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K-Means Extensions

Bisecting K-Means



Bisecting K-means

• Variant of K-Means that can produce a hierarchical clustering
• The number of clusters K must be specified.
• Start with a unique cluster containing all the points.

2-Means

Select the cluster with the highest SSE to the list of clusters

Add the two clusters from the bisection to the list of clusters.



Bisecting K-means Limitations

• The algorithm can be also exhaustive and terminating at a singleton 
clusters if K is not specified.
• Terminating at singleton clusters 
• Is time consuming
• Singleton clusters are meaningless (i.e., over-splitting)
• Intermediate clusters are more likely to correspond to real classes

• Bisecting K-Means do not use any criterion for stopping bisections 
before singleton clusters are reached.



K-Means Extensions 

X-Means



Bayesian Information Criterion (BIC) 

• A strategy to stop the Bisecting algorithm 
when meaningful clusters are reached to 
avoid over-splitting.
• The BIC can be adopted as splitting 

criterion of a cluster in order to decide 
whether a cluster should split or no.
• BIC measures the improvement of the 

cluster structure between a cluster and its 
two children clusters.
• If the BIC of the parent is less than BIC of 

the children than we accept the bisection.

Two resulting
clusters:
BIC(K=2)=2245

1C Parent cluster:
BIC(K=1)=1980 
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X-Means

For k in a given range [r1,rmax]: 
1. Improve Params: run K-Means with with the current k.
2. Improve Structure: recursively split each cluster in two (Bisecting 2-

Means) and use local BIC to decide to keep the split. Stop if the 
current structure does not respect local BIC or the number of 
clusters is higher than rmax.

3. Store the actual configuration with a global BIC calculated on the 
whole configuration

4. If k > rmax stop and return the best model w.r.t. the global BIC.



X-Means
1. K-means with k=3

2. Split each centroid in 2 children 
moved a distance proportional to 
the region size in opposite 
direction (random) 

3. Run 2-means in 
each region locally 4. Compare BIC of parent 

and children
4. Only centroids with 
higher BIC survives



BIC Formula in X-Means

• The  BIC score of a data collection is defined as (Kass and Wasserman, 1995):

• is the log-likelihood of the dataset D

• pj is a function of the number of independent parameters: centroids coordinates, 
variance estimation. 

• R is the number of points of a cluster, M is the number of dimensions

• Approximate the probability that the clustering in Mj is describing the real 
clusters in the data
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BIC Formula in X-Means

• Adjusted Log-likelihood of the model.
• The likelihood that the data is “explained by” the clusters according to the 

spherical-Gaussian assumption of K-Means

• Focusing on the set Dn of points which belong to centroid n

• It estimates how closely to the centroid are the points of the cluster.
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K-Means Origins 

Expectation Maximization



Model-based Clustering (probabilistic)

• In order to understand our data, we will assume that there is a 
generative process (a model) that creates/describes the data, and we 
will try to find the model that best fits the data.
• Models of different complexity can be defined, but we will assume that our 

model is a distribution from which data points are sampled
• Example: the data is the height of all people in Greece

• In most cases, a single distribution is not good enough to describe all 
data points: different parts of the data follow a different distribution
• Example: the data is the height of all people in Greece and China
• We need a mixture model
• Different distributions correspond to different clusters in the data.



Expectation Maximization Algorithm

• Initialize the values of the parameters in Θ to some random values
• Repeat until convergence
• E-Step: Given the parameters Θ estimate the membership probabilities P 𝐺! 𝑥"
• M-Step: Given the probabilities P 𝐺! 𝑥" , calculate the parameter values Θ that 

(in expectation) maximize the data likelihood

• Examples
• E-Step: Assignment of points to clusters 

• K-Means: hard assignment, EM: soft assignment
• M-Step: Parameters estimation

• K-Means: Computation of centroids, EM: Computation of the new model parameters



EM in K-Means

• Initialize the values of the parameters in Θ to some random values 
(randomly select the centroids) 
• Repeat until convergence
• E-Step: Given the parameters Θ (given the centroids) estimate the 

membership probabilities P 𝐺! 𝑥" (assign points to clusters based on 
distances with the centroids)
• M-Step: Given the probabilities P 𝐺! 𝑥" (given the membership of points to 

clusters, i.e., 100% probability of belonging to a cluster) calculate the 
parameter values Θ that (in expectation) maximize the data likelihood 
(calculate the new centroids as mean values, i.e., those that minimize the 
distances with the other points in the cluster)

centroids



Expectation Maximization Algorithm



K-Means Brother 

Mixture Gaussian Model



Gaussian Distribution

• Example: the data is the height of all people in Greece
• Experience has shown that this data follows a 

Gaussian (Normal) distribution



Mixture Gaussian Model

• What is a model?
• A Gaussian distribution is defined by the mean 𝜇 and the standard deviation 𝜎
• We define our model as the pair of parameters 𝜃 = (𝜇, 𝜎)

• More generally, a model is defined as a vector of parameters 𝜃

• We want to find the normal distribution 𝑁(𝜇, 𝜎) that best fits our data
• Find the best values for 𝜇 and 𝜎
• But what does “best fit” mean?



Maximum Likelihood Estimation (MLE)
• Suppose that we have a vector 𝑋 = {𝑥!, … , 𝑥"} of values
• We want to fit a Gaussian model 𝑁(𝜇, 𝜎) to the data 
• Probability of observing a point 𝑥#

• Probability of observing all points (we assume independence)

• We want to find the parameters 𝜃 = (𝜇, 𝜎) that maximizes the 
probability 𝑃 𝑋 𝜃



Maximum Likelihood Estimation (MLE)

• The probability 𝑃 𝑋 𝜃 as a function of 𝜃 is the Likelihood function

• It is usually easier to work with the Log-Likelihood function

• Thus, the Maximum Likelihood Estimation for the Gaussian Model 
consists in finding the parameters 𝜇, 𝜎 that maximize 𝐿𝐿(𝜃)



Maximum Likelihood Estimation (MLE)

• Note: these are also the most likely parameters given the data.

• If we have no prior information about 𝜃, or 𝑋, then maximizing 
𝑃 𝜃 𝑋 is the same as maximizing 𝑃 𝑋 𝜃 .  



Mixture of Gaussians

• Suppose that you have the heights of people from Greece and China 
and the distribution looks like the figure below (dramatization)



Mixture of Gaussians

• In this case the data is the result of the mixture of two Gaussians 
• One for Greek people, and one for Chinese people
• Identifying for each value which Gaussian is most likely to have generated it 

will give us a clustering.



Mixture Model

• A value 𝑥# is generated according to the 
following process:
• First select the nationality
• With probability 𝜋#select Greek, with 

probability 𝜋$ select China (𝜋# + 𝜋$ = 1)

• Given the nationality, generate the point 
from the corresponding Gaussian
• 𝑃 𝑥" 𝜃# ~𝑁(𝜇# , 𝜎#) if Greece
• 𝑃 𝑥" 𝜃$ ~𝑁(𝜇$ , 𝜎$) if China



Mixture Model

• Our model has the following parameters

• For value 𝑥!, we have:

• For all values 𝑋 = {𝑥%, … , 𝑥&}

• We want to estimate the parameters that maximize the Likelihood

Assign a point to a 
cluster. In K-Means they 
are the membership: 
hard assignment.

Describe a cluster. 
In K-Means they 
are the centroids.



Mixture Model

• Once we have the parameters 𝜃 = (𝜋$ , 𝜋% , 𝜇$ , 𝜎$ , 𝜇% , 𝜎%), 
we can estimate the membership probabilities 
𝑃(𝐺|𝑥#) and 𝑃(𝐶|𝑥#) for each point 𝑥#:

• This is the probability that point 𝑥# belongs to the Greek or 
the Chinese population (cluster)



Mixture of Gaussians as EM

• Initialize the values of the parameters in 𝜃 to some random values
• Repeat until convergence
• E-Step: Given the parameters Θ estimate the membership probabilities 
P 𝐺 𝑥" and P 𝐶 𝑥" .
• M-Step: Calculate the parameter values Θ that (in expectation) maximize the 

data likelihood.



DBSCAN Evolution

OPTICS



When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes



When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data



OPTICS

• OPTICS: Ordering Points To Identify the Clustering Structure
• Produces a special order of the dataset wrt its density-based 

clustering structure.  
• This cluster-ordering contains info equivalent to the density-based 

clusterings corresponding to a broad range of parameter settings.
• Good for both automatic and interactive cluster analysis, including 

finding intrinsic clustering structure.
• Can be represented graphically or using visualization techniques.



OPTICS: Extension from DBSCAN

• OPTICS requires two parameters: 
• ε, which describes the maximum distance 

(radius) to consider,
• MinPts, describing the number of points 

required to form a cluster
• Core point. A point p is a core point if at least

MinPts points are found within its ε-
neighborhood.

• Core Distance. It is the minimum value of 
radius required to classify a given point as a 
core point. If the given point is not a Core 
point, then it’s Core Distance is undefined. 



OPTICS: Extension from DBSCAN

• Reachability Distance. The reachability 
distance between a point p and q is the 
maximum of the Core Distance of p and the 
Distance between p and q. 

• The Reachability Distance is not defined if q
is not a Core point. Below is the example of 
the Reachability Distance.

• In other words, if q is within the core 
distance of p then use the core distance, 
otherwise the real distance.



OPTICS Pseudo-Code

• For each point p in the dataset
• Initialize the reachability distance of p as undefined

• For each unprocessed point p in the dataset
• Get the neighbors N of p
• Mark p as processed and output to the ordered list
• If p is a core point

• Initialize a priority queue Q to get the closest point to p in terms of reachability
• Call the function update(N, p, Q)
• For each point q in Q

• Get the neighbors N’ of q
• Mark q as processed and output to the ordered list

• If q is a core point Call the function update(N’, q, Q)



OPTICS Pseudo-Code

• Function update(N, p, Q)
• Calculate the core distance for p
• For each neighbor q in N (update the reachability)
• If q is not processed
• new_rd = reachability distance between p and q

• If q is not in Q
• Q.insert(q, new_rd)

• Else
• If new_rd < q.rd
• Q.move_up(q, new_rd)



OPTICS Output

• OPTICS outputs the points in a particular ordering, annotated with 
their smallest reachability distance.
• A reachability-plot (a special kind of dendrogram), the hierarchical 

structure of the clusters can be obtained easily. 
• x-axis: the ordering of the points as processed by OPTICS 
• y-axis: the reachability distance 
• Points belonging to a cluster have a low reachability distance to their 

nearest neighbor, the clusters show up as valleys in the reachability 
plot. The deeper the valley, the denser the cluster.



OPTICS Output



OPTICS Output

• Clusters are extracted 
1. by selecting a range on the x-axis after visual inspection, 
2. by selecting a threshold on the y-axis
3. by different algorithms that try to detect the valleys by steepness, knee 

detection, or local maxima. Clustering obtained this way usually are 
hierarchical, and cannot be achieved by a single DBSCAN run.

https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py

https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html
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OPTICS: The Radius Parameter

• Both core-distance and reachability-distance are undefined if no 
sufficiently dense cluster (w.r.t. ε) is available. 
• Given a sufficiently large ε, this never happens, but then every ε-

neighborhood query returns the entire database. 
• Hence, the ε parameter is required to cut off the density of clusters that 

are no longer interesting, and to speed up the algorithm.
• The parameter ε is, strictly speaking, not necessary. 
• It can simply be set to the maximum possible value. 
• When a spatial index is available, however, it does play a practical role with 

regards to complexity. 
• OPTICS abstracts from DBSCAN by removing this parameter, at least to the 

extent of only having to give the maximum value.
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