
DATA MINING 2
(Deep) Neural Networks
Riccardo Guidotti

a.a. 2022/2023

Slides edited from a set of slides titled “Introduction to
Machine Learning and Neural Networks” by Davide Bacciu

Nonlinearly Separable Data

• Since f(w,x) is a linear
combination of input variables,
decision boundary is linear.
• For nonlinearly separable

problems, the perceptron fails
because no linear hyperplane can
separate the data perfectly.
• An example of nonlinearly

separable data is the XOR
function.

x1 x2 y
0 0 -1
1 0 1
0 1 1
1 1 -1

21 xxy Å=
XOR Data

Why Now?

(Big) Data

GPU

Theory

A quick look on Deep Learning

AI

Machine
Learning

Repres.
Learning

Deep
Learning

Deep learning

Representation learning methods that
• allow a machine to be fed with raw data and
• to automatically discover the representations

needed for detection or classification.

Repres.
Learning

Deep
Learning

• Age
• Weight
• Income
• Children
• Likes sport
• Likes reading
• Education
• …

Raw representation Higher-level representation

• Young parent
• Fit sportsman
• High-educated reader
• Rich obese
• …

35
65

23 k€
2

0.3
0.6

high
…

0.9
0.1
0.8
0.0
…

Multiple Levels Of Abstraction

Multilayer Neural Network

• Hidden Layers: intermediary layers between
input and output layers.
• More general activation functions (sigmoid,

linear, hyperbolic tangent, etc.).

• Multi-layer neural network can solve any type
of classification task involving nonlinear
decision surfaces.
• Perceptron is single layer.
• We can think to each hidden node as a

perceptron that tries to construct one
hyperplane, while the output node combines
the results to return the decision boundary.

n1

n2

n3

n4

n5

x1

x2

Input
Layer

Hidden
Layer

Output
Layer

y

w31

w32

w41

w42

w53

w54

XOR Data

General Structure of ANN

Activation
function

g(Si)
Si Oi

I1

I2

I3

wi1

wi2

wi3

Oi

Neuron iInput Output

threshold, t

Input
Layer

Hidden
Layer

Output
Layer

x1 x2 x3 x4 x5

y

Training ANN means learning
the weights of the neurons

Artificial Neural Networks (ANN)

• Various types of neural network topology
• single-layered network (perceptron) versus

multi-layered network
• Feed-forward versus recurrent network

• Various types of
activation functions (f)

)(å=
i

ii XwfY

Deep Neural Networks

…

…

Output

Input

Hidden Layer 1

Deep Neural Networks

…

…Input

Hidden Layer 1

…

Output

Hidden Layer 2

Deep Neural Networks

…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3

Actually deep
learning is way
more than having
neural networks
with a lot of layers

Backpropagation through
many layers has numerical
problems that makes
learning not-straightforward
(Gradient Vanish/Explosion)

Representation Learning
• We don’t know the

“right” levels of
abstraction of
information that is
good for the
machine
• So let the model

figure it out!

Example from Honglak Lee (NIPS 2010)

Representation Learning

Face Recognition:
• Deep Network can build up

increasingly higher levels of
abstraction
• Lines, parts, regions

Example from Honglak Lee (NIPS 2010)

Representation Learning

Example from Honglak Lee (NIPS 2010)

…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3

Activation Functions
• A new change: modifying the nonlinearity
• The logistic is not widely used in modern ANNs

Alternative 1:
tanh

Like logistic function but shifted
to range [-1, +1]

Activation Functions

Alternative 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient
when you pass zero)

Activation Functions

Alternative 3: soft exponential linear unit

Soft version: log(exp(x)+1)

Doesn’t saturate (at one end)
Sparsifies outputs
Helps with vanishing gradient

Activation Functions Summary

Hyperbolic Tangent

𝑓 𝑥 = $0 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

𝑓 𝑥 = 𝑥 𝑓 𝑥 =
1

1 + 𝑒!"

𝑓 𝑥 =
𝑒" − 𝑒!"

𝑒" + 𝑒!" 𝑓 𝑥 = $0 (𝑜𝑟 𝜖) 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

𝑓 𝑥! =
𝑒"!

∑# 𝑒""
Softmax Function

Learning Multi-layer Neural Network

• Can we apply perceptron learning to each node, including hidden nodes?
• Perceptron computes error e = y-f(w,x) and updates weights accordingly
• Problem: how to determine the true value of y for hidden nodes?
• Approximate error in hidden nodes by error in the output nodes
• Problems:
• Not clear how adjustment in the hidden nodes affect overall error
• No guarantee of convergence to optimal solution

Gradient Descent for Multilayer NN

• Error function to minimize:

• Weight update:

• Activation function f must be differentiable

• For sigmoid function:

• Stochastic Gradient Descent (update the weight immediately)

j

k
j

k
j w

Eww
¶
¶

-=+ l)()1(

å å
=

÷÷
ø

ö
çç
è

æ
-=

N

i j
ijji xwftE

1
)(

2
1

å --+=+

i
ijiiii

k
j

k
j xoootww)1()()()1(l

yi

yi

2

Slope of the Activation Function
obtained as partial derivative by the
Gradient Descent

Quadratic function from
which we can find a global

minimum solution

Sum of Squared Residuals

Step Size

Gradient Descent for Multilayer NN

• Weights are updated in the
opposite direction of the
gradient of the loss function.

• Gradient direction is the
direction of uphill of the error
function.
• By taking the negative we are

going downhill.
• Hopefully to a minimum of the

error.

j

k
j

k
j w

Eww
¶
¶

-=+ l)()1(

Gradient direction

w(k)

w(k+1)

Gradient Descent for Multilayer NN

wpi

wqi

Neuron i

Neuron p

Neuron q

Neuron x

Neuron y

wix

wiy

Hidden layer
k-1

Hidden layer
k

Hidden layer
k+1

• For output neurons, weight update
formula is the same as before (gradient
descent for perceptron)

• For hidden neurons:

å

å

FÎ

FÎ

+

-=

--=

-+=

j

i

k
jkkjjj

jjjjj

j
piijjii

k
pi

k
pi

woo

otoo

xwooww

dd

d

dl

)1(:neurons Hidden

))(1(:neuronsOutput

)1()()1(

o: output of the network
t: target value (ground truth)

Training Multilayer NN

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Training Multilayer NN

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

E(𝑦, 𝑦∗)

How do we update these weights
given the loss is available only at
the output unit?

E

Error Backpropagation

…

…

Output

Input

Hidden Layer

E(𝑦, 𝑦∗)

Error is computed at the output
and propagated back to the input
by chain rule to compute the
contribution of each weight
(a.k.a. derivative) to the loss

A 2-step process
1. Forward pass - Compute the

network output
2. Backward pass – Compute the loss

function gradients and update

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Error Backpropagation - Example

Error Backpropagation - Example

The goal of backpropagation is to optimize the weights so that the neural network can learn how to correctly map
arbitrary inputs to outputs.

Error Backpropagation - Example

• initial weights
• biases
• training inputs/outputs
• activation: logistic

Example - The Forward Pass à

Example - The Forward Pass à

Example - The Forward Pass à

Example - The Forward Pass à

Example – Calculating the Total Error

Example - The Backward Pass ß

How much a change in w5 affects the total error?

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

how much does the total error change with respect to the output?

Example - The Backward Pass ß

how much does the total error change with respect to the output?

Example - The Backward Pass ß

how much does the total error change with respect to the output?

Example - The Backward Pass ß

how much does the total error change with respect to the output?

Example - The Backward Pass ß

how much does the output o1 change with respect to its total net input?

Example - The Backward Pass ß

how much does the output o1 change with respect to its total net input?

Example - The Backward Pass ß

how much does the output o1 change with respect to its total net input?

Example - The Backward Pass ß

how much does the total net input of o1 change with respect to w5?

Example - The Backward Pass ß

how much does the total net input of o1 change with respect to w5?

Example - The Backward Pass ß

how much does the total net input of o1 change with respect to w5?

Example - The Backward Pass ß

Put everything together

Example - The Backward Pass ß

Rewriting as delta rule

Slope of the Activation Function obtained as partial derivative by the Gradient Descent

Example - The Backward Pass ß

Rewriting as delta rule

Example - The Backward Pass ß

Rewriting as delta rule

Example - The Backward Pass ß

Rewriting as delta rule

Example - The Backward Pass ß

Apply the step size to update w5.

Example - The Backward Pass ß

Apply the step size to update w5.

Example - The Backward Pass ß

The same calculus is applied to update w6, w7 and w8

Example - The Backward Pass ß

After that w5, w6, w7 and w8 have been updated we
continue backwards to update w1, w2, w,3 and w4

Example - The Backward Pass ß

After that w5, w6, w7 and w8 have been updated we
continue backwards to update w1, w2, w,3 and w4

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

Same process is followed for

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

Example - The Backward Pass ß

Backpropagation in other words

• In order to get the loss of a node
(e.g. Z0), we multiply the value of its
corresponding f’(z) by the loss of the
node it is connected to in the next
layer (delta_1), by the weight of the
link connecting both nodes.
• We do the delta calculation step at

every unit, back-propagating the loss
into the neural net, and finding out
what loss every node/unit is
responsible for.

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7

https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7

On the Key Importance of Error Functions

• The error/loss/cost function reduces all the various good and bad
aspects of a possibly complex system down to a single number, a
scalar value, which allows candidate solutions to be compared.
• It is important, therefore, that the function faithfully represent our

design goals.
• If we choose a poor error function and obtain unsatisfactory results,

the fault is ours for badly specifying the goal of the search.

Objective Functions for NN

• Regression: A problem where you predict a real-value quantity.
• Output Layer: One node with a linear activation unit.
• Loss Function: Quadratic Loss (Mean Squared Error (MSE))

• Classification: Classify an example as belonging to one of K classes
• Output Layer:

• One node with a sigmoid activation unit (K=2, binary cross-entropy)
• K output nodes in a softmax layer (K>2, categorical cross-entropy)*

• Loss function: Cross-entropy (i.e. negative log likelihood)

Forward Backward

Quadratic J =
1

2
(y � y�)2

dJ

dy
= y � y�

Cross Entropy J = y� HQ;(y) + (1 � y�) HQ;(1 � y)
dJ

dy
= y� 1

y
+ (1 � y�)

1

y � 1

J = E

*When K > 2 the target
variable needs to be
one-hot encoded

J = ∑ y* log(y)

(binary)

Cross Entropy
(categorical)

Design Issues in ANN

• Number of nodes in input layer
• One input node per binary/continuous attribute
• k or log2k nodes for each categorical attribute with k values

• Number of nodes in output layer
• One output for binary class problem
• k or log2k nodes for k-class problem

• Number of nodes in hidden layer
• Initial weights and biases

Characteristics of ANN

• Multilayer ANN are universal approximators but could suffer from overfitting if
the network is too large.
• Gradient descent may converge to local minimum.
• Model building can be very time consuming, but testing can be very fast.
• Can handle redundant attributes because weights are automatically learnt.
• Sensitive to noise in training data.
• Difficult to handle missing attributes.

Tips and Tricks of NN Training

Dataset Should Normally be Split Into

• Training set: use to update the weights. Records in this set are
repeatedly in random order. The weight update equation are applied
after a certain number of records.

• Validation set: use to decide when to stop training only by
monitoring the error and to select the best model configuration

• Test set: use to test the performance of the neural network. It should
not be used as part of the neural network development and model
selection cycle

Before Starting: Weight Initialization

• Choice of initial weight values is important as this decides starting
position in weight space. That is, how far away from global minimum
• Aim is to select weight values which produce midrange function signals
• Select weight values randomly from uniform probability distribution
• Normalize weight values so number of weighted connections per unit

produces midrange function signal

• Try different random initialization to
• Assess robustness
• Have more opportunities to find optimal results

Two learning fashion (plus one)

• Sequential mode (on-line, stochastic, or per-pattern)
• Weights updated after each records is presented
• Many weight updates, can quicker convergence but also make learning less stable

• Batch mode (off-line or per-epoch)
• Weights updated after all records are presented
• Can be very slow and lead to trapping in early local minima

• Minibatch mode (a blend of the two above)
• Weights updated after a few records (from tens to thousands) are presented
• Best of both (and good for GPU)

Convergence Criteria

• Learning is obtained by repeatedly supplying training data and
adjusting by backpropagation
• Typically 1 training set presentation = 1 epoch

• We need a stopping criteria to define convergence
• Euclidean norm of the gradient vector reaches a sufficiently small value
• Absolute rate of change in the average squared error per epoch is

sufficiently small
• Validation for generalization performance: stop when generalization

performance reaches a peak

Early Stopping

• Running too many epochs may overtrain the network and result in
overfitting and perform poorly in generalization
• Keep a hold-out validation set and test accuracy after every epoch.

Maintain weights for best performing network on the validation set
and stop training when error increases beyond this
• Always let the network run for some epochs before deciding to stop

(patience parameter), then backtrack to best result

No. of epochs

error
Training set

Validation set

Model Selection

• Too few hidden units prevent the network from learning adequately fitting the
data and learning the concept.
• Too many hidden units leads to overfitting, unless you regularize heavily (e.g.

dropout, weight decay, weight penalties)
• Cross validation should be used to determine an appropriate number of hidden

units by using the optimal validation error to select the model with optimal
number of hidden layers and nodes.

Regularization

• Constrain the learning model to avoid overfitting and help improving
generalization.
• Add penalization terms to the loss function that punish the model for

excessive use of resources
• Limit the amount of weights that is used to learn a task
• Limit the total activation of neurons in the network

𝐸% = 𝐸 𝑦, 𝑦∗ + 𝜆𝑅(⋅)

𝑅(𝑊&)

𝑅(𝑍)

Hyperparameter to be
chosen in model selection

Penalty on parameters

Penalty on activations

Common penalty terms (norms)

• 1-norm ||𝐴||' = ∑(! |𝑎(!|
• Parameters: 𝑅 𝑊1 = ||𝑊1||23

• Activations: 𝑅 𝑍(𝑋) = ||𝑍 𝑋 ||23 (Z hidden unit activation)

• 2-norm ||𝐴||) = ∑(! 𝑎(!)

• Parameters: 𝑅 𝑊1 = ||𝑊1||33

• Activations: 𝑅 𝑍(𝑋) = ||𝑍 𝑋 ||33 (Z hidden unit activation)

• Any p-norm and more…

Dropout Regularization

… …

Randomly disconnect units from the network during training

Dropout Regularization

… …

Randomly disconnect units from the network during training

Dropout Regularization

… …

Randomly disconnect units from the network during training

Dropout Regularization
Randomly disconnect units from the network during training

• Regulated by unit dropping
hyperparameter

• Prevents unit coadaptation
• Committee machine effect
• Need to adapt prediction phase
• Used at prediction time gives

predictions with confidence
intervals

You can also drop single
connections (dropconnect)

… …

x

x

x

x

x

Momentum

• Adding a term to weight update equation to store an exponentially
weight history of previous weights changes

• Reducing problems of instability while increasing the rate of convergence
• If weight changes tend to have same signs, the momentum term

increases and gradient decrease speed up convergence on shallow
gradient

• If weight changes tend have opposing signs, the momentum term
decreases and gradient descent slows to reduce oscillations
(stabilizes)

• Can help escape being trapped in local minima

Choosing the Optimization Algorithm

• Standard Stochastic Gradient Descent (SGD)
• Easy and efficient
• Difficult to pick up the best learning rate
• Unstable convergence
• Often used with momentum (exponentially weighted history of previous weights changes)

• RMSprop
• Adaptive learning rate method (reduces it using a moving average of the squared gradient)
• Fastens convergence by having quicker gradients when necessary

• Adagrad
• Like RMSprop with element-wise scaling of the gradient

• ADAM
• Like Adagrad but adds an exponentially decaying average of past gradients like momentum

Convolutional Neural Networks

• Are typically applied for the classification of images and time series
• Instead of having only “fully connected” layers adopt “convolutional

layers”

Recurrent Neural Network

• Are typically applied in natural language processing (NLP).

Convolutional Neural Network
Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf

Fully Connected Layer

Fully Connected Layer

Convolution Layer

Convolution Layer
Filters always extend the full
depth of the input volume

Convolution Layer

Convolution Layer

Convolution Layer
1 0 1

0 1 0

1 0 1

Convolution
Kernel

Convolution Layer

Convolution Layer

Convolution Layer

Convolutional Neural Network

Convolutional Neural Network

• CNN is a sequence of Conv Layers, interspersed with activation functions.
• CNN shrinks volumes spatially.
• E.g. 32x32 input convolved repeatedly with 5x5 filters! (32 -> 28 -> 24 ...).
• Shrinking too fast is not good, doesn’t work well.

CNN for Image Classification

Stride

Stride

Stride

Stride

Padding

7x7 output!
In general, common to see CONV layers with stride
1, filters of size FxF, and zero-padding with (F-1)/2.
(will preserve size spatially)
• F = 3 => zero pad with 1 pixel
• F = 5 => zero pad with 2 pixel
• F = 7 => zero pad with 3 pixel

Convolution Summary

Pooling Layer

• Makes the representations smaller and more manageable
• Operates over each activation map independently

MaxPooling and AvgPoling

Pooling Summary

Example of CNN

Recurrent Neural Network
Slides edited from Stanford
http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture10.pdf

Types of Recurrent Neural Networks

Vanilla NN Image -->
Sequence of Words
Image Captioning

Sequence of Words -->
Sentiment

Sentiment Classification
TS Classification

Sequence of Words -->
Sequence of Words
Machine Translation

Video Classification

Recurrent Neural Network - RNN

Recurrent Neural Network - RNN

• We can process a sequence of vectors x by applying a recurrence
formula at every time step:

Unfolded RNN

RNN: Computational Graph

Reminder: Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to One

RNN: Example Training

RNN: Example Training

RNN: Example Training

RNN: Example Test

RNN: Example Test

RNN: Example Test

RNN: Example Test

References

• Artificial Neural Network. Chapter 5.4 and
5.5. Introduction to Data Mining.
• Hands-on Machine Learning with Scikit-

Learn, Keras & Tensorflow. A practical
handbook to start wrestling with Machine
Learning models (2nd ed).
• Deep Learning. Ian Goodfellow, Yoshua

Bengio, and Aaron Courville. The
reference book for deep learning models.

Exercises - Neural Network

Predict with a Neural Network

Predict with a Neural Network - Solution
H1 = sign(0.4 * -1 + 0.1 * 1 -0.2) =

= sign(-0.5) = -1
H2 = sign(0.0 * -1 + -0.4 * 1 -0.2) =

= sign(-0.6) = -1
H3 = sign(-0.1 * -1 + 0.4 * 1 -0.2) =

= sign(0.3) = 1

Y1 = sign(0.2 * -1 + 0.2* -1 + 0.3 * 1 -0.2) =
= sign(-0.3) = -1

Predict with a Neural Network

Predict with a Neural Network - Solution

