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K-Means Extensions

Bisecting K-Means



Bisecting K-means

 Variant of K-Means that can produce a hierarchical clustering
* The number of clusters K must be specified.
 Start with a unique cluster containing all the points.

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat
3. Select the cluster with the highest SSE to the list of clusters
for : = 1 to number_of _iterations do
Bisect the selected cluster using basic 2-Means
end for

Add the two clusters from the bisection to the list of clusters.

until Until the list of clusters contains K clusters




Bisecting K-means Limitations

* The algorithm can be also exhaustive and terminating at a singleton
clusters if K is not specified.

* Terminating at singleton clusters
* |s time consuming
 Singleton clusters are meaningless (i.e., over-splitting)
* Intermediate clusters are more likely to correspond to real classes

* Bisecting K-Means do not use any criterion for stopping bisections
before singleton clusters are reached.



K-Means Extensions

X-Means



Bayesian Information Criterion (BIC)

* A strategy to stop the Bisecting algorithm
when meaningful clusters are reached to
avoid over-splitting.
— Parent cluster:

* The BIC can be adopted as splitting

BIC(K=1)=1980
criterion of a cluster in order to decide \
whether a cluster should split or no. N
* BIC measures the improvement of the @ @ — Imgtg‘r—‘g_“'““g
cluster structure between a cluster and its BIC(K=2)=2245

two children clusters.

* |f the BIC of the parent is less than BIC of
the children than we accept the bisection.



X-Means

For k in a given range [r, ... J:

1.
2.

Improve Params: run K-Means with with the current k.

Improve Structure: recursively split each cluster in two (Bisecting 2-

Means) and use local BIC to decide to keep the split. Stop if the
current structure does not respect local BIC or the number of

clusters is higher than r,,,.

Store the actual configuration with a global BIC calculated on the
whole configuration

If k> r,, stop and return the best model w.r.t. the global BIC.



X-Means

1. K-means with k=3

2. Split each centroid in 2 children
moved a distance proportional to
the region size in opposite
direction (random)

3. Run 2-meansin
each region locally

4. Compare BIC of parent
and children

4. Only centroids with
higher BIC survives
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BIC Formula in X-Means

 The BIC score of a data collection is defined as (Kass and Wasserman, 1995):

A P .
BIC(M _)=l.(D)—_JlogR
JoJ 2

A

. l]. (D) is the log-likelihood of the dataset D

* p;is a function of the number of independent parameters: centroids coordinates,
variance estimation.

* Ris the number of points of a cluster, M is the number of dimensions

* Approximate the probability that the clustering in M, is describing the real
clusters in the data



BIC Formula in X-Means

* Adjusted Log-likelihood of the model.

* The likelihood that the data is “explained by” the clusters according to the
spherical-Gaussian assumption of K-Means

n P .
BIC(M .)=l.(D)—_JlogR
JooJ 2

* Focusing on the set D, of points which belong to centroid n

- ity R, M R, — K
{(Dn) = ——log(2m) — — 5

+R,log R, — R, log R

log(6%) —

* It estimates how closely to the centroid are the points of the cluster.



K-Means Origins
Expectation Maximization



Model-based Clustering (probabilistic)

* In order to understand our data, we will assume that there is a
generative process (a model) that creates/describes the data, and we
will try to find the model that best fits the data.

* Models of different complexity can be defined, but we will assume that our
model is a distribution from which data points are sampled

 Example: the data is the height of all people in Greece

* In most cases, a single distribution is not good enough to describe all
data points: different parts of the data follow a different distribution
 Example: the data is the height of all people in Greece and China
* We need a mixture model
» Different distributions correspond to different clusters in the data.



Expectation Maximization Algorithm

* Initialize the values of the parameters in ® to some random values

* Repeat until convergence
* E-Step: Given the parameters 0 estimate the membership probabilities P(Gj|xi)

* M-Step: Given the probabilities P(G-|xi), calculate the parameter values 0 that
(in expectation) maximize the data ﬁkelihood

 Examples
e E-Step: Assignment of points to clusters
* K-Means: hard assignment, EM: soft assignment

* M-Step: Parameters estimation
* K-Means: Computation of centroids, EM: Computation of the new model parameters



EM in K-Means centroids

* Initialize the values of the parameters in ® to some random values
(randomly select the centroids)

* Repeat until convergence

e E-Step: Given the parameters ® (given the centroids) estimate the

membership probabilities P(Gj|xi) (assign points to clusters based on
distances with the centroids)

* M-Step: Given the probabilities P(Gj|xi) (given the membership of points to
clusters, i.e., 100% probability of belonging to a cluster) calculate the
parameter values ® that (in expectation) maximize the data likelihood
(calculate the new centroids as mean values, i.e., those that minimize the
distances with the other points in the cluster)



Expectation Maximization Algorithm

Algorithm 9.2 EM algorithm.
1: Select an initial set of model parameters.
(As with K-means, this can be done randomly or in a variety of ways.)
2: repeat
Expectation Step For each object, calculate the probability
that each object belongs to each distribution, i.e., calculate
prob(distribution j|x;, ©).

4.  Maximization Step Given the probabilities from the expectation step,
find the new estimates of the parameters that maximize the expected
likelihood.

. until The parameters do not change.
(Alternatively, stop if the change in the parameters is below a specified

threshold.)

Ut




K-Means Brother

Mixture Gaussian Model



Gaussian Distribution

 Example: the data is the height of all people in Greece

* Experience has shown that this data follows a
Gaussian (Normal) distribution

_(x=p)=
2072

P(x) = \/ﬁae

+ 1 = mean, o = standard deviation



Mixture Gaussian Model

e What is a model?

* A Gaussian distribution is defined by the mean 1 and the standard deviation o
* We define our model as the pair of parameters 6 = (u, o)

* More generally, a model is defined as a vector of parameters 6

* We want to find the normal distribution N (u, o) that best fits our data
* Find the best values for ;tand o
* But what does “best fit” mean?



Maximum Likelihood Estimation (MLE)

* Suppose that we have a vector X = {x4, ..., x,,} of values
* We want to fit a Gaussian model N (u, o) to the data
* Probability of observing a point x;

_(x—w)?
e 20%

P(x;) = =

* Probability of observing all points (we assume independence)

n n
1 _(x=w?
Pon = | [Pa =] [ =¢ 2
: . 27O
=1 =1

* We want to find the parameters 6 = (u, o) that maximizes the
probability P(X|0)




Maximum Likelihood Estimation (MLE)

* The probability P(X|6) as a function of @ is the Likelihood function

6) 1 Gt
L — 1_[ e 20
= \V2mo

* It is usually easier to work with the Log-Likelihood function

G —w? 1
LL(B) = — lza?fl —inloan—nloga

i=1

* Thus, the Maximum Likelihood Estimation for the Gaussian Model
consists in flndlng the parameters 1, o that maximize LL(0)

3|'—‘

X = by Z(x -w? = of

Sample Mean Sample Variance

U=
i=1



Maximum Likelihood Estimation (MLE)

* Note: these are also the most likely parameters given the data.

P(X|6)P(6)

P(O|X) = P(X)

* If we have no prior information about @, or X, then maximizing
P(6|X) is the same as maximizing P(X|0).



Mixture of Gaussians

e Suppose that you have the heights of people from Greece and China
and the distribution looks like the figure below (dramatization)
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture of Gaussians

* In this case the data is the result of the mixture of two Gaussians
* One for Greek people, and one for Chinese people

* ldentifying for each value which Gaussian is most likely to have generated it
will give us a clustering.
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(a) Probability density function for (b) 20,000 points generated from the
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Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture Model

* Avalue x; is generated according to the
following process:

* First select the nationality

* With probability 7 ;select Greek, with
probability 7~ select China (7, + 7, = 1)

* Given the nationality, generate the point
from the corresponding Gaussian
* P(x;]10;)~N(ug,o¢) if Greece
* P(x;]10-)~N(uc,oc) if China



Assign a point to a Describe a cluster.
cluster. In K-Means they In K-Means they

. are the membership: are the centroids.
M |XtU e M Od EI hard assignment.

 Our model has the following parameters ©® = (g, e, Ug) Uy O, Oc)

Mixture probabilities Distribution Parameters

* For value x;, we have:

P(x;|®) = n-P(x;|0;) + m-P(x;|6.)

* Forall values X = {x4, ..., x,;}

pixie) = | [Pexie)
|

 We want to estimate the parameters that maximize the Likelihood



Mixture Model

* Once we have the parameters 0 = (7., ., e, O, Ue, Oc),
we can estimate the membership probabilities
P(G|x;) and P(C|x;) for each point x;:

* This is the probability that point x; belongs to the Greek or
the Chinese population (cluster)

P(x;|G)P(G)

P(x;|G)P(G) + P(x;|C)P(C)
P(x;|G)mg

-~ P(x;|G)mg + P(x;|C)me

P(Glx;) =




Mixture of Gaussians as EM

* Initialize the values of the parameters in 6 to some random values

* Repeat until convergence
e E-Step: Given the parameters 0 estimate the membership probabilities

P(Glxl) and P(Clxl)
 M-Step: Calculate the parameter values ® that (in expectation) maximize the

data likelihood.

n
1 T :
g = —Z P(G|xl) = _Z P(Clx) Fl'actlor.l Of.
n& n & : population in G,C
n
P(Clx;) = .
Ue = Z — n; X; ug = Z Pn(f I:) x; MLE Estimates
{=1 e G if ’s were fixed
n




DBSCAN Evolution

OPTICS



When DBSCAN Works Well

LR
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Original Points Clusters

e Resistant to Noise

e Can handle clusters of different shapes and sizes
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When DBSCAN Does NOT Work Well

Original Points

e Varying densities

e High-dimensional data g

(MinPts=4, Eps=9.92)



OPTICS

* OPTICS: Ordering Points To Identify the Clustering Structure
* Produces a special order of the dataset wrt its density-based

C
T
C

ustering structure.
nis cluster-ordering contains info equivalent to the density-based

usterings corresponding to a broad range of parameter settings.

* Good for both automatic and interactive cluster analysis, including
finding intrinsic clustering structure.

* Can be represented graphically or using visualization techniques.



OPTICS: Extension from DBSCAN

* OPTICS requires two parameters:
Eps = 6mm

* £, which describes the maximum distance —
. . MinPts =5
(radius) to consider,

* MinPts, describing the number of points
required to form a cluster

e Core point. A point p is a core point if at least m
MinPts points are found within its €-

neighborhood.

Core_Distance(p) = 3mm
|

e Core Distance. It is the minimum value of
radius required to classify a given point as a
core point. If the given point is not a Core
point, then it’s Core Distance is undefined.



OPTICS: Extension from DBSCAN

* Reachability Distance. The reachability Eps = 6mm
distance between a point p and g is the MinPts = 5
maximum of the Core Distance of p and the Core_Distance(p) = 3mm
Distance between p and q.

* The Reachability Distance is not defined if g Reachability_Distance(q,p) = 7mm
is not a Core point. Below is the example of Reachability_Distance(r,p) = 3mm
the Reachability Distance. 0

* In other words, if g is within the core

distance of p then use the core distance,
otherwise the real distance.



OPTICS Pseudo-Code

* For each point p in the dataset
* |nitialize the reachability distance of p as undefined

* For each unprocessed point p in the dataset
* Get the neighbors N of p
* Mark p as processed and output to the ordered list
* If pis a core point
* |nitialize a priority queue Q to get the closest point to p in terms of reachability
e Call the function update(N, p, Q)
* For each pointgin Q
* Get the neighbors N’ of g
 Mark q as processed and output to the ordered list
 If gis a core point Call the function update(N’, g, Q)



OPTICS Pseudo-Code

* Function update(N, p, Q)
* Calculate the core distance for p
e For each neighbor g in N (update the reachability)
* If g is not processed
* new_rd = reachability distance between p and g
* IfgisnotinQ
* Q.insert(q, new _rd)
* Else
* Ifnew_rd<q.rd
* Q.move_up(q, new_rd)



OPTICS Output

* OPTICS outputs the points in a particular ordering, annotated with
their smallest reachability distance.

* A reachability-plot (a special kind of dendrogram), the hierarchical
structure of the clusters can be obtained easily.

* x-axis: the ordering of the points as processed by OPTICS
* y-axis: the reachability distance

* Points belonging to a cluster have a low reachability distance to their
nearest neighbor, the clusters show up as valleys in the reachability
plot. The deeper the valley, the denser the cluster.




OPTICS Output

Bim. 2

Dim. 2

1 Dim 1

03

k)

ns

~
o
y—
w
> o r- © A a - ™~ - c
o = < = o < < o o
-
g
[+
- . -
. - . L .
- .-9 g -oho. .
.
N YRS SR R 2
. - -
. - ..n-u&. d?-d. Jee Sy
. . r-\ d'l- . "
- * - q F -~ -
. .y . v.o-' .. . @
o : '--% lﬁc % '
. T ..-c . *
. . "t
. e
- . . g e
..
- . . w
e <
‘s w
. -
X Ma
. .' -
A -.or * 1=
. Tlew
.
- ~
<
.
.
~
T
-
. . o
.
.
2 } } [ | o
n'. - "~ I.J - - " -~ ~
-] -3 o o -] L] o o o

ol
1

0.25
0.2

0.15
0.1

0.05

0.25

0.2
0.15

0.1
0.05




OPTICS Output

* Clusters are extracted
1. by selecting a range on the x-axis after visual inspection,
2. by selecting a threshold on the y-axis

3. by different algorithms that try to detect the valleys by steepness, knee
detection, or local maxima. Clustering obtained this way usually are
hierarchical, and cannot be achieved by a single DBSCAN run.

reachability distance
reachability distance

2 b

cluster ordering cluster ordering

https://scikit-learn.org/stable/auto examples/cluster/plot optics.html#sphx-glr-auto-examples-cluster-plot-optics-py



https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html
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OPTICS: The Radius Parameter

* Both core-distance and reachability-distance are undefined if no
sufficiently dense cluster (w.r.t. €) is available.

* Given a sufficiently large €, this never happens, but then every &-
neighborhood query returns the entire database.

* Hence, the € parameter is reguired to cut off the density of clusters that
are no longer interesting, and to speed up the algorithm.

 The parameter € is, strictly speaking, not necessary.
* |t can simply be set to the maximum possible value.

 When a spatial index is available, however, it does play a practical role with
regards to complexity.

* OPTICS abstracts from DBSCAN by removing this parameter, at least to the
extent of only having to give the maximum value.
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X-means: Extending K-means with
Efficient Estimation of the Number of Clusters

Dan Pelleg

Andrew Moore
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Abstract

Despite its popularity for general clustering,
K-means suffers three major shorteming
i scaks poorly computationally, the mum.
ber of clusters K has to be suppliad by the
user, and the search is prone to lacal min-
ima. We propose solutions for the first two
prablems, and a partial remedy for the third.
Building on prior work for algorithmic accd-
cation that is not based an approximation,
we introduce a new algorithm that efficiently,
searches the space of cluster locations and
number of clusters to optimize the Bayesian
Information Criterion (BIC) or the Akaike
Information Criterion (AIC) measure, The
imnovations indude two new ways of exploit-
ing cached suficient statistics and a new very
efficient test that in one K-means sweep se-

DPELLEGHICS.CMU.EDY
AW MECS.CMU. EDU

lutions for these problems. Speed is greatly improved
by embedding the dataset in a multiresolution kd4ree
and storing sufficient statistics at its nodes, A carcful
ysis of the centroid locations allows for geomet-
“proofs” about the Voronoi boundaries, and (un-
like all of (Deng & Moore, 1995; Zhang et al,, 1995:
Moare, 1999)) there is absolutely no_approximation
anywhere in the computation, An additional gmmet-
ric computation, blacklisting, maintains a list of just
those centroids that need to be considered for a given
region (Pelleg & Moare, 2000). Blacklisting s not only
extremy fast but also scales very well with the num-
ber of centroids, allowing tractable 10, 000-means algo-
rithms, This fast algorithm is used as a building -block
in X-means: a new algorithm that quickly etimates
t goes inta action after cach run of K-means, mak-
ing local decisions about which subset of the current
centraids should split themselves in order to better fit
the data. The

lects the most peomising subset of dasses for
rofinement. This gives rise to a fast, statis-
tically founded algorithm that outputs both
the number of dasses and their parameters.
Experiments show this technique reveals the
true number of classes in the underlying dis-
tribution, and that it is much faster than re-
peatedly using accelerated K-means for dit-

th
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ferent values of w

t

te

1. Introduction be
i

K.means (Duda & Hart, 1973; Bishop, 1995) has long ~ w!
been the workhorse for metric data. Its attractive- m

ness lies in its simplicity, and in its locabminimum
convergence properties. 1t has, however, three main
shartcomings. One, it is slow and scales poorly with
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ABSTRACT

Mining a larg human

‘making sense of Sadiidual data i the ke enabler of a new wave
of personalized knowledge-based services. In this paper we focus.
on the problem of clustering individual transactional data for a
Iarge mass of users. Transactional data is a very pervasive kind of
information that is collected by several services, often involving
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from other users. This requires ths
included in any data mining methc
the necessity to automatically cap!
vidual behaviors. Due to the poten!
(eg. users in nowadays massive sy
generally unfeasible to determine in
parameter configuration for each of

di

huge pools of users. We propase txmeans, a free clus-
tering algorithm able to efficiently partitioning data
in a completely y. Txmeans is the case

where clustering must be applied on a massive number of different
datasets, for instance when a large set of users need to be analyzed
individually and each of hem has generated  lon hisory of trans-
actions.

shows ! f the

of different personal datasets, and suggests that txmeans outper-
forms existing methods in terms of quality and efficiency. Finally,
we present a personal cart assistant application based on txmeans.

1 INTRODUCTION
‘The most disruptive effect of our always-connected society is data,

In this paper we focus on the p
tional clustering for a large numbe
collection of transactions, transacti
‘covering groups of homogeneous t
common items (30]. In the state ¢
transactional clustering require eitt
that is not automatic, or an extren
that does not scale to large user b
repeatedly applying the existing pr
lions of different datasets - which i
large population of users - is simp
problem. i.e. the separate individua

are becoming observable, measurable, quantifiable and, predictable.

year. An avalanche of information that, for the most part, consists
of transactions (or baskets). Le.,a special kind of categorical data
in the form of sets of event data, such as the items purchased in
a shopping cart, the web pages visited in a browsing session, the
songs listened in a time period, the clinical events in a patient’s
history. Such kind of data may be key enablers of a new wave of
knowledge-based services, and of new scientific discoveries.
Several application contexts involve the analysis of a large num-
ber of datasets, each one characterized by different properties. For
instance, this is the case of individual transactional data — retail
sales, web sessions, credit card transactions, etc. - where each
user produces historical data that need to be analyzed separately

datasets, as mass clusi
The pmblm to design parameter
addressed in the context of non

|.u xmeans [22], which are perfe
of the clustering problems. Unfort
applicable to transactional data. To
only existing parameter-free transac
5. 7). Nevertheless, they are based
generally not efficient and overestim
In addition, they do not provide repr
items that characterize the transact
In this paper we propose txmean:
ing method providing a viable soluti
a massive number of different dat:
strategy similar to xmeans [22], bul
finding clusters in the specific cont

personal or

estimates the num

=Y
. or republih,

luc\nu the clusters, it provides th
each cluster, which summarizes the |
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a unique cluster, and then iterativ
sub-clusters. Txmeans calculates th
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ABSTRACT
This pager sudics the proem 01 categorical data clustering,
especially transactional characterized by  high

dmmnm.hly and large volume. sm from & heuristic method
ofncreasing th height do-width ato of the chstce histogrm, we
develop a novel algorithm — CLOPE, which is very fast and
scalable, while being quite effective. We demonstrate the
performance of our algorithm on two real world datasets, and
compare CLOPE with the state-of-art algorithms.
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data mining, clustering, categorical data, scalability

1. INTRODUCTION

Clustering is an important data mining technique that groups
together similar data records (12, 14, 4, 1). Recenty, more
mmhnbempﬂm:lununuuﬁ:mnldm[m x 65,7,
13], where records are made up of ibutes.

The Lurgeem (13 agoitin grovs g caegorical dabases

on top of pair-wise similarities. This global approach makes
Largeltem very suitable for clustering large categorical databases.

In this paper, we propose  novel global criterion function that
tries to increase the intra-cluster overlapping of transaction items
by increasing the height-to-width ratio of the cluster histogram.
Moreover, we generalize the idea by introducing a parameter to
control the tightness of the cluster. n.vru-m ke of clusters
anbo btined by vayng s prsetes. B show that
our aigoithm runs mach fste han Largelem, with clusering
quality quite close to m of the ROCK algorithm [7].

To gtin some busc des tebind ur igockt, s ke o sanl
market basket database transactions {(apple, banana),
oppler b, sk, pt, e ), Gk ez ik, 55

rmmlauunmkammmmwa
can be thought of a special type of categorical data having boolean
value, with all the possible items as attributes. Fast and accurate
clustering of transactional data has many potcatial applications in
retai industry, e-commerce intelligenee, etc

However, fast and effective clustering of transactional databases is
extremely difficult because of the high dimensionality, sparsity,
and huge volumes often characterizing these databases. Distance-
based like k-meuns (1] u1d CLARANS [12) ure
lfcive o low dimessiogal merc

on high dimensional categori u..

unsatisfactory (7). R-mhx‘l clustering et e ROCK 01 (7
have been demonstrated 10 be quite effective in categorical data
clustering, but they are naturally inefficient in processing large
databases.

Pﬂm-ummmhd‘unluhndeepﬂn(lll or part of this work for
personal ar

ot made or disuibuied for profit or commercial advantage and that
copies bear this notice and the fall citation on the fint page. To copy
otherwise, or republish, 1o post on servers or 10 redistribute o lsts,
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Jishy}. For Y,
ab, etc. For this small database, we want to mmme w-a
v clstring (1) {ab, abe,acd) (de dof}) nd @) ((ab, abe),
{acd, de, def}}. For each cluster, we count the cccurrence of every
dinine e, and ten obiain he heght (1) and wadth (I of he
cluster, For example, cluster (ab, ab, acd) has the occurrences of
b, 2, 1 1, with K20 and o4, Figure | shows these
ally as histograms, with items sorted in reverse
il roes occurrences, only for the sake of easier visual
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Figure 1. Histograms of the two clusterings.

‘We judge the qualities of these two
analyzing the heights and widths of the clusters. Leaving out the
two identical histograms for cluster (de, def) and cluster {ab, abe},
the other two histograms are of different quality. The histogram
for cluster {ab, abe, acd) has only 4 distinct items for § blocks
(H=2.0, HiW=0.5), but the one for cluster {acd, de, def} has 5, for



