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Definitions

• To interpret means to give or provide the 
meaning or to explain and present in 
understandable terms some concepts.

• In AI, and in data mining and machine 
learning, interpretability is the ability to 
explain or to provide the meaning in 
understandable terms to a human.

- https://www.merriam-webster.com/

- Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608v2.

https://www.merriam-webster.com/


A black box is a model, whose 
internals are either unknown to 
the observer or they are known 
but uninterpretable by humans.

Example:
• DNN
• SVM
• Ensemble

- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box 
models. ACM Computing Surveys (CSUR), 51(5), 93.

What is a Black Box Model?



Interpretable Models

Linear Model

Rules

Decision Tree



Motivations For Explanation Methods



COMPAS recidivism black bias 



The background bias



Since 25 May 2018, GDPR establishes a right for all individuals to obtain “meaningful explanations of the logic 
involved” when “automated (algorithmic) individual decision-making”, including profiling, takes place.

Right of Explanation



Explanation in different AI fields 

• Machine Learning

Auto-encoder
Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case-
Based Reasoning Through Prototypes: A Neural Network That Explains 
Its Predictions. AAAI 2018: 3530-3537

Surogate Model
Mark Craven, Jude W. Shavlik: Extracting Tree-Structured 
Representations of Trained Networks. NIPS 1995: 24-30

Feature Importance, Partial Dependence Plot, Individual Conditional Expectation



Explanation in different AI fields 

• Machine Learning
• Computer Vision

Saliency Map
Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt, Been 
Kim: Sanity Checks for Saliency Maps. NeurIPS 2018: 9525-9536

Uncertainty Map
Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for 
Computer Vision? NIPS 2017: 5580-5590



Explanation in different AI fields 

• Machine Learning
• Computer Vision
• Knowledge Representation and Reasoning

Diagnosis Inference
Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-
Based Diagnosis of Discrete Event Systems: Theory and 
Practice. KR 2012

Abduction Reasoning (in Bayesian Network)
David Poole: Probabilistic Horn Abduction and Bayesian 
Networks. Artif. Intell. 64(1): 81-129 (1993)



Explanation in different AI fields 

• Machine Learning
• Computer Vision
• Knowledge Representation and Reasoning
• Multi-agent Systems

Agent Strategy Summarization
Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. 
AAMAS 2018: 1203-1207

Explainable Agents
Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van den Bosch, Catholijn M. Jonker, John-
Jules Ch. Meyer: Do You Get It? User-Evaluated Explainable BDI Agents. MATES 2010: 28-39



Explanation in different AI fields 

• Machine Learning
• Computer Vision
• Knowledge Representation and Reasoning
• Multi-agent Systems
• NLP

Explainable NLP
Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative 
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)



Explanation in different AI fields 

• Machine Learning
• Computer Vision
• Knowledge Representation and Reasoning
• Multi-agent Systems
• NLP
• Planning and Scheduling

Human-in-the-loop Planning

Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR
abs/1709.10256 (2017)



Explanation in different AI fields 

• Machine Learning
• Computer Vision
• Knowledge Representation and Reasoning
• Multi-agent Systems
• NLP
• Planning and Scheduling
• Robotics

From Decision Tree to human-friendly information 
Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent 
Robots. AAAI Workshops 2017



Explanation as Machine-Human Conversation

- Humans may have follow-up questions
- Explanations cannot answer all users’ concerns

[Weld and Bansal 2018]



Role-based Interpretability

• End users “Am I being treated fairly?”
“Can I contest the decision?”
“What could I do differently to get a 
positive outcome?”

• Engineers, data scientists: “Is my system 
working as designed?”
• Regulators “ Is it compliant?”

An ideal explainer should model the user 
background. 

[Tomsett et al. 18]

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]

“Is the explanation interpretable?” à “To whom is the explanation interpretable?”
No Universally Interpretable Explanations!



XAI is Interdisciplinary

• For millennia, philosophers have 
asked the questions about what 
constitutes an explanation, what 
is the function of explanations, 
and what are their structure 
• [Tim Miller 2018] 



How to Open the Black Box



XAI Taxonomy of Explanation Methods



XAI Taxonomy of Explanation Methods



XAI Taxonomy of Explanation Methods

Input Data

Interpretability 

Black-box System

Transparent System

!𝑦

Black-box 
AI System

Explanation Sub-system

Input Data
Explanation

!𝑦



XAI Taxonomy of Explanation Methods



Explainable by Design Method



XAI Taxonomy of Explanation Methods



Black Box Explanations: Global vs Local

Global Explanation Local Explanations



XAI Taxonomy of Explanation Methods



Black Box Explanations: Specific vs Agnostic

Model Specific

Model Agnostic

f is black box
independent

f is black box
dependent



Types of Data

Text
(TXT)

Tabular
(TAB)

Images 
(IMG)



Types of Explanations

• Tabular Data
• Rule-based
• Decision Tree
• Features Importance
• Prototypes
• Counter-exemplars

• Images
• Saliency Maps
• Concept Attributions
• Prototypes
• Counter-exemplars

• Text
• Sentence 

Highlighting
• Attention-based
• Prototypes
• Counter-exemplars



Explanations and Explanation Methods 



TREPAN



Trepan

• Global explainer designed to explain NN 
but usable for any type of black box.
• It aims at approximating a NN with a DT 

classifier using best-m-of-n rules.
• At each node split the feature to split is 

selected on the original data extended 
with random samples respecting the 
current path.
• It learns to predict the label returned by 

the black box, not the original one.



Trepan

01 T = root_of_the_tree()
02 Q = <T, X, {}>
03 while Q not empty & size(T) < limit
04 N, XN, CN = pop(Q)
05 ZN = random(XN, CN)
06 yZ = b(Z), y = b(XN)
07 if same_class(y ∪ yZ)
08 continue
09 S = best_split(XN ∪ ZN, y ∪ yZ)
10 S’= best_m-of-n_split(S)
11 N = update_with_split(N, S’)
12 for each condition c in S’
13 C = new_child_of(N)
14 CC = C_N ∪ {c}
15 XC = select_with_constraints(XN, CN)
16 put(Q, <C, XC, CC>)

- Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.

black box 
auditing



LIME



Local Explanation

• The overall decision 
boundary is complex
• In the neighborhood of a 

single decision, the 
boundary is simple
• A single decision can be 

explained by auditing the 
black box around the 
given instance and 
learning a local decision.



Local Interpretable Model-agnostic Explanations

• Local model-agnostic explainer that reveals 
the black box decisions through features 
importance/saliency maps.
• It locally approximates the behavior of a 

black box with a local surrogate expressed 
as a logistic regressor (with Lasso or Ridge 
penalization).
• Synthetic neighbors are weighted w.r.t. the 

distance with the instance to explain.



LIME

Sepal length Sepal width Petal length Petal width b(setosa) b(versic) b(virgi)

3 4 3 6 0.1 0.7 0.2

3 4 5 6 0.4 0.4 0.6

3 2 3 8 0.3 0.6 0.1

5 2 3 6 0.0 0.3 0.7

2 4 4 7 0.0 0.8 0.2

Train a Linear Regressor

Returns the coefficients as Explanation



LIME

01 Z = {}
02 x instance to explain 
03 x’ = real2interpretable(x)
04 for i in {1, 2, …, N}
05 zi= sample_around(x’)
06 z = interpretabel2real(z’)
07 Z = Z ∪ {<zi, b(zi), d(x, z)>}
08 w = solve_Lasso(Z, k)
09 return w

- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: 
Explaining the predictions of any classifier. KDD.

black box 
auditing

Features Importance

Saliency Map



LIME

• LIME turns an image x to a 
vector x’ of interpretable 
superpixels expressing 
presence/absence.

• It generates a synthetic 
neighborhood Z by randomly 
perturbing x’ and labels them 
with the black box.

• It trains a linear regression 
model (interpretable and 
locally faithful) and assigns a 
weight to each superpixel.
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LIME Issues

• LIME does not really generate images with different 
information: it randomly removes some superpixels, i.e.
it suppresses the presence of an information rather than 
modifying it. 
• On tabular data LIME generates the neighborhood by 

changing the feature values with other values of the 
domain.
• x = {age=24, sex=male, income=1000} ( x = x’)
• z = {age=30 , sex=male, income=800} ( z = z’) ?

??
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LORE



LOcal Rule-based Explainer

• LORE extends LIME adopting as local 
surrogate a decision tree classifier 
and by generating synthetic 
instances through a genetic 
procedure that accounts for both 
instances with the same labels and 
different ones.
• It can be generalized to work on 

images and text using the same data 
representation adopted by LIME.



LORE
01 x instance to explain
02 Z= = geneticNeighborhood(x, fitness=, N/2)
03 Z≠ = geneticNeighborhood(x, fitness≠, N/2) 
04 Z = Z= ∪ Z≠
05 c = buildTree(Z, b(Z))
06 r = (p -> y) = extractRule(c, x)
07 ϕ = extractCounterfactual(c, r, x)
08 return e = <r, ϕ>

r = {age ≤ 25, job = clerk, income ≤ 900} -> deny

Φ = {({income > 900} -> grant),
({17 ≤ age < 25, job = other} -> grant)}

black box 
auditing



LORE on Medical Images

• The goal is to classify 
dermoscopic images among 
categories such as:  Melanoma 
(MEL), Melanocytic Nevus (NV); 
Basal Cell Carcinoma (BCC), 
Actinic Keratosis (AK), etc.
• The original is classified as AK
• The counterfactual as BCC.



SHAP



Shapely Values

• A prediction can be explained by assuming that each feature value of 
the instance is a "player" in a game where the prediction is the 
payout. Shapley values -- a method from coalitional game theory --
tells us how to fairly distribute the "payout" among the features.
• Example: A black box predicts apartment prices. For a certain 

apartment it predicts €300,000 and you need to explain this 
prediction. The apartment has an area of 50 m2, is located on the 2nd 
floor, has a park nearby and cats are banned.



Shapely Values and Game Theory

• The average prediction is €310,000. How much has each feature value 
contributed to the prediction compared to the average prediction?
• The "game" is the prediction task for a single instance of the dataset. 
• The "gain" is the actual prediction for this instance minus the average 

prediction for all instances. 
• The "players" are the feature values of the instance that collaborate 

to receive the gain (= predict a certain value).
• The explanation could be: The park-nearby contributed 

€30,000; area-50 contributed €10,000; floor-2nd contributed €0; cat-
banned contributed -€50,000. The contributions add up to -€10,000, 
the final prediction minus the average predicted apartment price.



Shapely Values Example

• The Shapley value is the average marginal 
contribution of a feature value across all 
possible coalitions (combination of fixed feature 
values).
• We evaluate the contribution of cat-banned 

when it is added to a coalition of park-
nearby and area-50.
• We simulate that only park-nearby, cat-

banned and area-50 are in a coalition by 
randomly drawing another apartment from the 
data and using its value for the floor feature. 
• The floor-2nd is replaced by the randomly 

drawn floor-1st. 
• Then we predict the price of the apartment 

with this combination (€310,000). 



Shapely Values Example

• In a second step, we remove cat-banned from 
the coalition by replacing it with a random value 
of the cat allowed/banned from the randomly 
drawn apartment. In the example it was cat-
allowed, but it could have been cat-
banned again. 
• We predict the apartment price for the coalition 

of park-nearby and area-50 (€320,000). 
• The contribution of cat-banned was €310,000 -

€320,000 = -€10,000. This estimate depends on 
the values of the randomly drawn apartment 
that served as a "donor" for the cat and floor 
feature values. 
• We get better estimates if we repeat this 

sampling step and average the contributions.



Shapely Values Example

• We repeat this computation for all possible coalitions. 
• The Shapley value is the average of all the marginal 

contributions to all possible coalitions. 
• The computation time increases exponentially with the 

number of features.
• For each of these coalitions we compute the predicted 

apartment price with and without the feature value cat-
banned and take the difference to get the marginal 
contribution. 
• We replace the feature values of features that are not in a 

coalition with random feature values from the apartment 
dataset to get a prediction from the black box.
• If we estimate the Shapley values for all feature values, we 

get the complete distribution of the prediction (minus the 
average) among the feature values.



SHAP

• SHAP (SHapley Additive 
exPlanations) assigns each 
feature an importance value 
for a particular prediction by 
means of an additive feature 
attribution method.
• It assigns an importance value 

to each feature that represents 
the effect on the model 
prediction of including that 
feature

• Lundberg, Scott M., and Su-In Lee. A unified approach to interpreting model 
predictions. Advances in Neural Information Processing Systems. 2017.



SHAP on Tabular Data



SHAP on Images



Saliency Maps



Saliency Maps

• A saliency map is an image in which a pixel's brightness represents how salient the pixel 
is. A positive value (red) means that the pixel has contributed positively to the 
classification, while a negative one (blue) means that has contributed negatively. 

• There are two methods for creating SMs.
1. Assign to every pixel a saliency value. 
2. Segment the image into different pixel groups (superpixels or segments) and then assign a 

saliency value for each group. 



Integrated Gradient

• INTGRAD can only be applied to differentiable models.
• INTGRAD constructs a path from the baseline image x’ to the input x

and computes the gradients of points along the path. 
• The points are taken by overlapping x with x', and gradually modifying 

the opacity of x. Saliency maps are obtained by cumulating the 
gradients of these points. 

- Mukund Sundararajan, Ankur Taly, Qiqi Yan. Axiomatic
Attribution for Deep Networks. arXiv preprint
arXiv:1703.01365. 2017



MASK

01 x instance to explain
02 varying x into x’ maximizing b(x)~b(x’)
03 the variation runs replacing a region R of x with:

constant value, noise, blurred image
04 reformulation: find smallest R such that b(xR)≪b(x)

- Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).

black box 
auditing



Example-based Explanations



Example-based Explanations

• Example-based explanation methods select particular instances of the 
dataset or generate synthetic instances to explain black box behaviors.
• Example-based explainers are mainly local explainers.
• Example-based explanations only make sense if we can represent an 

instance of the data in a humanly understandable way.
• This works well for:
• images
• tabular data with not many features
• short texts



Example-based Explanations

• We mainly recognize the following example-based explanations:

• Prototypes: a selection of representative instances having the 
same class of the instance under analysis. Among prototypes we 
also recognize:
• Criticisms: instances that are not well represented by prototypes.
• Influential Instances: training points that were the most influential for the 

training of the black-box or for the prediction itself.

• Counterfactuals: a selection of representative instances having a 
different class w.r.t. the instance under analysis.



Prototypes and Criticism

• A prototype is a data instance that is representative of all the data.
• A criticism is a data instance that is not well represented by the set of 

prototypes.
• They can be used independently from a machine learning model to 

describe the data, but they can also be used to create an 
interpretable model or to make a black box model interpretable.
• Example of prototypes: K-Medoids centroids, K-Means centroids
• Example of criticism: Outliers
• Method to find them: MMD-critic

• Kim, Been and Khanna, Rajiv and Koyejo, Oluwasanmi. Examples Are Not Enough, 
Learn to Criticize! Criticism for Interpretability. 2016, NIPS.



Influential Instance

• An influential instance is a 
data instance whose removal 
has a strong effect on the 
trained model. 
• The more the model 

parameters or predictions 
change when the model is 
retrained with a particular 
instance removed from the 
training data, the more 
influential that instance is. 



Counterfactual Explanations

• A counterfactual explanation describes a causal situation in the form: 
"If X had not occurred, Y would not have occurred".
• Thinking in counterfactual terms requires imagining a hypothetical 

reality that contradicts the observed facts.
• Even if the relationship between the inputs and the outcome to be 

predicted might not be causal, we can see the inputs of a model as 
the cause of the prediction.
• A counterfactual explanation of a prediction describes the smallest 

change to the feature values that changes the prediction to a 
predefined output.



Generating Counterfactual Explanations

• A simple and naive approach to generating counterfactual 
explanations is searching by trial and error: randomly changing 
feature values of the instance of interest and stopping when the 
desired output is predicted.
• As an alternative we can define a loss function that consider the 

instance of interest, a counterfactual and the desired (counterfactual) 
outcome. Then, we can find the counterfactual explanation that 
minimizes this loss using an optimization algorithm. 
• Many methods proceed in this way but differ in their definition of the 

loss function and optimization method.



Optimized CF Search

Wachter et al. suggest minimizing the following loss:

1. Sample a random CF x’
2. Optimize the loss L
3. If not
4. Increase Lambda. Go to 2.
5. Return the CF x’ that minimizes the loss.

balance the prediction

• Wachter, Sandra and Mittelstadt, Brent and 
Russell, Chris. Counterfactual explanations 
without opening the black box: Automated 
decisions and the GDPR. 2017. Harv. JL & Tech



Partial Dependency Plot



Partial Dependency Plot

• The partial dependence plot (PDP) shows the marginal effect a 
feature have on the predicted outcome of a model.

• In particular, the partial function above tells us for given value(s) of 
features S what the average marginal effect on the prediction is, 
where xC are actual feature values from the dataset for the features 
in which we are not interested, and n is the number of instances.



Partial Dependency Plot

• Introduce random perturbations on input values to understand to 
which extent every feature impact the prediction using PDPs.
• The input is changed one variable at a time.

- Ruth Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. arXiv:1704.03296 (2017).

black box 
auditing



Take Home Message



Open The Black Box!

• To empower individual against undesired effects of 
automated decision making 
• To reveal and protect new vulnerabilities
• To implement the “right of explanation”
• To improve industrial standards for developing AI-

powered products, increasing the trust of companies 
and consumers
• To help people make better decisions
• To align algorithms with human values 
• To preserve (and expand) human autonomy



Open Research Questions

• There is no agreement on what an explanation is
• There is not a formalism for explanations
• How to evaluate the goodness of explanations?
• There is no work that seriously addresses the 

problem of quantifying the grade of 
comprehensibility of an explanation for humans
• What if there is a cost for querying a black box?
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Explanation Toolboxes and Repositories

• https://github.com/jphall663/awesome-machine-learning-interpretability
• https://github.com/pbiecek/xai_resources
• https://github.com/ModelOriented/DrWhy
• https://fat-forensics.org/
• https://github.com/Trusted-AI/AIX360
• https://captum.ai/
• https://github.com/interpretml/interpret
• https://github.com/SeldonIO/alibi
• https://github.com/pair-code/what-if-tool

https://github.com/jphall663/awesome-machine-learning-interpretability
https://github.com/pbiecek/xai_resources
https://github.com/ModelOriented/DrWhy
https://fat-forensics.org/
https://github.com/Trusted-AI/AIX360
https://captum.ai/
https://github.com/interpretml/interpret
https://github.com/SeldonIO/alibi
https://github.com/pair-code/what-if-tool

