
DATA MINING 2
Time Series Classification
Riccardo Guidotti

a.a. 2023/2024

Time Series Classification

• Given a set X of n time series, X = {x1, x2, …, xn}, each time series has
m ordered values xi = < xt1, xt2, …, xtm > and a class value ci.

• The objective is to find a function f that maps from the space of
possible time series to the space of possible class values.

• Generally, it is assumed that all the TS have the same length m.

KNN Classification

• The most widely used and effective approach for TSC consists in using
KNN on the raw time series.

• Pros:
• Simple

• Dynamic Time Warping gives much better results than Euclidean distance on
many problems.

• Cons:
• KNN is a lazy classifier and computationally expensive on its own

• Dynamic Time Warping is very very slow to calculate

Shapelet-based Classification

1. Represent a TS as a vector of
distances with representative
subsequences, namely
shapelets.

2. Shapelet are sued to transform
a dataset and to use the
transformed version as input for
machine learning classifiers.

Shapelet-based Classifiers

Time Series
Dataset

Shapelet
Finder

Shapelet
Transformer

Shapelet
Dataset

ML
Model

N x M

K

N x K

A

B

C

calculate distance between
time series and shapelets

identify shapelets

Distance with a Subsequence

• Distance from the TS to the subsequence SubsequenceDist(T, S) is a distance
function that takes time series T and subsequence S as inputs and returns a
nonnegative value d, which is the distance from T to S.

• SubsequenceDist(T, S) = min(Dist(S, S')), for S' ∈ ST
|S|

• where ST
|S| is the set of all possible subsequences of T

• Intuitively, it is the distance between S and its best matching location in T.

Shapelet-based Classification

1. Represent a TS as a vector of
distances with representative
subsequences, namely shapelets.

2. Shapelet are sued to transform a
dataset and to use the
transformed version as input for
machine learning classifiers.

3.2 8.7

1.4 7.9

6.7 4.2

9.2 3.4

Time Series Shapelets

• Shapelets are TS subsequences which are
maximally representative of a class.

• Shapelets can provide interpretable results,
which may help domain practitioners
better understand their data.

• Shapelets can be significantly more
accurate/robust because they are local
features, whereas most other state-of-the-
art TS classifiers consider global features.

Verbena 0.87
Urtica 0.34

Shapelet Transform

• The transformed dataset can be paired with any algorithm, like
Decision Tree or kNN.

Shapelet Extraction

• Shapelet extraction can be performed in many different ways.
• Random

• Brute Force

• Gradient-based

• Genetic

• etc.

Extract Subsequences of all Possible Lengths

Extract Subsequences of all Possible Lengths

Extract Subsequences of all Possible Lengths

Extract Subsequences of all Possible Lengths

Extract Subsequences of all Possible Lengths

Testing The Utility of a Candidate Shapelet

• Arrange the TSs in the dataset D based on the distance from the
candidate.

• Find the optimal split point that maximizes the information gain
(same as for Decision Tree classifiers)

• Pick the candidate achieving best utility as the shapelet

Entropy

• A TS dataset D consists of two classes, A and B.

• Given that the proportion of objects in class A is p(A) and the
proportion of objects in class B is p(B),

• The Entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)).

• Given a strategy that divides the D into two subsets D1 and D2, the
information remaining in the dataset after splitting is defined by the
weighted average entropy of each subset.

• If the fraction of objects in D1 is f(D1) and in D2 is f(D2),

• The total entropy of D after splitting is Î(D) = f(D1)I(D1) + f(D2)I(D2).

Information Gain

• Given a certain split strategy sp which divides
D into two subsets D1 and D2, the entropy
before and after splitting is I(D) and Î(D).

• The information gain for this splitting rule is:

• Gain(sp) = I(D) - Î(D) =

• = I(D) - f(D1)I(D1) + f(D2)I(D2).

• We use the distance from T to a shapelet S as
the splitting rule sp.

Split point
distance from
shapelet = 5.1

Problem

• The total number of candidate is

• For each candidate you have to compute the distance between this
candidate and each training sample

• For instance
• 200 instances with length 275

• 7,480,200 shapelet candidates

Speedup

• Distance calculations form TSs to shapelet candidates is expensive.

• Reduce the time in two ways

• Distance Early Abandon
• reduce the distance computation time between two TS

• Admissible Entropy Pruning
• reduce the number of distance calculations

Distance Early Abandon

• We only need the minimum distance.

• Method
• Keep the best-so-far distance

• Abandon the calculation if the current
distance is larger than best-so-far.

Admissible Entropy Pruning

• We only need the best shapelet for
each class

• For a candidate shapelet
• We do not need to calculate the

distance for each training sample

• After calculating some training
samples, the upper bound of
information gain < best candidate
shapelet

• Stop calculation

• Try next candidate

Best so far

Most optimistic
case new candidate

New candidate
calculus

Shapelet Summary

1. Extract all possible subsequences of a set
given lengths (candidate shapelets)

2. For each candidate shapelet
1. Calculate the distance with each time series

keeping the minimum distance (best
alignment)

2. Evaluate the discriminatory effect of the
shapelet through the Information Gain

3. Return the k best shapelets with the
highest Information Gain.

4. Transform a dataset and train a ML model.

Gradient-based Shapelet Extraction

• The minimum distances (M) between Ts and Shapelets can be used as predictors to
approximate the TSs label (Y) using a linear model (W):

• A logistic regression loss can measure the quality of the prediction:

• The objective is to minimize a regularized loss function across all the instances (I) :

• We can find the optimal shapelet for the objective function in a NN fashion by updating
the shapelets in the minimum direction of the objective, hence the first gradient.
Similarly, the weights can be jointly updated towards minimizing the objective function.

Motif/Shapelet Summary

• A motif is a repeated
pattern/subsequence in a given TS.

• A shapelet is a pattern/subsequence
which is maximally representative of
a class with respect to a given
dataset of TSs.

0 500 1000 1500

References

• Matrix Profile I: All Pairs Similarity Joins for Time Series: A
Unifying View that Includes Motifs, Discords and Shapelets.
Chin-Chia Michael Yeh et al. 1997

• Time Series Shapelets: A New Primitive for Data Mining. Lexiang
Ye and Eamonn Keogh. 2016.

• Josif Grabocka, Nicolas Schilling, Martin Wistuba, Lars Schmidt-
Thieme (2014): Learning Time-Series Shapelets, in Proceedings
of the 20th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD 2014

• Deep learning for time series classication: a review. Hassan
Ismail Fawaz et al. 2019.

References

• Selective review of offline change point detection
methods. Truong, C., Oudre, L., & Vayatis, N. (2020).
Signal Processing, 167, 107299.

• Time Series Analysis and Its Applications. Robert H.
Shumway and David S. Stoffer. 4th

edition.(https://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf)

• Mining Time Series Data. Chotirat Ann Ratanamahatana
et al. 2010.
(https://www.researchgate.net/publication/227001229_
Mining_Time_Series_Data)

• Dynamic Programming Algorithm Optimization for
Spoken Word Recognition. Hiroaki Sakode et al. 1978.

• Experiencing SAX: a Novel Symbolic Representation of
Time Series. Jessica Line et al. 2009

• Compression-based data mining of sequential data.
Eamonn Keogh et al. 2007.

https://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf
https://www.researchgate.net/publication/227001229_Mining_Time_Series_Data
https://www.researchgate.net/publication/227001229_Mining_Time_Series_Data

TSC State-of-The-Art

A special thank to Francesco Spinnato for the slides

ResNet

• Three consecutive blocks, comprised of three convolutional layers,
connected by residual ‘shortcut’ connections.

• The blocks are followed by global average pooling and softmax layers
to form features and subsequent predictions.

Convolution Layer

Pooling Layer

• Makes the representations smaller and more manageable

• Operates over each activation map independently

MaxPooling and AvgPoling

InceptionTime

Neural network ensemble consisting of five Inception networks.

For each inception network:

• three Inception modules (6 blocks by default)

• global averaging pooling

• fully-connected layer with the softmax activation function.

Each Inception module consists of convolutions with kernels of several
sizes followed by batch normalization and the rectified linear unit
activation function.

InceptionTime

TapNet

Draws on the strengths of both traditional and deep learning approaches:

• deep learning approaches -> excel at learning low dimensional features without
the need for embedded domain knowledge, whereas

• traditional approaches -> work well on small datasets.

3 distinct modules:
• Random Dimension Permutation: produce groups of randomly selected

dimensions with the intention of increasing the likelihood of learning how
combinations of dimension values effect class value.

• Multivariate Time Series Encoding:
• 3 sets of 1d convolutional layers followed by batch normalisation
• the raw data is also passed through an LSTM and global pooling layer

• Attentional Prototype Learning: used for unlabelled data

TapNet

Canonical Interval Forest (CIF)

Ensemble of time series tree classifiers built using the 22 Canonical
Time-Series Characteristics (Catch22) features and simple summary
statistics (mean, stdev, slope).

For each tree, CIF:

• samples k time series intervals of random position and length;

• subsamples 8 of the 25 features randomly;

• calculates the features for each interval, concatenates them to form a
new data set;

• builds a decision tree on the feature-transformed dataset.

ROCKET

ROCKET (Random Convolutional Kernel Transform) uses a large number of
random convolutional kernels to transform the time series:

• all the parameters of all the kernels are randomly generated from fixed
distributions;

• the transformed features are used to train a linear classifier (Logistic
Regression or Ridge Regression Classifier);

• the combination of Rocket and logistic regression forms a single-layer
convolution with random kernel weights with a trained softmax layer.

ROCKET vs. CNN

CNNs use trainable filters/kernels optimized by stochastic gradient descent
to find patterns in the input data. Rocket differs in the following ways:

• Only a single layer containing a very large number of random kernels.

• Variety of kernels: each kernel has random length, dilation, and padding,
weights and biases.

Example of Convolution Example of Dilated Convolution

Dilated Convolution Kernels

ROCKET vs. CNN

• In CNNs kernel dilation increases exponentially with depth. Rocket
sample dilation randomly for each kernel, capturing patterns at
different frequencies and scales.

• Rocket uses the maximum value of the resulting feature maps
(~global max pooling), and the proportion of positive values
(proportion of the input which matches a given pattern).

• The only hyperparameter for Rocket is the number of kernels, k.
• k handles the trade-off between classification accuracy and computation time

MINIROCKET

MiniRocket removes almost all randomness from Rocket, and dramatically speeds
up the transform.

• Length: uses kernels of length 9.

• Weights: restricted to two values, 𝛼 = −1 and 𝛽 = 2.

• Kernels: there are 512 possible two-valued kernels of length 9. Only subset of 84
is used.

• Bias: drawn from the quantiles of the convolution output for the entire training
set (rather than a single, randomly-selected training example)

• Dilation: Each kernel is assigned the same fixed set of dilations, adjusted to the
length of the input time series. The maximum number of dilations per kernel is 32

• Padding: half the kernel/dilation combinations use padding, and half do not.

• Features: only proportion of positive values.

COTE / HIVE-COTE / TS-CHIEF

• Collective of Transformation-Based Ensembles (COTE) combines 35
classifiers over four data representations (similarity measures,
shapelet-transform, autocorrelation features, power spectrum).

• Hierarchical Vote Collective of Transformation-Based Ensembles
(HIVE-COTE) is an extension of COTE including more classifiers and a
hierarchical voting procedure.

• Time Series Combination of Heterogeneous and Integrated
Embedding Forest (TS-CHIEF) builds a random forest of decision trees
whose splitting functions are time series specific and based on
similarity measures, dictionary (bag-of-words) representations, and
interval-based transformations.

MR-SEQL

• The data is discretized into sequences of words via either Symbolic
Aggregate Approximation (SAX) or SFA, using a sliding window.

• The most discriminative symbols are extracted using a SEQuence
Learner algorithm.

• The dataset is transformed in presence/absence of subsequences
(similar to a shapelet transform)

• A linear (interpretable) model is trained on this new representation

MR-SEQL

Ranking Multivariate TSC algorithms

Ranking Multivariate TSC algorithms

References
• [1] A. Shifaz, C. Pelletier, F. Petitjean, and G. I. Webb, “TS-CHIEF: a scalable and accurate forest algorithm for time series classification,” Data Min Knowl Disc, vol.

34, no. 3, pp. 742–775, May 2020, doi: 10.1007/s10618-020-00679-8.

• [2] A. Bagnall, M. Flynn, J. Large, J. Lines, and M. Middlehurst, “On the Usage and Performance of the Hierarchical Vote Collective of Transformation-Based
Ensembles Version 1.0 (HIVE-COTE v1.0),” in Advanced Analytics and Learning on Temporal Data, vol. 12588, V. Lemaire, S. Malinowski, A. Bagnall, T. Guyet, R.
Tavenard, and G. Ifrim, Eds. Cham: Springer International Publishing, 2020, pp. 3–18. doi: 10.1007/978-3-030-65742-0_1.

• [3] T. Le Nguyen, S. Gsponer, I. Ilie, M. O’Reilly, and G. Ifrim, “Interpretable time series classification using linear models and multi-resolution multi-domain
symbolic representations,”Data Min Knowl Disc, vol. 33, no. 4, pp. 1183–1222, Jul. 2019, doi: 10.1007/s10618-019-00633-3.

• [4] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with deep neural networks: A strong baseline,” in 2017 International Joint Conference on
Neural Networks (IJCNN), May 2017, pp. 1578–1585. doi: 10.1109/IJCNN.2017.7966039.

• [5] M. Middlehurst, J. Large, and A. Bagnall, “The Canonical Interval Forest (CIF) Classifier for Time Series Classification,” in 2020 IEEE International Conference on
Big Data (Big Data), Dec. 2020, pp. 188–195. doi: 10.1109/BigData50022.2020.9378424.

• [6] A. Dempster, D. F. Schmidt, and G. I. Webb, “MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification,” Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 248–257, Aug. 2021, doi: 10.1145/3447548.3467231.

• [7] A. Dempster, F. Petitjean, and G. I. Webb, “ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels,” Data Min
Knowl Disc, vol. 34, no. 5, pp. 1454–1495, Sep. 2020, doi: 10.1007/s10618-020-00701-z.

• [8] J. Faouzi, “TimeSeries Classification: A review of Algorithms and Implementations,”Machine Learning, p. 35.

• [9] A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. Bagnall, “The great multivariate time series classification bake off: a review and experimental evaluation of
recent algorithmic advances,”Data Min Knowl Disc, vol. 35, no. 2, pp. 401–449, Mar. 2021, doi: 10.1007/s10618-020-00727-3.

• [10] H. I. Fawaz et al., “InceptionTime: Finding AlexNet for Time Series Classification,” Data Min Knowl Disc, vol. 34, no. 6, pp. 1936–1962, Nov. 2020, doi:
10.1007/s10618-020-00710-y.

	Slide 1: DATA MINING 2 Time Series Classification
	Slide 2: Time Series Classification
	Slide 3: KNN Classification
	Slide 4: Shapelet-based Classification
	Slide 5: Shapelet-based Classifiers
	Slide 6: Distance with a Subsequence
	Slide 7: Shapelet-based Classification
	Slide 8: Time Series Shapelets
	Slide 9: Shapelet Transform
	Slide 10: Shapelet Extraction
	Slide 11: Extract Subsequences of all Possible Lengths
	Slide 12: Extract Subsequences of all Possible Lengths
	Slide 13: Extract Subsequences of all Possible Lengths
	Slide 14: Extract Subsequences of all Possible Lengths
	Slide 15: Extract Subsequences of all Possible Lengths
	Slide 16: Testing The Utility of a Candidate Shapelet
	Slide 17: Entropy
	Slide 18: Information Gain
	Slide 19: Problem
	Slide 20: Speedup
	Slide 21: Distance Early Abandon
	Slide 22: Admissible Entropy Pruning
	Slide 23: Shapelet Summary
	Slide 24: Gradient-based Shapelet Extraction
	Slide 25: Motif/Shapelet Summary
	Slide 26: References
	Slide 27: References
	Slide 28: TSC State-of-The-Art
	Slide 29: ResNet
	Slide 30: Convolution Layer
	Slide 31: Pooling Layer
	Slide 32: MaxPooling and AvgPoling
	Slide 33: InceptionTime
	Slide 34: InceptionTime
	Slide 35: TapNet
	Slide 36: TapNet
	Slide 37: Canonical Interval Forest (CIF)
	Slide 38: ROCKET
	Slide 39: ROCKET vs. CNN
	Slide 40: Dilated Convolution Kernels
	Slide 41: ROCKET vs. CNN
	Slide 42: MINIROCKET
	Slide 43: COTE / HIVE-COTE / TS-CHIEF
	Slide 44: MR-SEQL
	Slide 45: MR-SEQL
	Slide 46: Ranking Multivariate TSC algorithms
	Slide 47: Ranking Multivariate TSC algorithms
	Slide 48: References

