DATA MINING 2 Support Vector Machine

Riccardo Guidotti

a.a. 2022/2023

Slides edited from Tan, Steinbach, Kumar, Introduction to Data Mining

• Find a linear hyperplane (decision boundary) that separates the data.

• One possible solution.

• Another possible solution.

• Other possible solutions.

- Let's focus on B_1 and B_2 .
- Which one is better?
- How do you define better?

- The best solution is the hyperplane that **maximizes** the **margin**.
- Thus, B_1 is better than B_2 .

 $w \cdot x + b = .3 * 1 + .2 * 2 + (-2) = -1.3$

Learning a Linear SVM

- Learning the SVM model is equivalent to determining *w* and *b.*
- How to find *w* and *b?*
- Objective is to *maximize the margin*.
- Which is equivalent to minimize
- Subject to to the following constraints
- This is a constrained optimization problem that can be solved using the *Lagrange* multiplier method.
- Introduce Lagrange multiplier λ (or α)

$$
Margin = \frac{2}{\|\vec{w}\|}
$$

$$
L(\vec{w}) = \frac{\|\vec{w}\|^2}{2}
$$

$$
y_i = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}
$$

$$
y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, \quad i = 1, 2, ..., N
$$

Constrained Optimization Problem

Minimize
$$
||\mathbf{w}|| = \langle \mathbf{w} \cdot \mathbf{w} \rangle
$$
 subject to $y_i(\langle \mathbf{x}_i \cdot \mathbf{w} \rangle + b) \ge 1$ for all *i*

Lagrangian method : maximize inf_w $L(\mathbf{w}, b, \alpha)$, where

$$
L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}|| - \sum_{i} \alpha_i [(\mathbf{y}_i(\mathbf{x}_i \cdot \mathbf{w}) + b) - 1]
$$

to 0, substituting back into L , and simplifying yields: both w and b must be 0. Taking the derivatives, setting them At the extremum, the partial derivative of L with respect

Maximize
$$
\sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j \langle \mathbf{x}_i \cdot \mathbf{x}_j \rangle
$$

subject to $\sum_{i} y_i \alpha_i = 0$ and $\alpha_i \ge 0$

A Geometrical Interpretation

Implies that only support vectors matter; other training examples are ignorable.

Example of Linear SVM

Linear SVM: Non-separable Case

- What if the problem is not linearly separable?
- We must allow for errors in our solution.

Slack Variables

- The inequality constraints must be relaxed to accommodate the nonlinearly separable data.
- This is done introducing slack variables ξ (xi) into the constrains of the optimization problem.
- ξ provides an estimate of the error of the decision boundary on the misclassified training examples.

Learning a Non-separable Line

- Objective is to minimize
- Subject to to the constraints
- where *C* and *k* are user-specified [parameters representing the](https://scikit-learn.org/stable/auto_examples/svm/plot_linearsvc_support_vectors.html) penalty of misclassifying the training instances
- Lagrangian multipliers are constrained to $0 \leq \lambda \leq C$.

⁼ ⁺ å⁼ $L(w)$ $(w) =$

 \lfloor í \int -1 i = 1 i 1 y_i

Non-linear SVM

• What if the decision boundary is not linear?

• How about… mapping data to a higher-dimensional space:

Non-linear SVMs: Feature Spaces

Idea: the original feature space can always be mapped to some higherdimensional feature space where the training set is separable.

Non-linear SVM

• The trick is to transform the data from its original space x into a new space $\Phi(x)$ (phi) so that a linear decision boundary can be used.

$$
x_1^2 - x_1 + x_2^2 - x_2 = -0.46.
$$

\n
$$
\Phi : (x_1, x_2) \longrightarrow (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, 1).
$$

\n
$$
w_4 x_1^2 + w_3 x_2^2 + w_2 \sqrt{2}x_1 + w_1 \sqrt{2}x_2 + w_0 = 0.
$$

• Decision boundary $\vec{w} \cdot \Phi(\vec{x}) + b = 0$

Learning a Nonlinear SVM

• Optimization problem

 $\min \frac{\|\mathbf{w}\|^2}{2}$ subject to $y_i(w \cdot \Phi(x_i) + b) \geq 1, \ \forall \{(x_i, y_i)\}\$

• Which leads to the same set of equations but involve $\Phi(x)$ instead of x . \boldsymbol{n}

$$
f(\mathbf{z}) = sign(\mathbf{w} \cdot \Phi(\mathbf{z}) + b) = sign(\sum_{i=1} \lambda_i y_i \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{z}) + b).
$$

Issues:

- What type of mapping function Φ should be used?
- How to do the computation in high dimensional space?
	- Most computations involve dot product $\Phi(x) \cdot \Phi(x)$
	- Curse of dimensionality?

The Kernel Trick

•
$$
\Phi(x) \cdot \Phi(x) = K(x_i, x_j)
$$

• $K(x_i, x_j)$ is a kernel function [\(expressed in terms of the](https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html) [coordinates in the original space\)](https://scikit-learn.org/stable/auto_examples/exercises/plot_iris_exercise.html)

 0.9

 0.8

 0.7

 0.6

 0.4

 0.3

 0.2

 0.1

 $0\frac{1}{0}$

Ċ

п

 x^2 0.5

• Examples:

$$
K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^d
$$

\n
$$
K(\mathbf{x}, \mathbf{y}) = \exp(-||\mathbf{x} - \mathbf{y}||^2/(2\sigma^2))
$$

\n
$$
K(\mathbf{x}, \mathbf{y}) = \tanh(\kappa \mathbf{x}^T \mathbf{y} + \theta)
$$

https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html#sphx-glr-auto-ex https://scikit-learn.org/stable/auto_examples/exercises/plot_iris_exercise.html#sphx-glr-au

Examples of Kernel Functions

- Polynomial kernel with degree *d* $K(x, y) = (x^Ty + 1)^d$
- Radial basis function kernel with width σ $K(x, y) = \exp(-||x - y||^2/(2\sigma^2))$
	- Closely related to radial basis function neural networks
	- The feature space is infinite-dimensional
- Sigmoid with parameter κ and θ $K(\mathbf{x}, \mathbf{y}) = \tanh(\kappa \mathbf{x}^T \mathbf{y} + \theta)$
	- It does not satisfy the Mercer condition on all κ and θ
- Choosing the Kernel Function is probably the most tricky part of using SVM.

The Kernel Trick

- The linear classifier relies on inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_j)$ = $\mathbf{x}_i^{\sf T} \mathbf{x}_j$
- If every datapoint is mapped into high-dimensional space via some transformation Φ: **x →** φ(**x**), the inner product becomes:

$$
K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{\Phi}(\mathbf{x}_i)^\mathsf{T} \mathbf{\Phi}(\mathbf{x}_j)
$$

- A *kernel function* is a function that is equivalent to an inner product in some feature space.
- Example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$, Need to show that K (\bf{x} _{*i*}, \bf{x} _j) = $\bf{\varphi}$ (\bf{x} _{*j*}) $\bf{\bar{\varphi}}$ (\bf{x} _{*j*}): $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$, = 1+ *xi1 2xj1 2 +* 2 *xi1xj1 xi2xj2+ xi2 2xj2 ²*+ 2*xi1xj1 +* 2*xi2xj2=* $=$ $[1 x_{i1}^2$ *V*2 $x_{i1}x_{i2}^2$ x_{i2}^2 *V*2 x_{i1} *V*2 x_{i2}]^T $[1 x_{i1}^2$ *V*2 $x_{i1}x_{i2}^2$ x_{i2}^2 *V*2 x_{i1} *V*2 x_{i2}] = $= \Phi(x_i)^\mathsf{T} \Phi(x_j)$, where $\Phi(x) = [1, x_1^2, v_2 x_1^2, x_2^2, v_2^2, v_2^2, v_1^2, v_2^2, v_1^2, v_2^2, v_1^2, v_2^2, v_1^2, v_2^2, v_1^2, v_2^2, v_1^2, v_1$

• Thus, a kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each **φ**(**x**) explicitly).

$$
f(\mathbf{z}) = sign(\mathbf{w} \cdot \Phi(\mathbf{z}) + b) = sign(\sum_{i=1}^{n} \lambda_i y_i \mathbf{K}(\mathbf{x}_i, \mathbf{z}) + b).
$$

The Kernel Trick

Advantages of using kernel:

- Don't have to know the mapping function Φ.
- Computing dot product $\Phi(x) \cdot \Phi(y)$ in the original space avoids curse of dimensionality.

Not all functions can be kernels

- Must make sure there is a corresponding Φ in some high-dimensional space.
- *Mercer's theorem* (see textbook) that ensures that the kernel functions can always be expressed as the dot product in some high dimensional space.

Mercer theorem: the function must be "positive-definite"

This implies that the *n* by *n* kernel matrix, in which the (i,j)-th entry is the $K(x_i, x_j)$, is always positive definite

This also means that optimization problem can be solved in polynomial time!

Constrained Optimization Problem with Kernel

Minimize $||\mathbf{w}|| = \langle \mathbf{w} \cdot \mathbf{w} \rangle$ subject to $y_i(\langle \mathbf{x}_i \cdot \mathbf{w} \rangle + b) \ge 1$ for all *i*

Lagrangian method : maximize inf_w $L(\mathbf{w}, b, \alpha)$, where

$$
L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}|| - \sum_{i} \alpha_i [(\mathbf{y}_i(\mathbf{x}_i \cdot \mathbf{w}) + b) - 1]
$$

to 0, substituting back into L , and simplifying yields: both w and b must be 0. Taking the derivatives, setting them At the extremum, the partial derivative of L with respect

Maximize
$$
\sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j \sqrt{K(\mathbf{x}_i, \mathbf{x}_j)}
$$

subject to $\sum_{i} y_i \alpha_i = 0$ and $\alpha_i \ge 0$

- Suppose we have 5 one-dimensional data points
	- $x_1 = 1$, $x_2 = 2$, $x_3 = 4$, $x_4 = 5$, $x_5 = 6$, with values 1, 2, 6 as class 1 and 4, 5 as class 2
	- \Rightarrow y₁=1, y₂=1, y₃=-1, y₄=-1, y₅=1
- We use the polynomial kernel of degree 2
	- $K(x,z) = (xz+1)^2$
	- C is set to 100
- We first find α_i ($i=1, ..., 5$) by

$$
\text{max. } \sum_{i=1}^{5} \alpha_i - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_i \alpha_j y_i y_j (x_i x_j + 1)^2
$$
\n
$$
\text{subject to } 100 \ge \alpha_i \ge 0, \sum_{i=1}^{5} \alpha_i y_i = 0
$$

- We get
	- α_1 =0, α_2 =2.5, α_3 =0, α_4 =7.333, α_5 =4.833
	- Note that the constraints are indeed satisfied
	- The support vectors are $\{x_2=2, x_4=5, x_5=6\}$
- The discriminant function is

$$
f(z)
$$

= 2.5(1)(2z + 1)² + 7.333(-1)(5z + 1)² + 4.833(1)(6z + 1)² + b
= 0.6667z² - 5.333z + b

 $\frac{y_5}{1}$ $K(z, x_5)$

 α 5

- *b* is recovered by solving $f(2)=1$ or by $f(5)=-1$ or by $f(6)=1$, as x_2 and x_5 lie on the line $\phi(\mathbf{w})^T\phi(\mathbf{x})+b=1$ and x_4 lies on the line
- All three give b=9 \longrightarrow $f(z) = 0.6667z^2 5.333z + 9$

Support Vector Machine (SVM)

- SVM represents the decision boundary using a subset of the training examples, known as the **support vectors**.
- The basic idea behind SVM lies within the concept of **maximal margin hyperplane.**

- Since the learning problem is formulated as a convex optimization problem, efficient algorithms are available to find the **global** minima of the objective function (many of the other methods use greedy approaches and find **locally** optimal solutions).
- Overfitting is addressed by maximizing the margin of the decision boundary, but the user still needs to provide the type of kernel function and cost function.
- Difficult to handle missing values.
- Robust to noise.
- High computational complexity for building the model.

References

- Support Vector Machine (SVM). Chapter 5.5. Introduction to Data Mining.
- http://www.kernel-machines.org/
- http://www.support-vector.net/
- An Introduction to Support Vector Machines. N. Cristianini and J. Shawe-Taylor.
- C.J.C. Burges: A tutorial on Support Vector Machines. Data Mining and Knowledge Discovery 2:121-167, 1998.

