Classification

* The most widely used and effective approach for TSC consists in using
KNN on the raw time series.

* Pros:
e Simple
* Dynamic Time Warping gives much better results than Euclidean distance on
many problems.
* Cons:

 KNN is a lazy classifier and computationally expensive on its own
* Dynamic Time Warping is very very slow to calculate



Shapelet-based Classification

1. Represent a TS as a vector of

distances with representative
subsequences, namely class A e dist = 0

shapelets.

2. Shapelet are sued to transform
a dataset and to use the
transformed version as input for : _
machine learning classifiers. lase B g : dict = 5.5

shapelet




Shapelet-based Classifiers
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Distance with a Subsequence

e Distance from the TS to the subsequence SubsequenceDist(T, S) is a distance
function that takes time series T and subsequence S as inputs and returns a
nonnegative value d, which is the distance from T to S.

* SubsequenceDist(T, S) = min(Dist(S, S')), for S' €S;/°/
« where S;/5/is the set of all possible subsequencesof T

* Intuitively, it is the distance between S and its best matchinglocationin T.
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Shapelet-based Classification

Represent a TS as a vector of
distances with representative
subsequences, namely shapelets.

Shapelet are sued to transform a
dataset and to use the
transformed version as input for
machine learning classifiers.
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Time Series Shapelets

e Shapelets are TS subsequences which are

maximally representative of a class. Verbena 0.87
Urtica 0.34

* Shapelets can provide interpretable results,
which may help domain practitioners
better understand their data.

* Shapelets can be significantly more
accurate/robust because they are local
features, whereas most other state-of-the-
art TS classifiers consider global features.
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Shapelet Transform

* The transformed dataset can be paired with any algorithm, like
Decision Tree or kNN.

Shapelet-based Factual Rule
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Shapelet Extraction

* Shapelet extraction can be performed in many different ways.

 Random

* Brute Force

* Gradient-based
* Genetic

* etc.

1. Candidate Sampling
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Extract Subsequences of all Possible Lengths

Candidates Pool
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Testing The Utility of a Candidate Shapelet

* Arrange the TSs in the dataset D based on the distance from the
candidate.

* Find the optimal split point that maximizes the information gain
(same as for Decision Tree classifiers)

* Pick the candidate achieving best utility as the shapelet
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A TS dataset D consists of two classes, A and B.

* Given that the proportion of objects in class A is p(A) and the
proportion of objects in class B is p(B),

* The Entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

* Given a strategy that divides the D into two subsets D; and D,, the
information remaining in the dataset after splitting is defined by the
weighted average entropy of each subset.

* If the fraction of objects in D, is f(D,) and in D, is f(D,),
* The total entropy of D after splitting is I(D) = f(D,)I(D,) + f(D,)I(D,).



Split Point

candidate S \
Information Gain I Wi

* Given a certain split strategy sp which divides

D into two subsets D; and D,, the entropy
before and after splitting is /(D) and /(D).

* The information gain for this splitting rule is:
e Gain(sp) = 1(D) - I(D) =
* =1(D) - f(D)I(D,) + f(D,)I(D,).

* We use the distance from T to a shapelet S as
the splitting rule sp.
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Problem

MANLEN

* The total number of candidate is Z Z (ljf‘ —[+1)

I=\[INLEN T €D

* For each candidate you have to compute the distance between this
candidate and each training sample

* For instance
e 200 instances with length 275
e 7,480,200 shapelet candidates



Speedup

 Distance calculations form TSs to shapelet candidates is expensive.
* Reduce the time in two ways

e Distance Early Abandon
* reduce the distance computation time between two TS

* Admissible Entropy Pruning

* reduce the number of distance calculations
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Distance Early Abandon

* We only need the minimum distance.

* Method

best matching g
* Keep the best-so-far distance

« Abandon the calculation if the current 0O 10 20 30 40 50 60 70 8 90 100
distance is larger than best-so-far.

Dist> 0.4

calculation -7
abandoned at this point
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Admissible Entropy Pruning

 We only need the best shapelet for
each class >

* For a candidate shapelet New candidate

stinging nettles

e We do not need to calculate the calculus
distance for each training sample

* After calculating some training

false nettles

W\

Y

samples, the upper bound of Best so far e
information gain < best candidate
shapelet

* Stop calculation Most optimistic

o ngm_l_l_,

. case new candidate
* Try next candidate




Shapelet Summary

Candidates Pool

: [T e
1. Extract all possible subsequences of aset  py o (25 w
given lengths (candidate shapelets) r——r— i}

2. For each candidate shapelet

1. Calculate the distance with each time series
keeping the minimum distance (best
alignment)

2. Evaluate the discriminatory effect of the
shapelet through the Information Gain
3. Return the k best shapelets with the
highest Information Gain.

4. Transform a dataset and train a ML model.




Gradient-based Shapelet Extraction

The minimum distances (M) between Ts and Shapelets can be used as predictors to
approximate the TSs label (Y) using a linear model (W):

K
i = Wo+ ) MixWi, Vie{l,...,I}
k=1

A logistic regression loss can measure the quality of the prediction:

LY,V) = —y’lna(i’)—(1—)/)111(1—0()7'))

The objective is to minimize a regularized loss function across all the instances (I) :

I
argmin F(S, W) = argmin Z L(Y:, Y:) + dw||W])?
=1

S,\W S,W

We can find the optimal shapelet for the objective function in a NN fashion by updating
the shapelets in the minimum direction of the objective, hence the first gradient.
Similarly, the weights can be jointly updated towards minimizing the objective function.



Motif/Shapelet Summary

* A motif is a repeated st ||| ottt || sosoni
pattern/subsequence in a given TS. | |

* A shapelet is a pattern/subsequence
which is maximally representative of
a class with respect to a given
dataset of TSs.
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Abstract Time Serics Classification (TSC) is an important and challe
With the increase of time series data availability, undreds of TSC &
Among these methods, only a few have considered Decp Neural Net
task. This is surprising as docp learning has seen very successful appli
have indeed kevolutionized the ficld of computer vision cspecially w
architectures such as Residual and Convolutional Neural Networks.

data such as text and audio can also be processed with DNNs to reac
for document classification and speech recognition. In this article,
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most recent DNN architectures for TSC. We give an overview of the
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Keywords Decp learning - Time serics - Classification - Review

1 Introduction

Categories and Subject Descriptors
H28 [Duibase Mansgeaes]: Debose Apglicaions - Daca
Mising

General Terms
gocithas, Experimentation

L l\IRUDl( TION
e cade b seem 4 buge mterest s e sees
o dae the saost accute sed sobust method it the
e semn (SRLT14) T
weghbor sigordm o e
requunng extemsive. parameter
sportant ded et
roquesnets, aod the
iy a parncelae object ws

of the nearest neighibor algonshun pojed sbor

P to ke gl o had copies of sl o par of ths work fox

KDD 09, hure 20-Jeb 1. 2009, Parm.
Copgh 2009 AC 978140558995 30906, 8509

During the last two decades, Time Series Classification (TSC) has been considered as one of the
‘most challenging problems in data mining (Yang and Wu, 2006; Eeling and Agon, 2012). With the
increase of temporal data availability (Silva et al, 2018), kundreds of TSC algorithms have been
proposed since 2015 (Bagnall et al., 2017). Duc to their natural temporal ordering, time serics data
are present in almast very task that requires some sort of human cognitive process (Lingkvist
et al,, 2014). In fact, any classification problem, using data that is registered taking into account
some notion of ordering, can be cast as a TSC problem (Cristian Borges Gamboa, 2017). Time serics
are encountered in many real-world applications ranging from eloctronie health rocords (Rajkomar
et al., 2018} and human activity recognition (Nweke et al., 2018; Wang et al., 2018) to acoustic scene

clussification (Nwe et al., 2017) and cyber-security (Susto ct al.,

2018). In addition, the diversity of

the datasets’ types in the UCR/UEA archive (Chen et al., 2015b; Bagnall et al., 2017) (the largest
Tepository of time series datasets) shows the different applications of the TSC problem.
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Input

ResNet

 Three consecutive blocks, comprised of three convolutional layers,

connected by residual ‘shortcut’ connections.

* The blocks are followed by global average pooling and softmax layers

to form features and subsequent predictions.
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Convolution Layer

activation map

_— 32x32x3 image

- 5x5x3 filter /
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Pooling Layer

* Makes the representations smaller and more manageable
* Operates over each activation map independently
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MaxPooling and AvgPoling

max pooling
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InceptionTime

Neural network ensemble consisting of five Inception networks.
For each inception network:
* three Inception modules (6 blocks by default)

* global averaging pooling
* fully-connected layer with the softmax activation function.

Each Inception module consists of convolutions with kernels of several
sizes followed by batch normalization and the rectified linear unit
activation function.



InceptionTime
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TapNet

Draws on the strengths of both traditional and deep learning approaches:

e deep learning aBproaches -> excel at learning low dimensional features without
the need for embedded domain knowledge, whereas

* traditional approaches -> work well on small datasets.

3 distinct modules:

e Random Dimension Permutation: produce groups of randomly selected
dimensions with the intention of increasing the likelihood of learning how
combinations of dimension values effect class value.

* Multivariate Time Series Encoding:
* 3 sets of 1d convolutional layers followed by batch normalisation
* the raw data is also passed through an LSTM and global pooling layer

* Attentional Prototype Learning: used for unlabelled data
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Canonical Interval Forest (CIF)

Ensemble of time series tree classifiers built using the 22 Canonical
Time-Series Characteristics (Catch22) features and simple summary
statistics (mean, stdev, slope).

For each tree, CIF:
* samples k time series intervals of random position and length;
* subsamples 8 of the 25 features randomly;

 calculates the features for each interval, concatenates them to form a
new data set;

e builds a decision tree on the feature-transformed dataset.



ROCKET

ROCKET (Random Convolutional Kernel Transform) uses a large number of
random convolutional kernels to transform the time series:

 all the parameters of all the kernels are randomly generated from fixed
distributions;

* the transformed features are used to train a linear classifier (Logistic
Regression or Ridge Regression Classifier);

 the combination of Rocket and logistic regression forms a single-layer
convolution with random kernel weights with a trained softmax layer.

T
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ROCKET vs. CNN

CNNs use trainable filters/kernels optimized by stochastic gradient descent
to find patterns in the input data. Rocket differs in the following ways:

* Only a single layer containing a very large number of random kernels.

 Variety of kernels: each kernel has random length, dilation, and padding,
weights and biases.
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Dilated Convolution Kernels

3x3 Kernel
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ROCKET vs. CNN

* In CNNs kernel dilation increases exponentially with depth. Rocket
sample dilation randomly for each kernel, capturing patterns at
different frequencies and scales.

e Rocket uses the maximum value of the resulting feature maps
(vglobal max pooling), and the proportion of positive values
(proportion of the input which matches a given pattern).

* The only hyperparameter for Rocket is the number of kernels, k.
* k handles the trade-off between classification accuracy and computation time



MINIROCKET

MiniRocket removes almost all randomness from Rocket, and dramatically speeds
up the transform.

e Length: uses kernels of length 9.
* Weights: restricted to two values, a =-1and (5 = 2.

* Kernels: there are 512 possible two-valued kernels of length 9. Only subset of 84
is used.

* Bias: drawn from the quantiles of the convolution output for the entire training
set (rather than a single, randomly-selected training example)

 Dilation: Each kernel is assigned the same fixed set of dilations, adjusted to the
length of the input time series. The maximum number of dilations per kernel is 32

* Padding: half the kernel/dilation combinations use padding, and half do not.
* Features: only proportion of positive values.



COTE / HIVE-COTE / TS-CHIEF

e Collective of Transformation-Based Ensembles (COTE) combines 35
classifiers over four data representations (similarity measures,
shapelet-transform, autocorrelation features, power spectrum).

* Hierarchical Vote Collective of Transformation-Based Ensembles
(HIVE-COTE) is an extension of COTE including more classifiers and a
hierarchical voting procedure.

* Time Series Combination of Heterogeneous and Integrated
Embedding Forest (TS-CHIEF) builds a random forest of decision trees
whose splitting functions are time series specific and based on
similarity measures, dictionary (bag-of-words) representations, and
interval-based transformations.




MR-SEQL

* The data is discretized into sequences of words via either Symbolic
Aggregate Approximation (SAX) or SFA, using a sliding window.

* The most discriminative symbols are extracted using a SEQuence
Learner algorithm.

* The dataset is transformed in presence/absence of subsequences
(similar to a shapelet transform)

A linear (interpretable) model is trained on this new representation
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v v A 4
babc abcc abcd



MR-SEQL




Ranking Multivariate TSC algorithms
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Ranking Multivariate TSC algorithms
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